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CHAPTER 1

DOUBLE E (EE): AN INTRODUCTIONTO
PROBABILITY DISTRIBUTIONS AND

ESTIMATION

This chapter introduces us to the Double E (EE) chairi of-consumer.electronics stores and their
struggle to improve operations by using some basic s:atistical anzlysis. EE’s main problem is
dealing with pseudo customers who utilize its sales staff’s tiimcand expertise and then buy the
products online or elsewhere. The case notivaies the use of data to diagnose and help construct
solutions to the company’s issues. The.topics intraduced include means, standard deviations,
variances, proportions, normal anc: t-distrihutinns, sar.npling, the sampling distribution of the
sample mean, confidence intervalsiar means and proportions, and some associated Excel and

Stata functions.

The techniques developed ii.this case will establish a foundation for more sophisticated analysis

discussed later:



1.1 EE: Uncertainty and Probability

EE is a chain of stores selling consumer electronics in the United States. Over the last d_ecade, it
has expanded to more than 4,000 stores spread across the country, thereby becoming one-af the
largest retailers of consumer electronics in the country. However, of late; EE’s proflts have been
declining. The primary reasons for this are suspected to be falling qualityaf service and growing
competition. EE has decided to deal with the problems aggressively andwants toeeme up with
fast and effective solutions. In this chapter, we will see how prabakility ana baéic statistics will be
useful to EE in a number of areas. Furthermore, many topics.introdueed-ii this chapter will be

used and referred to repeatedly throughout the remaiider, of the book.
PROBABILITY DISTRIBUTION

Much of what EE deals with, o ercouniers iri.the codrse of its operations, involves fluctuating
guantities. For example, it expleriel:f‘.es variaticns in its weekly sales, the number of items turned
in for repair each week, the=auniaer Gf-icins a customer buys during one visit, the length of time
a salesperson spends, with.2 single cusiomer, the end-of-quarter profits, etc. One convenient way
of summarizing the fluctuations-is to use a probability distribution. A probability distribution
makes passikle.the calculation of the chance that a variable lies in a given range. For example, a
probability, distribut’on for weekly sales allows us to calculate the chance that the weekly sales

will bein z-qiven range (e.g., weekly sales between $10,000 and $50,000).

£-continueus probability distribution is one in which the variable can assume any value within

a range. This means that if a variable can take the values, a and b, it can assume any value



between a and b. Graphically, a continuous probability distribution can be represented by a curve

(see Figure 1.1).
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Figure 1.1: Graph of probability distripution describing the daily sales (in dollars) at an EE store.

One variable that would typicatiy ke deseribed by a c.ontinuous distribution is the dollar amount
of sales in a day at an EE nutlel.‘. Tize area under the curve within a given range gives the
probability of sales falling“in that.rarige—~~or example, in Figure 1.1, the probability that the dollar
amount of sales on'a.given.day is betw.een $20,000 and $30,000 is equal to the area of the shaded
region. Since something ara/ays-has to happen, the total area under the curve for any probability

distribution is-enual“9 one.

A discrete-nrobabitity distribution is one in which the variable only takes on a certain
countable number of values. For instance, the number of customers who buy flat panel televisions
temorisw i1 a given store follows a discrete probability distribution with possible values of {0, 1,
2, 3, 4,5 or more}. The tools developed in this text will rely on continuous distributions. In fact,

though the dollar amount of sales is discrete (we cannot divide pennies any further), we have



assumed for simplicity that it is described by a continuous distribution. We will frequently use
this standard trick to our advantage. For purposes of convenience, it often pays to approximate

discrete distributions by continuous distributions.

1.2 The Mean

We will now introduce three of the most widely used attribute’s of a probabillity distribution,
namely, the mean, the variance, and the standard deviatica:A/e start vt the'mean. The mean of
a distribution measures the average (or expected) value Of that disiribution. The mean is often our
best single prediction for a variable’s value. Consider the sales riansuger of an EE store. He knows
that the weekly sales of desktop personal comruters (PCs) can be described by a probability
distribution. The mean sales provide him with a single number around which the actual weekly

sales will vary. It is usually denoted by trie.Greek fetter p (“mu”).

What the mean does for 4 prebagilitydistiibuiion is similar to what the average does for a group
of numbers. The mesi-is-also @alcuiated much like the average of a group of numbers. Before
learning how this is daag, let.us review how one computes the average of a group of numbers.
Suppose the_sales manager atari EE store observes the sales of desktop PCs for 5 weeks in
succesgion. Let ustake them to be 19, 25, 20, 25 and 27. To get the average sales of desktops per
Wee_k during-this period, she needs to sum up these numbers and divide by five. The average

weerty nuimnber sold is equal to the following:

‘7 Average sales = (19+25+20+25+27)/5 = 116/5 = 23.2




This means that, on average, 23.2 desktop PCs were sold each week at the store during this time

period.
1.3 The Variance and Standard Deviation

Knowing the mean is not always enough to compare two probability distril lti_o:ls. if a particular
distribution has a higher mean than a second one, all the values of tiie Tirst oiie aré-not necessarily
higher than the second one. To illustrate this, consider the dollar gmounts &f séles in two of EE’s
stores. Suppose they can be represented by the probabilitv.distributiGns.ckowr in Figure 1.2. The
means of the distributions are labeled x, and x,. Though the meay of distribution 2 (1, ) is

higher than that of distribution 1 ( £, ), a value drawn Trom Gistiibution 2 may be lower than one

drawn from distribution 1. In fact, becaus# distribution 2 is so spread out there is a greater

probability of obtaining very low values than‘there is with distribution 1. This shows that having

a measure of the spread around the mean is‘useful in"addition to knowing the mean itself.
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Figure 1.2: p ; = mean of distribution 1; p , = mean of distribution 2.



The variance is the most frequently used measure of variation or spread of a distribution'around
the mean. The higher the variance of a distribution, the more likely it is for the ariauic'to assume
values far from the mean. Mathematically, the variance is the average squared dewiation from the
mean (i.e., for each possible value, subtract the mean, square the resulting numker, and calculate
the mean of these numbers using the probability distribution) and is-tsua!ly denoted by o°
(“sigma squared”). Basically, it measures on average how “far’ the actual zales are from their

average.

Why is a number like the variance useful? Consider, or example;, the sales manager at an EE
store who is in charge of ordering inventorigs. 5’0 order inventories in the right quantities, she
needs to account for the variability in weekly deinand for different items sold at the store. She
knows that probability distributions-carria used tG lm.(‘_erstand the demand fluctuations. To set the
right inventory levels, knowing the mean iz, generally insufficient. She also needs to know how
spread out the distributior far demarid.is aioui its mean. In other words, she needs to measure the
variability in demand_for that-particular item. The variance and standard deviation of the

probability distributica, car-do tiisr her.

THE MEAN AiD "V/ARIANCE OF FINANCIAL SECURITIES

Ghe iraportant application of mean and variance lies in finance. The return on any financial
secerity fiuciuates and can be described by a probability distribution. A security with a higher
meari-£etarn than a second one provides higher returns on average. Obviously, any investor would

prefer a higher mean return all else equal. However, this is not the only factor that influences the



investment decisions of most investors. Investors’ behavior suggests that they like high returns
but dislike huge fluctuations or variations in the returns. Huge fluctuations suggest significant
possibilities of very high or very low returns. This makes the security risky or volatile. The
variance of the probability distribution used to describe the returns on a securit\*is circ-metsure of
the risk associated with the security. The higher the variance becomes, the riore visky the security
is. A risk-sensitive individual takes into account both the means and thg variances of securities

while making investment decisions.*

STANDARD DEVIATION

One drawback of the variance is that, as a number, it can be-harg to.interpret. This is because it is
measured in the square of the original varizble’s units. For example, the distribution of weekly
sales measured in dollars will have a variaiica measured in dollars squared. Interpreting dollars
squared is difficult. For this reasos; 1t Is cemmon te-use the square root of the variance, called the
standard deviation, instead of the variance ‘itseif. The standard deviation is a measure of spread
that is always in the samg uiits s the-griginal variable. Since the standard deviation is the square

root of the variance -it-ic-usuaii/ deirgted by o (“sigma”).

1.4 Piopuitions

\Working with variables with only two possible outcomes can sometimes be helpful. Consider the
custamers wno come to an EE store. Some of them buy at least one product and some leave

withoet buying any. The variable “customer buys at least one item” has two possible outcomes:

! In Chapter 4, we will revisit the connection between variance and risk in the context of capital budgeting
and the CAPM model.



YES or NO. To use this variable numerically, we can say the variable takes the value 1 if the
customer buys at least one product and O if he or she does not buy any. If we use 1 and 0 in this
way, then the average, or mean, of the variable is the proportion of customers who tuy at least
one item. A specific illustration is the following. We look at any five EE custorsers: v ok:serve
if each customer buys an item or not on his or her visit to the store and assign the+alue 1 aridl 0
accordingly. For example, (see Figure 1.3), customers 1, 4, and 5 do ngt buy any items, and

customers 2 and 3 do.

Customer Value of variabic_—i
Identity showing;if an itersis
bought

Customer 1

[

Customer-2

=

Custeimer 3

T

|

|
[ Customer 4 jl 0
| | -

l CUSIOMErS

[
rigure™ 3: Tiis table shows if a customer bought an item.

Let us take the average of the=sziues in the right-hand column. The average is 0.4. Notice that 0.4
(or 40%) is the praportion of these five customers who bought at least one item. Hence, the

average,of this variable gives the proportion of the five customers who bought at least one item.

When dezliny with a variable with two outcomes coded as 0 and 1, instead of talking about the
me&:n, we'will sometimes use the proportion, which we denote by p. The proportion is always

between 0 and 1. When p is the mean of the distribution of such a variable, p(1-p) and



v P(@— p) will be its variance and standard deviation, respectively. So, for a variable with only

two outcomes, 0 and 1, knowing the proportion tells you the mean, the variance, and the standard

deviation.

1.5 The Normal Distribution

The normal distribution is one of the most common distributicns ‘n statistics. here is a whole
family of normal distributions, one for each pair of meais anc steadard deviations. Each normal

distribution can be uniquely characterized by those tvo barameters.

ndircar images

Figure 1.4: Normal distribution is symmetric and bell-shaped.

Character.stit features of a normal distribution are its bell shape and symmetry (see Figure 1.4).
Syriametry of the distribution implies that if a vertical line is drawn along the middle of the

distribution, the left and right halves will be mirror images of one another. The tails of a normal



distribution approach, but never touch, the X-axis. Though they are possible, values far above or
below the mean occur with small probability. Normal distributions with large standard deviations
have shorter peaks and fatter tails than most. Distributions with smaller standard deviaticns have

taller peaks with thin tails.

EXCEL FUNCTIONS

NORMDIST: The NORMDIST function in Excel calctiates the area withir‘a given range under
a particular normal distribution. Directly, this function gives us Qe area to the left of a given
value, but because the total area under the curve is eque! to oire, we'can use the function to

determine any area or probability for a normal distribution.

For example, suppose we want tGtind the &rea to the<‘ight of 36.5 under the normal distribution

with mean of 28 and standard feviation of 7 (the area A as shown in the Figure 1.5).

]
0,05

0.0+
0.034
0.02

0.011

] A

" o 20 a1 40 &0
6.5

Figure 1.5: Normal distribution with mean of 28 and standard deviation of 7.



To calculate this area, open a worksheet in Excel. Select INSERT>FUNCTION from the menu
and choose Statistical from the Function Category window. Then choose NORMD1ST from

the Function Name window as shown below. i -

S
_." "'\.. 'H.\
/ ~
Insert Function ey -
— 5\" s
Search for a function: 'I —
N w, S
Type a brief description of what ywou wank ko do and then G0 Jl R b
click Go ——} o
L b ] |
Or seleck a cateqory: [Skatiskical Lj LY .
- - B 15 ..
Select a Function: : _ ' _
A
| |
MEGEIMNOMDIST
1
MORMSIMNY Rd
& .\"'.\_
NORMDIST{x,mean,standard_deyv,curiulziiye) .
Returns the normal cumulative distribution Faeche spesified ri=an and
standard deviation, r— .
AN :
Help on this Funckion i |J\"-_ O | Cancel
- . y - — - S—
-'L__ T,
hy S, -
— M"". m'\"\.
. : . b . is, - .
When you click Oi%, you will see a dizlog box like this, and you can fill in the boxes with the
""x\ .'\'x o
appropriate values. e,
Ty
e .
!
| hY
1 N'H.
, e .
= %,
Iy "
r ) \ -



Function Arguments

NORMDIST
% |36.5 =] = 36.5
Mean |2E: jﬂ =24
Standard_dev |? E = l T—
Cumulative [true ] = TRUE |, —

= 0,8576380617 L |
Returns the normal curnulative distribution For the specified mean and standard devwizcion:

Cumulative is a logical value: For the cumulative distribution Funchion; use TRUE; Fix ™
the probability mass funckion, use FALSE, L
i
|

Farmula resulk = 0.8876280617

Help on this funckion r (8] - Cancsi

o

Click OK to get the area to the left of 36.5. 7i'his area turns oui o be 0.888 (rounding off to three
decimal places). Since we wish to find the area'ta the right of 36.5, we have to calculate 1 minus
0.888. This means that area A, wh_ich aaujals the probaisility of being at least 36.5, is 1-0.888 =

- ™,
0.112.

oy

How can we find the _ar_e;_ bets/\;een.two'values under a normal distribution using the NORMDIST
function? Suppose W Waiti S ‘-“H ths area lying between 36.5 and 38 under the normal
distribution \_/\{it_h mean o.f.28-and standard deviation of 7. This is the region marked B in Figure
1.6. Ob_ser.\./.e tiat t_tle area of B is equal to the area to the left of 38 minus the area to the left of
36.5. Tl-hero.f_ore, you should find these two areas using Excel and subtract the smaller one from
[he_large;"__[Earlie_r:-'vve found that the area to the left of 36.5 is 0.888. (Typing

_ --NORM'.DI&‘T(36.5, 28, 7, TRUE) into a blank cell will also give you the same result.)

Preceeding similarly, the area to the left of 38 is 0.923. Therefore, the area between 36.5 and 38

is 0.923-0.888 = 0.035.

19
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Figure 1.6: Normal distribution with mean of28 and standdd deviaticn of 7.

NORMINV: Consider once again the normal distributien with mean of 28 and standard deviation
of 7. Suppose we want to find the value for wilich the probability of falling below that value is
0.25. In Figure 1.6, this is the point derated by X. o find this value, select
INSERT>FUNCTION from th« menu and“choose Statistical from the Function Category
window. Then choose NORMIN/ from the: Flinction Name window. When you click OK, you

will see a dialog box like-this {ante we have filled in some of the boxes):

20



Function Arguments @g|

NORMINY
Probability [0.25 ] =025
Mean |2Ei jﬂ =28
Standard_dev |? le i l T—

= 23.278573352 l .
Returns the inverse of the normal cumulative distribution For the specified mean and staridard
deviation, L

Standard_dey is the standard deviation of the distribution, & positive number.

Farmula resulk = 23, 27857332 \

| |
Help on this fFunckion (0]4 —I Canczl J

In the dialog box, type in the probability that you want t(; the-le 6f tlhe value (0.25 in this
example). Type the mean and standard deviation of the norméi distribution corresponding to
Mean and Standard_dev, respectively. When ;/oq click OK, Excel returns the value of X as
23.279. In other words, the probakility of ch{ainihg avalue below 23.279 from a normal
distribution with mean of 28 and :;tandard"(l‘eviation of 7is 0.25.

To calculate the value havirﬁ aniven p;obability to the right, you will need to input 1 minus that
probability into NOR'I\,‘.-I,I\_I\}". For example, if you enter 0.75 as the probability, you find that the
probability cf-shtaining a véiue ébove 32.721 from a normal distribution with mean of 28 and
standarld deviatioriof i is 0.25. The NORMINV function tells you what value will give you a
cert_ain.p_r_obahilit\/ {0 i's left. At 32.721, we find 75% of the area to the left leaving 25% of the

area under the curve to the right.

21



Function Arguments @g|

NORMINY
Probability [0.75 ] =075
Mean |2Ei jﬂ =28
standard_dev |7| EX l ———

= 32. 72142668 l .
Returns the inverse of the normal cumulative distribution For the specified mean and staridard
deviation, L

Standard_dey is the standard deviation of the distribution, & positive number.

Formula result = 3272142663 M

| |
Help on this fFunckion (0]4 —I Canczl J

Notice how both of these values we calculated with NOI%R/H.’\.'.‘.,’ airP 'I[he same distance from the
mean of 28. That is, [32.721-28| = 4.721 and [23.279-28| = 4.721. The symmetry of the normal
distribution makes the distance from ttie mean fncod_ed to get 25% of the area under the tail) the
same in either direction. |

- ,

.'\-

STATAFUNCTIONS ™. ™.

-,

You can find the area tc .t_hé'ioft ofa particular value under a normal distribution and the value for
which the areaic-the left is 5 given probability under a normal distribution by using the
normali(zf and invaorinal(p) commands in Stata, respectively. However, these two commands
assgmé :h_e'r'.crma! disiribution with mean of 0 and standard deviation of 1 (called the standard
r‘orma!.dis't.'ibuti-oﬁ). For this reason, we delay explaining these commands in detail until after

", diéc'lssing the standard normal distribution in the next section.
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THE STANDARD NORMAL

The normal distribution with mean of 0 and standard deviation of 1 is called the stancarc, normal
or the z-distribution. Any normal distribution can be converted into the standarz normai. Tie
method of transforming a normal distribution into the standard normal is referred) as
standardization. If a variable, X, has a normal distribution with mean of p, cn_d Staridard deviation
of o, then the variable z = (X - u)/c has a standard normal distribution. The riew variable, z,
measures the number of standard deviations X is away from the riean. For'zxample, consider the
weekly sales of microwaves at an EE store. Suppose that-itis-describea-uy a+4iormal distribution
with mean of 25 and standard deviation of 5. If X denotas the verialile weekly sales of

microwaves, then the variable, z = (X-25)/5, will have'the siendard normal distribution.

Standardizing a normal variable is useful siriag it'¢onverts distances from the mean into units of
standard deviations. This is imporiant ana-helpful 1iv.diawing conclusions insensitive to the
original units the variable was/measured in: For example, stores A and B have weekly inventories

of 30 and 20 microwaves, resnectively—Tiie weekly demand for microwaves in store A is

the weekly demand is=ormially distributed but with mean of 16 and standard deviation of 3.5 (see
Figure 1.8). Civen this informiation, management wants to know which store has a higher
probability’ of a steck Gut, i.e., running out of microwaves.

Qiieway ot answering this question is to do the following: To find the probability of a stock out
in“Gtore A\, we look at the normal distribution with mean of 25 and standard deviation of 5 and

finathe area to the right of 30. Similarly, in Store B, we find the area to the right of 20 under the
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normal distribution with mean of 16 and standard deviation of 3.5. We can compare these two

probabilities and see which store has a bigger chance of a stock out.

0.081
0.061
0.04-
ey | B “Rabakifly of
' 'Jv stock ot
-
|:| T T T T T T T T — T _‘! —v—n—r1-|—-l—'—|—
10 0 =25 40

Figure 1.7: Shaded area repiesenis the probability of a stock out in store A.

0.1 /

0.05

0.06

Duﬂ

] Frobability of
0.027 stock out
o s '1'5? 2 2830
p=16

Figure 1.8: Shaded area represents the probability of a stock out in store B.
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A simpler and more intuitive way of answering the above question would be to standardize the
two distributions and compare them directly. This will give us the number of standard deviations
30 and 20 are away from their respective means. In store A, an inventory level of 30 is z;, = (30-
25)/5 = 1.00 standard deviation above the mean. For store B, the inventory leve! 6i 285 z,.= (20-
16)/3.5 = 1.14 standard deviations above the mean (see Figure 1.9). The prgoabiiity that a stare
suffers a stock out increases the fewer standard deviations its inventorylevil is abcve the mean.
Since 1.00 is less than 1.14, the probability of a stock out in store A-wiii-he ighei-than that in
store B. Standardization allows us to answer our question without finding'the actual probabilities

of stock outs in each store.

Figure 1.9: Fiestaissard normal distiibution. The shaded area represents the probability of a stock out in store A. The

dotted area represents the probability of a stock out in store B.

EXEEL RUNCTIONS

Exce! has two functions that are useful when working with the standard normal. These are

NORMSDIST and NORMSINV. As the names suggest, these functions are similar to the
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NORMDIST and NORMINYV functions we encountered earlier. However, unlike NORMDIST
and NORMINV, the NORMSDIST and NORMSINYV functions assume the distribution to be the

standard normal.

STATA FUNCTIONS

normal(z): The normal(z) function in Stata calculates the area to %€ Tet-of a-qiveiwvalue z under
a standard normal distribution. Therefore, to calculate the are tc| the left ¢f a given value X that
has a normal distribution with mean p and standard deviatien c,-vou vwilineed to first standardize

the normal variable by using the equation z = (X-p)/5.

Consider again an example where we want1o find the area to the right of 36.5 under the normal
distribution with mean of 28 and stanciard-deviaticn of 7. To calculate this area, open Stata. Type
display normal((36.5-28)/7) in the Comrirand box:2ress Enter, and Stata will return the

following: ?

. display normal((36:5-28)/7

v

0.88768068

Since this iumber-is thie area to the left of 36.5, to find the area to the right of 36.5, we have to

calculatz 1 rrinus fthis iumber. Using Stata to do this gives:

.aiznlay 1-ncrmal((36.5-28)/7)

0.11231932.

2 Note that in the actual Stata output, zero is omitted before the decimal. We have added a zero here to
distinguish the decimal in the output from the period in front of the actual command.
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To find the area between two values, say, 36.5 and 38, under the normal distribution with mean of
28 and standard deviation of 7, type display normal((38-28)/7)-normal((36.5-28)/7}, Fress

Enter, and Stata will calculate the area to be 0.03575559.

invnormal(p): The invnormal(p) command in Stata calculates the valie foz which the probability
of falling below that value is p in the standard normal distribution.-Curisider-ance again the
normal distribution with mean of 28 and standard deviation of 7. Supposeve want to find the
value for which the probability of falling below that value is 0.25. i Stata,l tvpe display

invnormal(0.25) in the Command box and press Enter ‘0 get:

. display invnormal(0.25)

-0.67448975

This tells us the area below -0.57449 in tfie standard normal distribution is 0.25. To convert this
into a value in the normal-distributiGn. with'mean 28 and standard deviation 7 we need to multiply
by the standard deviation anc-ther-add the mean. Since -0.67449 = (X-28)/7, solving for X yields
X =-0.67449*7+28 =.23.279."We-codld have done this directly in Stata by using the command

display 7*invnormal(0.25)"+ 2&.

1-6-Thie t-Oistiibution

The.t-dist:1butions are a common family of distributions in statistics. In fact, we will use them far

more often than the normal distributions. The curve of a t-distribution is similar to a standard
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normal distribution. Like the standard normal, it is symmetric, bell-shaped, and has a mean of 0;

however, all t-distributions have more area in the tails (i.e., fatter tails) than the standard normal.

t-distributions are characterized by a positive number called degrees of freedom: A t=diitribution
with a few degrees of freedom has very fat tails, and one with many degrees ot treedom loGi<s
much like a standard normal. This is evident in Figure 1.10, where, as tne ¢egress ¢f freedom of a

t-distribution increases (from 10 to 25 to 100), its shape resembles tie-stanaard nczmal.

TR
e Q\Q\; L fthe srdrermal disfribufion
\ B

F Y
; g — fodistribution with 100 41

f-edisfribufion with 25 d.f

f-dizfribution with 10 4.1

[

Figure 1.10: tdistriizsiicns.convereing to the standard normal as the degrees of freedom increases.

(The determination ¢f the appropriate of degrees of freedom will be discussed further later on

when vye tse t-distributions in connection with estimation.)

EXCEL'FUNCTIONS
TR2IST: The TDIST function gives the area under a t-distribution within a given range. Suppose

we want to calculate the area to the right of 1 under a t-distribution with 20 degrees of freedom.

This is the area marked A in Figure 1.11.
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0.1 TN
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Figure 1.11: The t-distribution with 20 degrees of freeGom. What are the areas of regions A and B?

"

In Excel click INSERT>FUNCTION znd gh(')ase Statistical from the Function Category

",

window. Then choose TDIST from the?Functibi% Nérn?e window. When you click OK, you will

see a dialog box like this (once/we nave Tilleain some of the boxes):
|

.‘:?i-.

Function Arguments_ g

TDIST e ———
21 N N E7
Deg_freedom |20 = X-==0
Tails [1 =1
{ ™,
\ = 0,164628289
Returrs theStudent's t-cistribution,

e o
h kS
Tails specifies the number of diskribution tails to return: one-tailed distribution
= 1; bwo-tailed diskribution = 2.

-,
=,
.

“armula result = 0.164625289

"
Help on this funckion (8] 4 | Cancel
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In the dialog box, we choose the number, which is 1 in this case, to the right of which we want to
find the area. Next, we must plug in the degrees of freedom of the t-distribution (in this case, 20).
Since we want to find the area in one of the tails of the t-distribution, we type in 1 cosresnonding

to Tails. Clicking OK now gives the area of region A to be about 0.165.

Suppose we want to find the area to the left of -1 (B in Figure 1.11). T do-this swe'have to make
use of the symmetry of t-distributions since Excel does not accept.ariegative-nuniaer as the first
entry in the dialog box for TDIST. Symmetry ensures that for A variable Y-with a t-distribution,
Prob (Y<-1) = Prob (Y>1). In other words, the area to the riaht'of 1%z the sélme as the area to the
left of -1, i.e., the area of A is equal to area of B. Once w.e have rezlized this, we can determine

the area of B by finding the area of A, Hence, the arez of 2.= area of A = 0.165.

We might also be interested in knowing the.ares-to the right of -1 under a t-distribution with 20
degrees of freedom. Since we cannct-eitar a negaiive riumber as the first entry of a TDIST dialog
box, we cannot calculate this a;ea directly:However, we can see from the symmetry in Figure

1.11 that Prob(Y>-1) = Proh(Y«1) =1 - Prob('v>1).

In English, that meariz.thé-areatsthe right of -1 is equal to 1 minus the area to the right of 1. We
know how to calculate the ai2a t the right of 1 under a t-distribution with 20 degrees of freedom.
In fact, we did tiis eailier. It is equal to the area of A in Figure 1.11, which we calculated to be
0.165. Theiefore, tha area to the right of -1 under a t-distribution with 20 degrees of freedom,

equals 1=().:85=0.835.

Sugnose e need to find the total area to the right of 1 and to the left of -1 for the t-distribution
with 20 degrees of freedom. This is equal to the sum of areas A and B. You can do this by finding

the area to the right of 1 and multiplying by 2. The required area becomes (2)(0.165) = 0.33. A
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more automatic way of doing this is to utilize the option of 2-Tails in the TDIST function. In the
TDIST dialog box, type in X equal to 1, Deg_freedom equal to 20, and Tails equal to 2. Clicking
OK gives the sum of the areas A and B, which is 0.329. The difference between 0.329 aird 0.33 is

solely due to round-off error. —

1 |
TINV: Like the NORMINV and NORMSINYV functions, the TINV furicticn returns a number for

,,,,,

a given probability/area. However, the TINV function operates in a<aifrerent=manier. Given an
area under a t-distribution with a specified number of degrees of f.reedorh',' ~*hxe ?Il'I.NV command
returns a number to the right of which lies half the area c_en_tered.~For axamyple. rleferring to Figure
1.11, an area of about (0.5)(0.329) = 0.165 lies to the'rigiit of 1 ungar a t-distribution with 20
degrees of freedom. To see how TINV returns the delaired*r\urgbp'r, ciick INSERT>FUNCTION,

choose Statistical and choose TINV from tiie Function Category and click OK. The following

Dialog box appears (after filling in the wali:es):”

- 4,

Functionprgmens L { NG BK)

TINY
Probability |.329 _ B | =0.329
Deg_freedom 20— jﬂ=2tl

s o = 1000544216
Returns the inverse of the Stadent’s E-distribution,

Der,_frzedoiiiis a pasitive inkeger indicating the number of degrees of Freedaom ko

| Ciraraiterize the distribution,

Formularesuii-= - 1.000544216

tisteon thi FUriELinn Ok | Cancel

1

In the tialog box, you will type 0.329 (the sum of areas A and B) for Probability and 20 as the

Deg_freedom. When you click OK, Excel returns the value 1.0005. (Since we rounded 0.329 a
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little bit, the results here are off a little bit as well.) The function, therefore, returns a number to
the right of which lies half the given area. The remaining half of the area lies to the left of the

negative of the same number (in this case, -1).

Suppose we want to find the number to the right of which is an area of 0.02Z5 urider a t-
distribution with 14 degrees of freedom. To find the number using Excel, cnen tne TINV dialog
box and type in 0.045 [= (2)(0.0225)] as Probability and 14 as Deg—irecdoin, Exeel returns the

value 2.201.

STATA FUNCTIONS

ttail(n,t): The ttail(n,t) function in Stata gives *he area to the right of t under a t-distribution with
n degrees of freedom. Suppose that we-wa:i.to ¢alculate the area to the right of 1 under a t-
distribution with 20 degrees of fresdom.~Tyvping ui:!o_lay ttail(20,1) in the Command box and

pressing Enter will generate thie followings

. display ttail(20,1)

0.16462829

Note that t'ie nurizher wentered in the ttail(n,t) command may be positive or negative. For
exampl?, te-calculaie the area to the right of -1 under a t-distribution with 20 degrees of freedom,

we-simply-type-aisplay ttail(20,-1) and get 0.83537171.

Staia does not automatically calculate the two-tailed area corresponding to a given value under a

t-distribution. If, for example, we want to find the total area to the right of 1 and to the left of -1
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for the t-distribution with 20 degrees of freedom, typing the command display 2*ttail(20,1)

generates the answer (approximately 0.329).

invttail(n,p): The invttail(n,p) command in Stata calculates the value in a t-distzioutici with n
degrees of freedom for which the probability of falling to the right of that vziue is.:n. Consider tne
example related to Figure 1.11, where we calculated the area to the rigfit of.1 under'a t-

-

distribution with 20 degrees of freedom to be approximately 0.165~7Tu32¢ 1.1 isindeed the
number having area of 0.165 to its right in that t-distribution, using Stata,type display

invttail(20, 0.165), press Enter, and get:

. display invttail(20,0.165)

0.99842649

The result is roughly equal to 1. The-aiserepancy is.dut to our rounding of the 0.165. The
usefulness of the invttail comnianu will become clearer below when we study confidence

intervals.

1.7 Estimating with-Data

One of the #gasons for 2E’s declining profits is the stiff challenge posed by its rivals. EE is facing
inrr-easing!y tsugli competition from online retailers. Managers at EE suspect that a number of
cestomers who come to an EE store get help from the salespeople in understanding and
coraparing different products but often stop short of buying the product. They would rather buy

the chosen product from an online retailer. Online retailers, with lower operating expenses,

overhead costs, and often a tax-advantage can afford to sell the product at a cheaper price than a
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brick-and-mortar retailer like EE. Such a phenomenon adds nothing to EE’s revenues and reduces

the quality of service provided to customers who buy from EE.

To cut down on the service provided to pseudo customers (customers who use EE iGicarn about a
product but do not buy from EE) and increase the quality of service for its t:ue ctictomers,
managers at EE have suggested several possible strategies. One of the suggesten sciutions is to
set a refundable service charge for all customers seeking advice freniasalesperson.at EE. This
service charge will be refunded in full if the customer goes onto buy the prodyct from EE;
otherwise, it will not be refunded. Before spending time debatirig the meriisl 1 various strategies
such as these, EE must ascertain whether and to what exient such.z:nroblem exists. The manager
might want to know the average time spent by a salesaersen V\_/ith pszudo customers per day, the
average waiting time for a true customer (waiting time is derined by the length of time a true
customer waits before being attended by a salesparson), and the proportion of pseudo customers.
For instance, if pseudo customers ds-iict-take up 1euch of the salespeople’s time, then the problem
of the sales force spending ungrocuctive time with pseudo customers would not be so serious.
Specifically, EE managermient, kkaset-on cests and industry benchmarks, has concluded that if less
than 20% of a salesperson’s éay (approximately 1 hour and 36 minutes of an 8-hour day) is spent
with pseudo customess, thafi tre-arain on service personnel by pseudo customers will not be

considered a serious probler.

To estiimate. the average time spent with pseudo customers, the manager could chart the daily time
spe;wt by €aci-salesperson with pseudo customers by going to (or contacting) each of the 4,000+
E2E storesjand subsequently find the average of those times. In practice, observing the service
tiriia spent’by each salesperson with pseudo customers across all EE stores is costly. Even in

situations where all the historical data could be collected, it is never possible to collect data on

future service times. Thus, in all such situations, we will need to draw conclusions from a sample
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of the elements of interest rather than looking at the entire population of interest (here, time

spent by salespersons with each past, present, and future pseudo customer).

Sample Size:
The sample size is the number of observations in the sample. This is d¢noteahy n, i.e., @ l
= 100 means there are 100 observations in the sample. In general,:the iorger the sample
size, the more precise are the estimates based on that sample.-vvnen-dacidingen the size
of the sample, one trades off the cost and time involved ir cqilecting each observation

against the value of more precise estimates.

ESTIMATING THE MEAN

The management team at EE would liize t0 Kiraw Tise average time a salesperson spends attending
to pseudo customers. However, zi it has is*the inforization in the sample. What is the best way to
use the sample to estimate the population (¢r “irue”) mean? The best estimate of the true mean is
the sample mean. The sampia.maan is calcifated by adding all the values in the sample and

dividing by the samjjle Size:

It is importznt w-distinguish between the population mean and the sample mean. Notationally, the
populacion mean is«derioted by u, and the sample mean is denoted by X (“x-bar”). X is the

estimator.that we'il use to estimate .

COMPUTATION OF THE SAMPLE MEAN
Considaer a sample of service times that the service manager has collected. It is stored in the file

service. This file provides the observed service times spent with pseudo customers in a day by
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100 salespersons. The size of the sample is 100. Service times have been measured in seconds
and stored in the column named servicetime. To calculate the sample mean, we can use the
ktabstat command in Stata. An easy way to invoke this command to calculate the sampiz mean
and a number of other statistics for all of the variables in a dataset is through the Grrivariaie
Statistics>Standard (ktabstat) command on the Core Statistics custom menu. %0 do this;first
load the service.dta file into Stata.> Now select User>Core Statistics>Uxivariat?

Statistics>Standard (ktabstat) from the drop-down menu (see Figuie+:12j+.Yol-can also

invoke the ktabstat command by typing db ktabstat in the Comrand bo.

Statistics | User | Window Help

H-1eA 1 Data »

Graphics » % .
] Statistics » )

Record your work »

Load Data ... »

Save Data ... »

Browse Data (browse)
Edit/Modify Data (edit)
Manipulate Variables and Obs %

Core Statistics ’ Univariate Statistics » Standard (ktabstat)
Bivarii te Statistics » Custom (tabstat)
Reciessio (regress)

Mode! Analysis, using most recent regression 4

Test Hypotheses, using most recent regression >

Prediction, using most recent regression (confint)

Figure 1.12 ‘e Uriiariate Statistics command in the Core Statistics custom menu.

Click OKIin the ensuing dialog box, and Stata will produce the output in Figure 1.13 that
instudes the sarmple miean, X , as well as a number of other values to be explained later.” The

sample‘imean is the number in the mean column, which is given as 4880.03 seconds.

® See the Appendix for instructions on loading, converting, and saving data files in Stata.
* As you can see from Figure 1.13, the analogous typed Stata command is ktabstat.

36



destring, replace force
tabstat _all, s(mean sd semean min median max range skewness kurtosis count)

variable mean sd se(mean) min p50 max range skewness kurtosis N

servicetime 4880.03 > 2610.622 261.0622 562 4700 11921 11359 .2635133 2.171275 100

Figure 1.13: Univariate statistics for servicetime (mean).

How does this compare with the 1 hour 36 minutes threshold set by marnagzmen:? Since the
threshold is 5760 seconds (equal to 1 hour 36 minutes), we see the samnle me:am is below it. We
hope that this is because the sample mean reflects the actual mear; but w .ar.'e unéure. Maybe we
were lucky (or unlucky if it means we make a bad decisioln) with thia samp!le v.vé used. We must

continue the analysis to quantify more precisely our ¢onfideiice that the population mean is below

management’s threshold.

ESTIMATING THE STANDARD'DEVIATION

The sample mean provides an 2stimate of the; :opulation mean. Is the time spent by most
salespersons with pseudo.customers-zimilsr to'the mean? Are a few spending a long time while
the others are spendina a shoi* t!ma? To answer these questions, we must estimate the
distribution’s variance.or tiag stamdard deviation. Since we’ll mostly be working with the standard
deviation later on, we’ll foctiz. 07 that now. The best estimate of the true standard deviation is the
samplessteiidarc.deviation. The sample standard deviation, s, is the estimator we use to estimate
the population stancarc deviation, o.

~ i'he User>Core Statistics>Univariate Statistics>Standard (ktabstat) command also calculates
thé-samplz standard deviation. The sample standard deviation is the number in the sd column

(see Figure 1.14). For this data, s = 2610.622 seconds.
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tabstat _all, s(mean sd semean min median max range skewness kurtosis count)

variable mean sd se(mean) min ps0 max range skewness kurtosis N

servicetime 4880.03 (2610.622> 261.0622 562 4700 11921 11359 .2635133 2.111276 100

Figure 1.14: Univariate Statistics for servicetime (standard deviation).

1.8 The Sampling Distribution

We have estimated the average time spent by an EE salespersan each day s"arvf.ng pseudo
customers. To do this, we have used a sample of a 10G ob;‘er‘/ations. Nurcstimate, X, of the
mean, pu, depends on the particular sample we have usea: Natural'y, the average time spent per
day by a salesperson to serve pseudo customsis calculateu fm;n a’'sample of 100 randomly
observed times of EE salespersons will ke ditierent from the X calculated from a different
sample of 100 randomly selected service times ¢f EE"zalespersons. The value of the sample
mean, X , varies from sample to seinplé-The'zource 6f the variation in the value of the sample
mean is the potential variationlfn tr:2 sample drawn from the population. In other words, since
many samples could be drawn fiem a-pegulation, there are correspondingly many values of the

sample mean X . Tisus, we-can view ttie sample mean as a variable having a probability

distribution. This distributian is'galled the sampling distribution of the sample mean.

In generaly.any estimator based on a sample will have a sampling distribution. There are sampling
distribtitions for the-sample variance, the sample standard deviation, as well as for the sample
mean. Sampling distributions are important since they give us an idea about the accuracy of an
estimacor. 7 he estimators that we commonly consider are all unbiased. An estimator is unbiased if
the mean of the sampling distribution of the estimator is equal to what is being estimated. For

example, the mean of the sampling distribution of X is p, the population mean. Thus, X isan
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unbiased estimator of p. Unbiased estimators are desirable because, on average, they are right.

They are not consistently too high or too low.

A sampling distribution tightly concentrated around the mean tells us that the estimator'is tikely
to be much more accurate (i.e., closer to the true value) than one that has a.sampliag distribtticn
widely dispersed around the average. This is evident if one looks at Fiiure 1.1_5. Estimator 1 is
more accurate than estimator 2 since estimator 1 has a higher prokabiiity-af valling-within any
given distance from the true population value than estimator 2/ Thiis occurs, betause the standard
deviation of the former is less than that of the latter. An unbiased estimatsr with a smaller

standard deviation of its sampling distribution will b¢ more accurate than one with a larger

standard deviation.

MOYE o urass
Smppling @ostbutm of Bstmate 1)

less acourate
[remapling distprbution of Fstimate 1)

r.lopui.:z;:'.cn ralus
“beéing esfimated

Figure L.15%The sampling distributions of the two estimators show that estimator 1 is more accurate than estimator 2.

At this peint; you might be thinking we have to draw all possible samples from the population to
gat a samp'ing distribution of an estimator. Fortunately, statistics tells us that a single sample is
enough to allow us to approximate the sampling distribution of most estimators. We will make

use of this fact whenever we want to determine the sampling distribution of an estimator.
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HOW ACCURATE AN ESTIMATOR IS THE SAMPLE MEAN?

The accuracy of X is determined by its sampling distribution. What is the samyling distribetion
of X ? Since X is an unbiased estimator of p, its sampling distribution has'a meanof p, the
population mean. The standard deviation of the sampling distribution orX , aencted o, , is equal

to the population standard deviation divided by the square root of thie Samplesizes.ie.,

Furthermore, as long as the sample size is not too small, the sampliny distribution of X is

approximately a normal distribution.” In sum. X has a sampling distribution that is normal with a

mean of p and a standard deviation of o ;. Eduivalently,

has a standard normal (or z) districution.

ESTIMATING THE SAMPLING DISTRIBUTION OF THE SAMPLE MEAN

Since th: peguiationsatandard deviation is never observed, we must estimate it. The best estimator

of the ¢tandard deviatign of the sampling distribution of X (i.e., o, ) is denoted by s, , and is

usually refarrea 1o as the standard error of the mean. S, equals the sample standard deviation

divided hy the square root of the sample size

> It is exactly a normal distribution only when the population is normally distributed. However, as long as
the sample size is not too small, a result known as the Central Limit Theorem tells us that the sampling
distribution is approximately normal.



Since the standard error of the mean is only an estimate based on the sample, it introcucas some
additional sampling error into our calculations. This causes

X—H
Sx

to have a t-distribution with n-1 degrees of freedom,® whereas as we saw ahove,

X—H

Ox

has the standard normal (or z) distribution. The additicnal saripling-arror.isreflected in the fatter
tails of the t-distribution compared to the standard nc¢rmal. This i§ winy the t-distribution will

appear so often in this text and in statistics. We will oftei.use the riotation

X-p

=

Sx

because this quantity has a t-distiibutinn.

COMPUTING THE STAKDARD ERROR OF THE MEAN

You can calculate the stantard €xror of the mean, s, , in two different ways. Once you know the

samplesstaridard Gaviation, s, dividing it by the square root of the sample size (\/ﬁ) yields s; .

Proceecing in.this faskion, we have the following:

N y s _ 2610.622 _ 2610.622

= n T Vo0 10

=261.0622 seconds.

® This is exactly true only when the population is normally distributed but is often a good approximation if
it is not.
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We can alternatively calculate s, using the User>Core Statistics>Univariate

Statistics>Standard (ktabstat) command. The standard error of the mean is the numheriin the

se(mean) column (see Figure 1.16). Stata calculates this number to be 261.0622 seconds.

variable mean sd se(mean) min p50 max range*, skewriz5s Alurtosis N
servicetime 4880.03 2610.622 (261.0622 562 4700 11921 11330 _2¢25133 =2.111276 100

Figure 1.16: Univariate Statistics for servicetime (stanc'ard jerror or theimeén).

Side Commi2nts:

In the above discussion of the sampling distribution ¢£.X , vve hHave been implicitly
assuming that the sample from which.X vvas calculated was gathered using a good
sampling procedure. What makes-a samplirig.procedure good? In a good sampling
procedure, each observation siioula-2e randoraly selected from the population of
interest and each observation should ize chosen independently of any other. Choosing
observations indepe:iaently. means that thie probability of choosing a particular
observation does.not defand ©n other observations. Such a sample is often referred to

as independentiy.ant-identicaily distributed (i.i.d.).

1.9 Coanfidence Intervals

Hawing obtained an estimate, we will be interested in ascertaining its accuracy, i.e., how close the
estirrate.is to the true value. The service manager at EE has calculated the estimated mean time

spent by an EE salesperson attending to pseudo customers per day to be 4880.03 seconds. It is
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important for him to know how precise this estimate is. He would be happy if his estimate came
within, for example, 120 seconds of the true mean. On the other hand, he might be unhappy and
the estimate would be quite misleading if the estimate were 1500 seconds away from'the,mean.
Therefore, we would like to know the probability that the estimate will be withi:i oriscyond a

certain distance of the mean.

What is the probability that the estimate meets the service manages*s-aceuracy needs? In other

words, what is the proportion of samples of size n for which our gstimate {the 5ample mean, X ) is
within 120 seconds of the population mean, . In probability terms, we-xoula like to know the
probability that the sample mean is within 120 secords of the trug rirean. Using the notation for

probability statements, we can write this as Prob(-120"s X™=g-< 120).

From the previous sections, we know tha*

has a t-distribution with #i-1degraes oi-freedem. We can use this to do the following

simplification of the-aseve-prahabiiity statement:

| Prab[-120< X< < 120]

= Prob[-120/s; <(X - )/ sy < 120/s,]

|- Prab[-120/s, < t < 120/s, ]

= Area between -120/s, and 120/ s, under a t-distribution

with n-1 degrees of freedom.
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In going from the first line to the second line in the above box, we divided through by s, . From

the sample, we can calculate s, by using Stata. In fact, we did compute its value previously as

261.06 seconds after rounding. Hence, in this example:

120/s, =120/261.06 = 0.46

!
-120/s, =-120/261.06 = -0.46 .

Since n = 100, the t-distribution has 99 degrees of freedom (108-1 =99). Therefore, the required
probability is the area between -0.46 and 0.46 under 4 t-gistributior, with 99 degrees of freedom.

This is the shaded area in Figure 1.17.

We can use the ttail command to calcu'ate this-In the Stata Command box, type in display

2*ttail(99,0.46). Stata returns the vatue-0,6465242. So:the required probability is 0.35, i.e.,
Prob[-0.45 < (X - wjiSy '<0.46] = 1-0.6465249 = 0.35.
This implies that the service mar:ager s<stimate of the average time spent by an EE salesperson

interacting with pseuda-custon:ars par day has a probability of 0.35 of being within 120 seconds

of the true average time.speist with pseudo customers by a salesperson daily.
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Figure 1.17: t-distribution with 99 degrees of freedom.

In the form of an equation, we have shown tiiefollowing:

Prob[ X -120=.u < X%120] =0.35

In other words, we calcu:ated.the.orovaiiity.-Of selecting a sample of size 100 that gives a sample
mean time within 125-sceendsaf the.true mean. However, once we have the sample, the sample
mean either is within 120 seeonds of the true mean or it is not. For this reason, it would be
incorrect ta.gtag-in X = 4880:83 seconds (as calculated previously) and conclude that the
probabjlity the truésmean, p, is between 4760.03 seconds and 5000.03 seconds is 0.35. Instead,
we caV tiat we-2re 35% [= (0.35)(100)%] confident the true mean is between 4760.03 seconds
znd 5080.0& seconds. Specifically, if our sample is one of the 35% of possible samples having a

samiple riean that is within 120 seconds of the population mean, then the interval we calculated

for p vl contain the true mean.
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Why do we say that we are 35% confident that the true mean is between 4760.03 seconds and
5000.03 seconds rather than saying the probability the true mean is between 4760.03 seconds and
5000.03 seconds is 0.35 or 35%? This distinction between confidence and probability; eniphasizes
that the randomness lies in which elements of the population are observed in the Saripie arid not
in the value of the population mean. Informally, any given sample you obseive miay be more.or
less representative of the population as a whole. If the sample happens;io be meie representative,
the sample mean will be close to the population mean. On the otheriiare,.it"the sample is
unrepresentative, then the sample mean will lie far from the pg¢puiation mean. Of course, one can
never tell whether a particular sample is representative. The best, yot-can dcl) is know the

probability of obtaining such a sample.

We have just seen how to calculate how coritid2nt we are that the population mean is in a given
range. We can also reverse the proceduie and fiizd the range that we have a given confidence
contains the population mean. For e;@ivale, what'is the: range within which we are 95% confident

that the true mean falls? The aniswer to thizis ¢alled a 95% confidence interval for the population

mean, p. Once the sampls raears, X -and.the siandard error of the mean, s, are known,

before we proceed, it is‘receszary to introduce a new notation.

For ( biztween 0 and 1, tyo, (n-1) is the value such that there is a a/2 probability of being

abova trat value in'a t distribution with n-1 degrees of freedom. In Stata, ty, (n-1) =

' invttan/n-1, a/2).

.

For example, if o = 0.05 and n = 100, then t 0.05/2, (100 - 1) = t 0.025, 99- Figure 1.18 illustrates the

meaning of t .. 4 graphically. Using Stata, we can calculate t = invttail(99, 0.025) = 1.98.

0.025, 99
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Using the above notation, a (1-c:)(100)% confidence interval for the population mean, p, is given

by the following:

The (1-a)(100)% Confidence Interval for pis [ X -ty (n-1) Sx » X ¥l 1) Sy

(1-0)(100)% is called the level of confidence (or confidence level). A 95% confizence interval
for u tells us that 95% of the time a sample of size n is drawn from-itheopuiation.2nd used to
calculate a 95% confidence interval that interval will contain p. Fcr a graphical representation,

see Figure 1.19.

ARTA=IA2S "!
i/
.-—-""'f* ‘ .

-4 -1
~ip :sz g9

Figtre 1.18: A t-distribution with 99 degrees of freedom with t o5 o9 indicated.
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Figure 1.19: 95% Confidence interval.

We will see how to calculate confidence intervals with the held of an exaninle) Suppose we want
to find the 95% confidence interval for the mean service time for psetee-Customers. As we have

seen above, to calculate the confidence interval, we \vill'need to kncw the values of the following

three quantities: X s; andt t t

w2, (n-1) — L0.05/2, (100-1) — '0.025, 99-

We know that X and s, are equal to 4850.03-secords and 261.06 seconds, respectively. To

calculate to 25, 99 Using Excel, vie cauidt-use the TINV command with 0.05 for the Probability

and 99 for Deg_freedom. As dbove, TINV(0.05, 99) = 1.98. The value of t can also be

0.025, 99
calculated using the invttail. coramaizd-in-Stata. Typing display invttail(99,0.025) in the

Command box wilr-also nroduce the vialue 1.98.

Thereforg, the.95%"eonfidence interval for the mean service time for pseudo customers is the

following.

[ X - t0.025,99 SX ! X+ tO.OZS,QQSY ]

= [ 4880.03 — (1.98)(261.06) , 4880.03 + (1.98)(261.06) ]

= [ 4363.13 , 5396.93 ]
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This means we are 95% confident the average time spent by a service person interacting with

pseudo customers in one day is between 4363.13 seconds and 5396.93 seconds.

In Stata, you can automatically calculate the 95% confidence interval for th& popalation mean, .,

of a variable by using the Confidence interval command. Consider thi previolss example where

we want to calculate the 95% confidence interval for the mean service tine far pseudo customers.

To calculate this in Stata, open service.dta and click Statistics>Summaries, tables, and
tests>Summary and descriptive statistics>Confidence intervals (c-hzie di ci). Choose

servicetime as your variable and click OK.” You shpuld get the failowing:

. Ci servicetime

variable | obs Mean std. Err. [95% conf. Interval]

servicetime | 100 4580.03 ., Z2&1.0622 4362.026 5398.034

Stata calculates the 95% canfidence.interval for the mean service time to be [4362.026,

5398.034]. The discrepancy-hetween tire Stata output and our manually calculated result is due to

our rounding of t; ., towe-decimal places.

Note that in-State, you, can easily calculate the confidence interval for the population mean of a
variabl? for any confid2nce level. For example, to find the 90% confidence interval for the mean

service time;-simnly type ci servicetime, level(90) and get [4446.565, 5313.495].

" Alternatively, you can directly type the command ci servicetime into the Command box.
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The standard error of the mean plays a crucial role in determining the width of a confidence
interval. This makes sense since we learned previously that the smaller the standard deviation of

the sampling distribution, the more accurate an estimator is.

Confidence intervals can identify reasonable best (or worst) case scenarios,seégarcing the mean
value. For example, since the 95% confidence interval for the mean sefvice.time for pseudo
customers is (4363.13 seconds, 5396.93 seconds), we can say, “We-are28% contident that
salespeople spend at least an average of 4363.13 seconds interacting with 'pS(.%L‘_d(.) customers per
day and at most an average of 5396.93 seconds per day with_pseudo custr:;ners..” Furthermore, we
can say, “We are 97.5% confident that salespeople spen< at most iy, average of 5396.93 seconds

per day.”  Similarly, “We are 97.5% confident that szlespenple sperd at least an average of

4363.13 seconds per day with pseudo custorners.”

Now that management estimated the-ime spent with pseudo customers, what should its decision
be? Since 5396.93 seconds is flewr:r than 57éo seconds (equal to the 1 hour 36 minutes cutoff that
management decided on) swanagenient is.57.5% confident that average time spent by an EE
salesperson serving pse.udo_ Cestorrers is less than the threshold. Management, therefore, should
conclude that pseudg-custemeisarexot a large enough drain on salespersons’ resources to change

policy given the costs and dizruptions involved with these changes.

Confidance.intervals may also be constructed for proportions and we briefly discuss them here.

The.special praneriies of proportions that we discussed earlier are useful in this regard. For

®Fiaw did we get 97.5% confidence when the 5396.93 seconds figure comes from a 95% confidence
intervel? :A 95% confidence interval is constructed so the mean will be below the lower bound of the
interval for 2.5% of samples, above the upper bound of the interval for 2.5% of samples and between the
interval limits for 95% of samples. If we want to say how confident we are that the mean will be below the
upper bound without specifying whether it is above or below the lower bound, then our confidence level is
95% plus the 2.5% below the interval to make a total of 97.5%.
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instance, with a sample proportion of P, the standard error of the proportion s; is equal to

Jpl-p)/n. P—Pp has approximately a standard normal (or z-) distribution. A (1+6:)(100)%
s LA

ol

confidence interval for the proportion is

[ﬁ'ZOLIZSﬁ | ﬁ+za/25ﬁ]- s =y

Note that in Stata, you can easily calculate these confidence intervals-for br’c-p&zipn"ﬁ. After
S

loading your dataset of interest, click Statistics>Summaries, t_ab'lghs, and tfests:>Summary and

" ",

descriptive statistics>Confidence intervals or type dY ci._ Enter the name/s) of binary

variable(s) in the “Variables” field, and choose Binomial variables and Wald as your variable
N > |

type and binomial confidence interval, respectively. Yow.can specity the confidence level at the

bottom of the dialog box. You should haye a.uialog box that looks like this:

&

e 8 ,
Z] ci - Confidence intervals for means, propoizions, anc.couns, =[]
Main | by/f/in | Weights } ; - - ’ S
F) iy "'\-\.\\. !
Variables: {leave empty for all varablgs) )
servicetime i ."x | [;_]
L LY = _—
-'L__ A T
Options b L ——
Variable type S e R i Binomial confidence interval
") Normal variablés, — ) Exact
o g, =
©) Binomial variables (G71) ™, @ Wald
= , b =
_) Poisson variables S ™ ) Wilson
i © Agresti-Coull
D_.'.:'xpmu're vasaele {tses Poisson) ) Jeffreys
I )
L R . | . '
& F‘g‘d ouiput foril greups combined ffor use with by only)
| | . ) 'ﬁxi ~Separator line every N variables (set 0 for none)
| 95 Corfidence level
NG/
Iy ™,
b Bt
s
@ m B3 b O ][ Cancel |[ Submt |
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Click OK, and Stata will report the sample proportion (displayed under the Mean column),
standard error of the proportion (Std. Err.), and the (1-a)(100)% confidence interval for the

proportion ((1-e)% Conf. Interval) of your selected variable.’

SUMMARY

In this chapter, we introduced several important ideas includir/g discrete ér‘;:j Cn_)ntinuous
probability distributions, the mean, variance and standare-dexiation, preportions, and the normal
and t-distributions. We worked extensively on integrating Excel and, Stata into our understanding
of these concepts. Later, we learned how to use Stata ) estimate ‘the mean and standard deviation
and other aspects of probability distributiors given a data sample. We learned how to use that
same data to quantify the accuracy of theszmeari-estimates using the standard error of the mean

and confidence intervals for the mean. We.also examiried the special case of proportions.

NEW TERMS

Probability~uistrizution A description of how probabilities are spread out over possible outcomes
Discrete probability, digtribution A distribution which can only take on a certain countable
number af vaives

Contirivous-probability distribution A distribution that can take on any value within a given

~.rang2 or fanyes

% Selecting the Wald binomial confidence interval uses the formula presented above. This relies on the
central limit theorem to approximate the binomial with a normal distribution. Selecting Exact instead of
Wald will calculate a confidence interval based on the binomial distribution itself rather than the
approximation. Neither is unambiguously more correct or useful than the other.
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Mean The center or average of a distribution

Variance A measure of the spread around the mean determined by averaging the squared
deviations from the mean

Standard deviation A measure of the spread around the mean determined by takig th2
square root of the variance

Normal distribution Any of the family of common bell-shaped prapabiiity distributions
Standard normal distribution A normal distribution with mean &3 ard Standaid deviation of 1
t-distribution  Another family of distributions similar to the star,dard ndnmél _bL.Jt with fatter tails
Degrees of freedom A parameter used to characterize the t-distriutios

Population The entire set of values of interest

Sample The portion of the population that is obse."led_

Sample size  The number of observations inthe sample

Sample mean The mean or average ¢i the valas in the sample, denoted by X

Sample variance The varianceof-the sampiz, denoted by s°

Sample standard deviation [ Tne standar;J Jdeviation of the sample, denoted by s

Sampling distribution of tiie.saraplemean The probability distribution of X

Unbiased An estimatorvhaoza mean is equal to the parameter being estimated

Standard error of the"meari Arrestimate of the standard deviation of the sampling

o . S
distributioa0f X"-denoted by s; and equal to —.

Jn

independent and identically distributed (i.i.d.) A sampling procedure that creates a sample with
desirabie oranerties
&onfidence interval A range of values that will contain the mean of the population with a

certain-specified level of confidence
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NEW STATA AND EXCEL FUNCTIONS

STATA

User>Core Statistics>Univariate Statistics>Standard (ktabstat)

This command generates univariate statistics for all variables contained i the“curient Stata data
file. These statistics include the sample mean, sample standard zieviatian, stendard error of the
mean, minimum, median, maximum, range and sample size. I{,als) generatis some other
measures of the variables’ distributions such as skewness and kuriesis that.we will not make use

of here.

Alternatively, you can directly type the command ktabstat.

User>Core Statistics>Univariate Statistics>Custom (tabstat)

This command allows you to specify up to ¢iglit statistics that you want Stata to display. The
direct command is tabste vaitist;-s(...), where varlist corresponds to the name of the variables
for which you want'to calculaie the stsmmary statistics. You can specify the names of summary
statistics in the s(...) poriion ¢f the command. (For the complete list of summary statistics, type
help tabstdt into the Stata Command box and refer to the Options>statistics section.) Typing _all
instead of varlist will gznerate univariate statistics for all variables currently listed in Stata. Note
that Stata.canrnict-generate univariate statistics for string, or non-numeric, variables. Therefore, if
there is-any‘string variable present in your dataset, typing the direct command tabstat _all, s(...)
willesikt ir’ an error. You can still execute the tabstat command on numeric variables by
omittiing the names of string variables from varlist. However, it is generally easier to use the

ktabstat command instead, where it is programmed to convert string variables to numeric
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variables temporarily prior to executing the tabstat _all, s(...) command. Your original dataset

will not be affected by this temporary conversion.

Statistics>Summaries, tables, and tests>Summary and descriptive statistics>Curiitdelnce
intervals
Alternatively, you may type db ci. This opens the Stata ci dialog box, where.ycu can choose

variable(s) for which you want to calculate confidence intervals fei“the panuiatiori-mean(s).

Alternatively, you can directly type the command ci varlist-level(#),<ahzie #/'corresponds to (1-
a)(100)%. Omitting the level(#) option will generate/a 5% conficience interval for the population

mean of a variable by default.

To calculate confidence intervals for propeitions+hrough the ci dialog box, choose Binomial
variables and Wald in the “Variabi¢ type”’ and “binomial confidence interval” field,

respectively.

Alternatively, you can directiy.type-the command ci varlist, binomial wald level(#).

norma(z)
Typing'disglay normal(z) into the Command box will return the area to the left of z under the

standard riarriataistribution.

invaormal(p)
Typing display invnormal(p) into the Command box will return the value x for which the

probability of falling to the left of that value under the standard normal distribution is p.
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ttail(n,t)
Typing display ttail(n,t) into the Command box will return the area to the right of t tndor a t-

distribution with n degrees of freedom. You may enter a positive or negative vaiue foi.

invttail(n,p)
Typing display invttail(n,p) into the Command box will return the-vaiczs. X For wriich the
probability of falling to the right of that value is p under a t-distritution with ri degrees of

freedom.

EXCEL

AVERAGE

Typing =AVERAGE(A2:A7) into a blzank call will return the average of the numbers in cells
A2:AT. You can select Insert>Furctiori-and chodse AVERAGE from the list of statistical

functions.

NORMDIST
Typing =NORMDIST£20,25,10,1)iito a blank cell will return the area to the left of 20 under the

normal distribution with a mean-of 25 and a standard deviation of 10.

NORMINWY.
Tyveing =iORNAITNV(0.318,25,10) into a blank cell will return a number such that the probability
o+-0btaining a value less than that number from a normal distribution with a mean of 25 and

staridard @eviation of 10 will equal 0.318.

NORMSDIST
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Typing =NORMSDIST(-1.91) into a blank cell will provide you with the area under the standard
normal curve to the left of -1.91. This area equals the probability of having an outcome from a
standard normal less than -1.91. To find the probability of an outcome greater than +2.04 (the

area under the curve to the right of 2.04), use =1-NORMSDIST(2.04).

NORMSINV
Typing =NORMSINV/(0.42) into a blank cell will return a number.-sacirthatthe piabability of

obtaining a value less than that number from a standard normal distributicn will equal 0.42.

TDIST

Typing =TDIST(1.76,48,1) into a blank cell will retuin the area a00\ve 1.76 in a t-distribution
with 48 degrees of freedom. Typing =TDIS7 (176, 48, 2) wili return the area above 1.76 plus the
area below -1.76 in a t-distribution with'48-degiees of freedom. You may not enter a negative
number for the first argument. You zai-calect Insert>Function and choose TDIST from the list

of statistical functions.

TINV
Typing =TINV(0.05;28) 1170 @ trank-cell returns the value having area 0.025 above it in a t-
distribution with 98 degrees af freedom. This tells you how far in each direction one would have

to go from tie miean ta get an area of 1-0.05 = 0.95 underneath the t-distribution.

NEW FORMULAS
The {2-¢:)100% confidence interval for a mean: [X -ty (n-1) Sx » X +to2 (n-1) Sx |

The (1-0,)100% confidence interval for a proportion: [P - ze/2 S5, P+ Za2S; ]
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CASE EXERCISES

1. Return to me

A Hawaiian hotel chain is interested in studying tourists who travel to tne siate..On2 question
they are investigating is whether or not tourists who return to the istasias Qtayﬂ,.d ai-the same hotel
as in their previous trip. The data file return lists the responses of 1,000 lcuri:'_ts wno were
involved in the study. A one (1) indicates they did return to the'samie-hote! \I/vhereas a zero (0)
indicates they did not. Calculate the proportion of tourists in the study who stay at the same hotel
as they had on their previous trip. Using the formulas:in scr‘.tio_n 1.4 and the proportion you just

calculated, calculate the variance and standaid tleviation ot tite responses in the study.
2. EE TV sales

The weekly sales of flat panel talevizions 2 orie EE store (store A) follow a normal distribution
with mean of 12 and standaré.deviation of 4. Store B usually has lower sales normally distributed
but with mean of 9 arq stefiuare-devidtion of 3. If the two stores currently have 18 and 14 flat
panel televisions in stock, rezpectively, and neither will receive a new shipment for the next

week, daterrnine-whith store has the higher probability of running out of stock.
If the corapary has-declared that each store should stock enough inventory so the chances of
running out ¢f stock are at most 2%, determine the minimum number of flat panel televisions

edch store-should keep in its weekly inventory to comply with the rule.

3. EE job applications
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Certain data from EE’s 4,000 stores are not entered into its electronic data base. For instance,
employment applications are typically handwritten on paper forms and never re-entered into their
computer system. EE would like to learn more about the acceptance rate for ent:y-ievey
employees. Specifically, it feels that if stores are accepting more than half e7 therapplicanis, then
the quality of the typical employee may suffer. Since entering these data fcx.its Hundreds of
thousands of applicants would be expensive and time consuming, EEias.desided+o use sampling
to learn about this issue. Access the data in the file EESample, waich coritaing information from

a random sample of 55 EE stores.

a. Determine the sample mean, sample standara devistio_n, and'the standard error of the
mean.

b. Construct a 95% confidence interval foi-the true mean acceptance rate of entry-level job
applicants at EE stores.

c. Construct a 90% confidence interval for the true mean acceptance rate of entry-level job
applicants at EE siares.

d. Assuming the true miean aeceptance rate of entry-level jobs was 50%, determine the
chances that'the safipie-inean could have been as low as it is or even lower.

e. What does your answer fo part d tell you about the feasibility of the assumption about the
ruz mesn?

4. EE StGies

Trie.management at EE wants to investigate the consistency in hiring practices across all of its
stores. Rather than learning whether the mean acceptance rate for all EE stores is less than 50%, it

wants to know the probability that any given store has an acceptance rate above 50 percent.
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Access the data in the file EESample, which contains information from a random sample of 55

EE stores.

Create an additional column of data called half_plus which is equal to one (1) if Trie"actepiance
rate is greater than 50 percent.*

a. Determine the sample proportion for the fraction of EE stores yvhich hire more than half
of their applicants.

b. Provide a 95% confidence interval for the true proportion.

c. Provide a 70% confidence interval for the true pronortian.

d. Assuming the true proportion of stores that accept over haif, of their applicants is 0.50,
determine the chances that our sample proportion ‘.’\IOl._Ild nave been as low as it is or even
lower.

e. What does your answer to part.d te!l you.about the feasibility of the assumption about the

true proportion?

5. Cashing out

A local mortgage baiil in“slew-Jersey is interested in knowing more about its customers.
Specifically, it would like tG-uncerstand how much home equity customers who refinance their

homes 7ire likely+0 cash out. A sample of 65 loans is contained in the file njbank.

a. Determingthe sample mean, sample standard deviation, and the standard error of the

nlear. for the amount of home equity cashed out.

% Todo this in Stata, first load the EESample.dta file. Then, you can type the following commands: 1)
generate half_plus=1 if Acceptance_Rate>0.5, and 2) replace half_plus=0 if half_plus==. (make sure to
include the period after ==). Open the Data Browser to verify that the new data are generated correctly. See
the Appendix for general instructions on how to generate and/or manipulate variables in Stata.
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Construct a 95% confidence interval for the true mean cash out value for customers at the
bank
Construct an 82% confidence interval for the true mean cash out value for custoiners at

the bank.

The bank is interested in the proportion of customers who did not take any-cash-out'when they

refinanced. Make a new column of data titled No_Cash that equals-oire-{1) 1i.the tustomer took

no cash out and zero (0) for all other amounts. **

d.

Determine the sample proportion of customes's \who did necitake any cash out when they
refinanced.
Construct a 95% confidence intervai for the true proportion of customers who did not

take any cash out when they refinancea:

f. I the true proportion of custsimers who did not take any cash out when they refinanced is
equal to 0.5, determine the chances that the bank would have discovered a sample
proportion as lowas orower thar-it clid in its sample.

Problems

1. Given ziolloviz a siandard normal distribution, determine the following:

a.

h,

Preh(z<2.9)
Fioli{z=1.8)
Pobiz<0.8)

Prob(z<-0.2)

1 To do this in Stata, first open njbank.dta. Then, you can type the following commands: 1) generate
No_Cash=1 if Cash_Out==0, and 2) replace No_Cash=0 if No_Cash==. (make sure to include the period
after ==). Open the Data Browser to verify that the new data are generated correctly.
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e. Prob(z<-1.2)

2. Given that z follows a standard normal distribution, determine the following:
a. Prob(z>23)
b. Prob(z>1.3)
c. Prob(z>0.3)
d. Prob(z>-0.7)

e. Prob(z>-1.7)

3. Given that z follows a standard normal distributior:, dztermine th2 following:
a. Prob(29>z>21)
b. Prob(1.9>z>11)
c. Prob(0.9>z>0.1)
d. Prob(-0.3>z>-11)

e. Prob(-1.3>z>-21),

4. Given that x follows a norinal distribution with mean of 55 and standard deviation of 12,
determine the following:

a. Prob (x <90)

b. /Prew (X=.71)

c. Preh (x <5Y)

d. Fiu-{(c=42)

e. Plob(x<25)

5. Given that x follows a normal distribution with mean of 7 and standard deviation of 20,

determine the following:
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a. Prob (x> 30)
b. Prob (x>9)
c. Prob(x>2)
d. Prob (x>-12)

e. Prob (x>-29)

6. Given that x follows a normal distribution with mean of 800 and-siai@ara-deviation of 350,
determine the following:

a. Prob (1000 < x < 1200)

b. Prob (800 < x < 1000)

c. Prob (600 < x < 800)

d. Prob (400 < x < 600)

e. Prob (200< x < 400)

7. Given that z follows a stand ard normal distribution, determine the value of z for the following
examples:

a. The areato the left Gf.z euals 0.50

b. The areato 122 left0i zegu2is 0.18

c. The areato the left &f z ¢quals 0.025

d. /Thgareato the right of z equals 0.29

e. | The area to,the/right of z equals 0.10

f. Theareatuthe right of z equals 0.05

8.=0r a t distribution with 24 degrees of freedom, determine the following:
a. Prob(t>1.25)

b. Prob(t>0.92)



c. Prob(t>0.58)
d. Prob(t>0.21)
e. Prob(t>-0.25)

f. Prob (t>-2.05)

9. For a t distribution with 64 degrees of freedom, determine the following:
a. Prob(t<1.55)
b. Prob(t<0.72)
c. Prob(t<0.18)
d. Prob(t<0.04)
e. Prob(t<-0.75)

f. Prob(t<-1.99)

10. A Gallup Poll (Will Investors Jusig-en the Opiimistn Bandwagon? October 27, 2003) noted
that 57% of investors say the ecoromy hashit'bottom. The article also states that the survey
included a random sample-af 802 adiwlt investors. Determine a 95% confidence interval for the

true proportion of investors vwho vinuld say that the economy has hit bottom.

11. In response to concern byt mzny of its clients, Nucleus Research reported findings from a
recent siudy onspam‘and employee productivity (Spam: The Silent ROI Killer September 24,
2003) The‘article nctec that the average employee in its survey of 117 workers spent 6.5 minutes
per-day gealirg witn unwanted emails or spam. Assuming the sample standard deviation, s, is 14

rinutes par day, determine a 90% confidence interval for the true mean number of minutes per

day-that ernployees spend dealing with spam.
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12. You are given a sample consisting of 83 data points with a sample mean of 37 and a sample
standard deviation of 21.

a. Construct a 90% confidence interval for the true mean

b. Construct a 95% confidence interval for the true mean

c. Construct a 99% confidence interval for the true mean

13. A sample of 43 data points results in a sample mean of 1.15 ans-asampie.staridard deviation
of 0.482. N

a. Construct a 90% confidence interval for the true mean

b. Construct a 95% confidence interval for the frue‘mean

c. Construct a 99% confidence interval for the tiue iaean
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CHAPTER 2

CONSUMER PACKAGING: CONDUCTINGAND

USING HYPOTHESIS TESTS

In this chapter, you will learn about one of the most important and widely cpplied statistical
techniques: hypothesis testing. Hypothesis testing is a basic twol*ve wiii Use {hroughout the
course when we want to convince ourselves or others that our deia gprovide evidence for some fact
about the world. For example, we will use hypothesis asting-te-stucly the effectiveness of our test
marketing, identify political gender gaps, and confirm stylized facts regarding stock market

anomalies. We will also use it in later chauters ase.central piece of the regression model.
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2.1 Hypothesis Testing: How to Make Your Case with Data

In the first chapter, you learned some of the basics of how to use data to estimate impurtan:
features of the world. For example, by observing sales in test markets, you.can form an estiirats
of average sales in a full product rollout by calculating the sample averagein t_be test markets.
Similarly, by collecting data on visitors to an e-commerce web site; you-€an formestimates of
useful quantities, such as the proportion of visitors clicking on bajner ads‘and'the proportion
arriving at the site through links on third-party sites. You also learnee-hovy to-use confidence

interval estimates to help assess the accuracy of your'estimates.

One of the primary uses of statistical estimaies.is to convince others (or even ourselves) that
something is true. Whether you are the-one-looking for an advantage by using statistics to bolster
your argument or you are the perses-wiem the preeepfer wants to convince, you must understand
how estimates can be used as procf or evitenca. The method used to prove or support arguments
with statistics is called hvigathesis tecting: ' In this section, we will learn the fundamentals of
hypothesis testing and see soine applications with marketing and financial data using estimators
you learned about in‘the piavious encpter. As we move through this text and learn and apply new
and more sophisticated estirfiatich techniques, hypothesis testing will continue to play a
promingnt ;ole.

A g-r_\nd, rian=tcchinical way to understand much of the logic and terminology associated with
fiynothesiss testing is to think of a criminal trial in a court of law. Imagine for a moment that you
are-a_prosecuting attorney in a murder case. Your goal is to prove to the jury that the defendant is
guilty of murder. In hypothesis testing, what you would like to prove is called the alternative

hypothesis (often denoted H, or sometimes H;). All the possibilities that are not in the alternative



hypothesis are called the null hypothesis (denoted Hy). For example, for the lawyer, the null
hypothesis is that the defendant is not guilty of murder, and the alternative hypothesis is that the
defendant is guilty of murder. The null and alternative hypotheses do not overlap and; tojether,
cover all possibilities. In other words, the null is true, or the alternative is true, kutnotiott. The

null and alternative must always be set up so this is the case.

What are the possible outcomes of the trial? Either the jury will fing-trie-evidence eonvincing
enough to declare the defendant guilty or it will not, in which cas¢ the defendent is declared not
guilty. Similarly, in a hypothesis test, either the evidence (based,on ke datal) is strong enough for
you to accept the alternative hypothesis as true, or it s not. For histarical reasons, accepting the
alternative is more commonly referred to as “rejecting, the nul! hypothesis.” Since at least one of
the two hypotheses must be right, rejecting tne hull hypothesis is the same as accepting the
alternative hypothesis. (Ensure you uncierstand this.) Thus, the two possible outcomes of a
hypothesis test are rejecting the nult-wygathesis aiid noz: rejecting the null hypothesis. A
hypothesis test can never resul( in/rejectirig the, alternative hypothesis or, equivalently, accepting
the null hypothesis. If a jury firisls thie.defesidant not guilty, that means the evidence was not
strong enough to prove the defencant guilty. It does not mean the evidence proved the defendant
was innocent. Standasd crifiiniai-trials are not set up to prove innocence. They can only prove or
fail to prove guilt. The same-is true of hypothesis tests. They can only reject the null or fail to
reject thie nuil. This isswhy you must ensure when setting up a hypothesis test that the alternative
hypothasisis what vou'hope to prove; it is impossible to prove a null hypothesis using a

hypathesiz, tezt.

What makes evidence strong or weak? In hypothesis testing, we say that evidence (in support of

the alternative or, equivalently, against the null) is strong if, assuming the null hypothesis were
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true, the evidence would be unlikely to have been found. Two examples from the trial should
make this clear. Suppose the victim had been strangled and fingerprints found on the victim’s
neck matched the defendant’s fingerprints. Is this strong or weak evidence? To evaluate this, we
must ask ourselves what the probability of a matching fingerprint appearing on ¢he vicim’s neck
would be if the defendant were not guilty. Assuming the defendant was not-someene who fiad
some other reason to be close to the victim (e.g., assume they were not:spousesy, thzn this
probability would be small. This is what it means to have strong eviderice. Ca the-ather hand,
suppose we discover the murderer was wearing blue jeans. Fuithermore, Vg discover the
defendant owns a pair of blue jeans. Is this strong evidence? Wall, what ig tlhe probability,
assuming that the defendant is not guilty, that he or she xvould owsiat least one pair of blue jeans?
This probability is high as many people who are not murdcrer_s wear blue jeans. Therefore, this is
weak evidence and would be insufficient to-prcive guilt. The statistical measure of strength of
evidence, expressed in probability terms, is.called the p-value. As in the above examples, low p-
values correspond to strong evidence-ageainst the riuill/supporting the alternative, and high p-

values correspond to weaker evid«nce.

So, strong evidence favors rejactiiig the null (finding the defendant guilty) and weak evidence
does not, but how streng Santid-we-r2quire the evidence to be before we reject (or declare guilt)?
Statistics, like the courts, caiot‘deliver perfection. Just as a jury will sometimes come to the
wrong vercict, anypcthesis test will sometimes lead to an incorrect conclusion. A trial can have
two types ¢f errors: /(1) The jury could find the defendant guilty when, in fact, he or she is
inn;\cent ana-(2)-the jury could fail to find the defendant guilty when, in fact, the defendant is
guilty. Inhyrothesis testing terms, error (1) is rejecting the null hypothesis when the null
hyizathesis is true. This is called type I error. As you might guess, errors like (2) (i.e., not

rejecting the null hypothesis when the null is false) are called type 11 errors. Ideally, we would

like the probability of making each of these errors to be small (in the courtroom and in hypothesis
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testing). In the court, we can control the probability of a type | error by setting the standard of
proof required for a conviction. For example, many of you have probably heard the phrase
“beyond any reasonable doubt” used in this regard. In many trials, the jury is not suppos«d to
return a guilty verdict unless the evidence shows beyond any reasonable doubt the defendant is
guilty. Of course, this verbal directive is vague and open to interpretation, kat 1t Suggests the.jury
should not convict unless it is convinced the probability of a type I errgr isssmakli. I hypothesis
testing, as in the courtroom, we have to set a standard of proof. We-gutis [iy.choasing a level of
significance (denoted by the Greek letter alpha, o)) between 0% end 100%.(0.9Q0 and 1.00). The
level of significance states the maximum probability of a_tyne I*arroi-thats azceptable. So, if you
conduct a hypothesis test using a small level of significance, it wilitake strong evidence for you
to reject the null hypothesis. If you do reject the null ia such a case, however, it is unlikely that
you have done so in error. On the other hand, sztting a higher level of significance allows you to
prove your point (reject the null) more Ofte but=with a higher probability of making the point in

error.

We will not say much absut.thestype-tLerror i this book, but you should know a few things
about it. First, once the levelef significance is set, the probability of making a type Il error
decreases as the sams!e siz2 0T your-data increases. Therefore, the main tool in fighting against
type Il error is gathering more, data. Second, the maximum probability of making a type Il error is
often denated bythe Creek letter beta (B) and 1- is often called the power of a hypothesis test.
So, if a'test*is said to b2 powerful, that means that the probability of a type Il error is low.
Conversely. dtesithat lacks power is one that may quite often fail to reject the null (i.e., be

irieonclus.ve) when the null is false. Again, increasing the sample size will make any test more

povierful.
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Now that you have learned the logic and terminology behind hypothesis testing, we turn to some
examples to see how this works in practice. It may be helpful to refer back to this section if you

find yourself getting confused at any point about what hypothesis tests are doing.

2.2 Test Marketing

Your company produces personal computers and is considering thie introdu'c'[.ic;n lof new color
options for the hardware in the hopes of boosting sales. Maintaiiing prnductioﬁ of more than one
color of computer is costly. For introducing new colgrs o be profiicble, the company has set a
sales goal of 275 units per week. The marketing depaitmeist in_trr,dur;.ed and advertised the new
colors in a test marketing experiment over 3o weeks. The weekly sales are given in the file
testmarket. Based on the sales in the test market, should the company adopt the new color
options?

To answer this question lsts teke a-tnok 4t the descriptive statistics for the sample data.

Loading testmarket.dta into-Stata-and then clicking User>Core Statistics>Univariate

Statistics>Standara-{ktacstat) resuits in the output in Figure 2.1.

. ktabstat

preserve

destring, replivc-farce

tabstat _all, s(mean &7 seiean min median max range skewness kurtosis count)

varisble mez sd  se(mean) min p5@ max range skewness Kurtosis N
SEL’>5| 290.58%5 53.15657 B8.859429 168 286.5 412 244 -.B635382 2.B828842 36

|

Figure 2.1: Univariate statistics for sales.
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The sample mean of weekly sales X =290.58, the sample standard deviation of weekly sales is s

=53.157, and the estimated standard deviation of the sample mean (called the standard error of

the mean) equals s; = 8.8594. We are going to need these numbers later.

We can rephrase the posed question: Do the sales in the test market indicate that tFi= average sales

per week will exceed 275 units? We are going to answer this question ésing-hyvipottiesis testing.

As a first step, determine the null hypothesis and the alternative hypothesis) Tg formulate the two
hypotheses, focus on what you want to prove. The statersenivot-wantio prove should always
appear as the alternative hypothesis. The way this hyjpotnesis is @Staalished is by rejecting another
hypothesis, namely the null hypothesis. Therefore, the*aull i2sthesis is the statement you want
to reject. Recalling the courtroom analogy,you prove that someone is guilty by showing that

innocence can be rejected.

In our example, suppose we wantito convirice the management that the sales in the test market
justify the introduction i the.new coiuis: That is, we want to argue the average weekly sales if
we go ahead with th=-celer.oniionswill exceed 275 units. We define the alternative hypothesis as

follows:

H.: Average sales per week will exceed 275 units.

Tne opposiee of the alternative hypothesis yields the null hypothesis.

Ho: Average sales per week will be less than or equal to 275 units.
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Denote the average sales per week by p. We can rewrite the hypotheses in formal terms:

Ho: <275

Hy: 1> 275

The hypotheses concern the population average weekly sales, u, rather than tiré sample average
sales, X, because u determines sales going forward. If all we desired .‘Nere @ prave something
about the sample average from the test market, there would be noneed for hypothesis testing —
the sample average is known and may be directly commared vith 275. Hypstheses will always be

about an unknown value or values.

The second step of hypothesis testing relaies :ne sample data to the hypotheses. After all, we want
to use the sample data to reject the nuli-hypotisasis.“hen would we do that? If the average sales
of the new color PCs in the test rnarket were-much higher than 275, we would start to doubt that
the null hypothesis is correct. @n :he other hani, if the average weekly sales were barely above or
maybe below 275 units, ve weuldt-not question the null hypothesis. By how much must sales
exceed 275 units fer us to rejectthe riell hypothesis? To answer this question, we tentatively
assume the null hypothesis is e with u = 275. This value for p will be the most difficult to
reject of aiiy in the=aull hypothesis since it is closest to the values in the alternative hypothesis. If

we car reject this assurhption, we can reject the null hypothesis.

We wai, to pvaluate how far away the observed weekly sales in the test market are from the
target.vaiue of 275. To make a probability statement, it is convenient to measure this difference in

units oFestimated standard deviations of X :
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t=(X-275)/s,

This value measures the number of estimated standard deviations the sample mean, X, is,from
the assumed mean, 275. This measure is called a test statistic. In our example;-the test statistic

takes on the following value:

t =(290.58 — 275)/8.8594 = 1.7586

The expression for the test statistic should look familiai to you. In“the previous chapter,

X—Hu
Sx

had a t-distribution with n-1 degrees of freedeim, where n is the sample size. We are tentatively

assuming p = 275 and have a sample size of 34, So;.in our example, the test statistic has a t-

distribution with n-1 = 35 degre«s of freedgim. This Tact is the reason we used t to denote the test

statistic above.

The third step of hypothesis testing usas the test statistic to find the p-value. Assuming that the

null hypothesis is true, tire p-walue is the probability of obtaining a sample result that is as least as

unlikely as‘the orie-we have observed. In the context of our example, the p-value is the probability

of obtaining a sample roean of X =290.58 or higher assuming the true mean is p = 275. This

presahilivy is e area’ above 1.7586 in a t-distribution with 35 degrees of freedom as shown in

-igure 2.2.
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We can determine the p-value using the Stata ttail command. The probability of obtaining a
sample mean of 290.58 or higher if u = 275 equals ttail(35, 1.7586) = 0.0437. Therefore, the p-

value equals 0.0437.

-4 -2 1.7586™ 4

Figure 2.2: t-distrikutic:i with 35 degrees of freedom.

When the p-value is small, it is unlikeiy-the sampie.results came from a population where the null
hypothesis is true. The smaller the p-valu€; the stronger the evidence in favor of the alternative

hypothesis.

The fourth step of hypnthe:is testing-compares the calculated p-value to the level of significance
(a, the maximum allowable xobability of a type | error) that you have previously determined is
appropriate for triis test. In statistics, we can never be 100% sure when we make a conclusion
based ¢n sample daia. Therefore, we have to decide on the probability with which it is acceptable

to-make aiterici

The=alug for o will usually be given. So, choosing a value for o is not an issue, in particular

when you perform a hypothesis test for someone else’s use. Often, industry-specific standards

75



and product-specific standards exist for a.. In general, the costlier it is to claim that you have
proved your claim when it is wrong, the smaller the . you should choose. Typical levels of a
seen in practice will be between 0.01 and 0.1. For purposes of this text, if you need tc specify a
and have not been given any information to the contrary, you may assume o =.0.05. However, the
level of the p-value has its own meaning even if o is unspecified. Typically, a n-vaiue will bé
clearly high or low; p-values over 0.3 would typically be considered high (arithu:s weak
evidence for the alternative) in any application, and p-values less than. 0.05=w6Geld tynically be

considered low (and thus strong evidence for the alternative). |n Lietween, judgment is needed.

The introduction of the color options entails much risk. If sales t:rn'out to be mediocre, your
company might face significant losses. Therefore, comipany paiicy.is to be conservative in the
evaluation of test data. Typically, the marlketirig department uses a level of significance of 5%,

that is oo = 0.05.

The final step of hypothesis tefting reaches’a conclusion about the null hypothesis. The
straightforward decision‘ule’is triis: If the p-value is smaller than or equal to the specified level
of significance a, thien we carricject the null hypothesis. If the p-value is larger than o, then we

cannot reject the null hygothezis.

The p-value of 0.0437 is less than o = 0.05. Therefore, we reject the null hypothesis. Based on the
salez.in the tesiiiiarket, we are convinced that the average weekly sales will exceed 275 units.
Your ccmpany should introduce the new color PCs, and the procedure of the hypothesis test is

comislete.
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Suppose, based on new information about costs, you find the sales for the new colors must exceed

285 units per week to be profitable. What would your recommendation be in that case?

The new hypotheses are the following:

Ho: n=< 285

H,: 1> 285

The value of the test statistic for this new scenario equa!s:

t = (290.58 — 285)/8.8524 = 0:6298

The resulting p-value is ttail(35..0.6298) =€.2665. Vie cannot reject the null hypothesis because
the p-value is larger than o.. Your'company shculd not introduce the new colors yet. (A good
strategy might be to collest mexe @ata on the test market, which might enable us to get a better

idea about the pote:itial sales oithe ne:v color PCs.)

What worid your-eanclusion be if sales must exceed 300 units per week for the colors to be
successful? The saraple mean, X = 290.58, is smaller than 300. So, obviously you cannot
conclude-sales-are going to exceed 300 units. In such a case, we do not need to perform a

Hypothesis test. It is clear that there is insufficient evidence to prove sales will exceed 300 units.

Before-tne marketing department started its test market campaign, it did extensive market

research on the sales potential of the new colors. The research effort led to the projection that
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average weekly sales of the new color PCs would be 280 units. What do you think about the

accuracy of this estimate now that you have sales data available from the test market?

We have some doubts about marketing department’s claim and will try to prove thetirwror.g.
The alternative hypothesis states that average weekly sales are not equal t0,Z80. The opposiie,
namely that average weekly sales equal 280, is the null hypothesis. Mcie farmaily, we define the

hypotheses as follows:

Ho: 1= 280

Ha p #2830

The test statistic equals the following:

t = (290.58~ 280)/8:2594 = 1.1942

We are going to doubt thia nuil.hypothesis if the sample mean significantly deviates from the
value of 280, i.e., wien thesaiigle miaan is considerably smaller or considerably larger than the
prediction of the marketing deanartment. The p-value for this test equals the sum of two
probabilitics, nariialy the sum of the probability of a deviation by at least 1.1942 standard
deviations above ttie a¢ssumed mean and of the probability of a deviation by at least 1.1942
standard-deviations beiow the assumed mean. This value is given by the shaded area in Figure

2.3.
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Figure 2.3: t-distribution and p-value 1 two-tailed test:

We can compute this p-value using the ttail zommand:

p-value = Z*ttait(35,1.1942) = 0.2404

Using the significance level o = 0,05, we coniclude we cannot reject the null hypothesis that

average monthly sales per. district viill equai 280 units. Therefore, we cannot claim on the basis of

the test market data that the“marketing department’s forecast was wrong.

This last test differs frorT.1 trie_previous ones since the null hypothesis is not an inequality but an
equatiori. Tesis-of thiz form are called two-tailed hypothesis tests. Whenever the null hypothesis
is an irequality, the hypothesis test is called one-tailed. The null hypothesis of a one-tailed test
alw_ays ceniains the'porderline case, that is, it contains a < or a > sign. The strict inequality sign

(= or <) alwdys appears in the alternative hypothesis.

The test statistics for one-tailed tests and two-tailed tests have the identical form. The main

difference in the analysis is in the calculation of the p-value. For a one-tailed test, you can simply
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use the ttail(n-1, t) command (or 1-ttail(n-1, t) if you are calculating the area to the left of a test
statistic). For a two-tailed test, you need to multiply the ttail value by 2 and use the absolute value
of the test statistic, that is, 2*ttail(n-1, |t|), because the p-value includes the area in both tae upper

and lower tails of the distribution. =l

) |
We can conduct a one-tailed or two-tailed hypothesis test much more Guickly using Stata’s ttest

command. Consider our previous example, where we want to test thic Tiezketing department’s

",

claim that average weekly sales are equal to 280. To do this in/St7ta, click:

Statistics>Summaries, tables, and tests>Classical tests of hypothieses>Ons-sample mean-

comparison test.* This will open the following dial¢g box:

o

5] ttest - Mean-comparison test ' Q'
Main [bysi/n]
Variable name: — -.‘-'vpothesiie'd mean:
sales (] —-.280 ™
95| v Corfidence level
|
@ e | T

' Choose-sales from the “Variable name” list and enter 280 in the “Hypothesized mean” field. The

default confidence level is 95%, and you can change it if you want, although it does not affect the

! Alternatively, you can directly type the command ttest sales == 280.



hypothesis test calculations that Stata does at all and simply determines which confidence interval

for the mean Stata reports. Click OK, and Stata will return the following:

. ttest sales == 288
One=sample t test
Variable Obs Mean Std. Err. Std. Dewv. [%5% Canfy Intervall
sales 36 298.5833 8.859429 53.15657 272.5977 308.5689
mean = mean{sales) W N v 1.1946
Ho: mean = 280 dzgriees of 1recdom = 35
Ha: mean = 2808 Ha: mean != 2&# Ha: mean = 280
PriT = t) = B.8798 Pr{|T| = |t]) T 802403 PriT = t) = B.1201

As you can see, Stata displays the sample mean (Mean);he standzrd error of the mean (Std. Err.),
and the degrees of freedom from which vou ¢an manually calculate the test statistic and the
appropriate p-value. However, Stata haz-alreac c_ions this work for you. The test statistic is listed
on the right-hand side of the output.~where t'= 1.1946 (the slight difference from our calculation
is due to rounding). At the botiomof the oucpu/, Stata lists the respective p-values for all possible
alternative hypotheses of interest (i-2.. H. 4 < 280, Hy: p # 280, and Hy: p > 280). Since, in this
example, we are in:'eres.ted in the altervative hypothesis that average weekly sales are not equal to
280, we look to the middie.coiemn and find the p-value to be Pr(JT| > |t|) = 0.2403, which agrees

with our snanual caizulation (up to rounding).

2.3 tdypothesis Testing: A Formal Analysis

Now let us see what goes on behind hypothesis testing, review the mechanical calculations, and

see why they really work.
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The first formal step in hypothesis testing is writing down the two hypotheses. For example, in

the last test marketing example the hypotheses that we developed were the following:

Ho: 1 = 280

Ha p #280

Hypothesis tests are always stated in terms of the true parametersiwe are inferested in and not in

terms of the estimators. Here, the parameter we are intereStearin s u, the true average sales.

The estimate we derived for the average sales was X =.290.55:

To evaluate the evidence in our data, vie xvili<nitiaily assume the null hypothesis is correct. We
then see if our observed result is.ikelv or tGalikely given the null. If it is likely, then it is not
strong evidence in favor of the altzrnative, ¢nd we cannot reject the null. Conversely, if it is
unlikely (less likely tharithe iaver.of significance that we have set up in advance), we will reject

the null hypothesis.

The null hygotriesis determines'the sampling distribution of our estimator, X . What is this
distributicn? First,“ve make an assumption that this distribution is a normal distribution. (If our
samnle i3 large,-this assumption is justified by the central limit theorem.) Any normal distribution

Fas a raean“and a standard deviation. The mean is the one given by the null hypothesis, e.g., 280.

As yau lzarried in the first chapter, the standard deviation of X , which we will denote by o, is

given by alx/ﬁ . Since we do not know o, we must use the sample standard deviation, s, to
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estimate it. Therefore, the estimated standard deviation of X (which we will denote by s, ,

sometimes called the standard error of the mean) is given by s/ Jn.

To evaluate the strength of our evidence, we want to see how far away our obscrved nct.imatu is
from the value we would expect if the null hypothesis were true. To do this, we.look at the
guantity: estimator minus the value given in the null hypothesis. Since vis waild fike to use this
difference to make a probability statement, it is convenient to ccnvert._it intG-a riember of standard
deviations by dividing by the standard deviation of our estimaior.:Therefore, our test statistic will

have the following form:

estimator - \ialue giveri-in the nuill hypothesis
stangiare deviation of the estimator

teststatistic=

This test statistic has the followirg interpretation: Ger'estimate is (insert value of test statistic)
standard deviations away from the value given|in the null hypothesis. In our example, our

estimator is X = 290.58;the*/alt:2 in tiie nult hypothesis is 280, and the standard deviation of the
estimator is o . Sivice We aie-using 2. (= 8.8594) to estimate o, our test statistic will have a t-

distribution instead of a $tandard normal (or z) distribution. Finally, the degrees of freedom for

this t-distribution 13.n-1, where n is the sample size.

In-serexample;tiie test statistic (often written t since it has a t-distribution) is t = (290.58-
280)/8.8594= 1.1942, which means that our estimator X is 1.1942 standard deviations above the
value-in«henull hypothesis. We saw earlier that the corresponding p-value = 0.2404, which
means-hat if the null hypothesis were true, there is about a 24% chance of getting a value of our

estimator as far away as 1.1942 standard deviations (or further).
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ONE-TAILED TESTS

The example above was a two-tailed test because the alternative hypothesis inziuded valuez both
above and below the value in the null. In general, if the null hypothesis is zn equality, then tria
test is a two-tailed test. In other examples, we may want to prove that &.barameder is above a
certain value or prove that it is below a certain value instead of showing Ti-is simply-different
from a certain value. This requires a one-tailed test. Such a test is|called on:—:—tailed because the
values in the alternative hypothesis are all on one side of tiie~valees irriie nuti hypothesis. For
example, if we want to prove that average sales are grezier than 275, we would use the following

hypotheses:

Haop > 275

Notice two things here. First,.the. ‘equials® value appears in the null hypothesis as, by convention,
it always will. Second;2athen Tarmiiig our test statistic we have to know what number to plug in
for the value in the nuit.hypathesis. The rule is we always use the equals value. In this example,
the value of the test statistic 15-t.= (290.58-275)/8.8594 = 1.7586. We used the equals value of 275
for the valge in thie.nui! hypothesis. Since our alternative hypothesis has a greater than (>) sign,
only positive.values of 'the test statistic will provide evidence against the null hypothesis. Thus,
theuiag tariwe care about when calculating the p-value in this example is the upper tail or the one
with positive' values. This p-value is the area above 1.7586 in a t-distribution with 35 (= n-1)
degiaes e freedom. As you saw in the test marketing example, we can find this area using Stata’s

ttail command as follows:
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p-value = ttail(35,1.7586) = 0.0437

Similarly, if we wanted to prove that average sales were less than 275, we wou!d use these

hypotheses:

Ho: w= 275

Hy < 275

Here, the test statistic is again t = (290.58 - 275)/8.8594/= 1.758F(lhe same as above!) Since the
alternative hypothesis has a less than sign, however, caly ricaative \alues of the test statistic will
provide evidence against the null hypothesis. Tiherefore, when calculating the p-value, the one tail
we care about is the lower tail, or the cie ¥iith negative values. So, the corresponding p-value is
the one which gives the area below 1I./588.in a t-aiztribution with 35 (= n-1) degrees of freedom.
Since the ttail command alway's cives the &reaabove a given number, we can find the area below
1.7586 by using p-value 7 i-ttait{35,"4.7536).= 0.9563. The p-value came out large, indicating
weak evidence agairst.the nuii-(or ‘i favor of the alternative). We could have seen this without
any calculation. Wheriaver-you do aone-tailed test and the estimated value is on the wrong side
of the equals.\/alue in the nuli-fj:e., above the null value if the alternative looks at the lower tail or
below tie siull vaiue ivithe alternative looks at the upper tail), you automatically know the p-value
is large’, than 0.5. Since this is higher than any level of significance you would ever want to use,

you-now/outdnnot reject the null (or accept the alternative) using these data. In such a case,

calculating the test statistic and exact p-value is not necessary.
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Suppose we want to show that average sales are below 310. The appropriate hypotheses are the

following:

Ho: ].12310

Ha: u <310

The test statistic ist = (290.58 - 310)/8.8594 = -2.192. The correct b—\}alue S te area to the left of
-2.192 in a t-distribution with 35 degrees of freedom. Using Siata to caICIIJI'qte the p-value for this
example, you can either type display 1-ttail(35, -2.192)-g1 Us? ti:e symimmetn; of the t-distribution
and type display ttail(35, 2.192). It may help you to drew a pictiire {see Figure 2.4) to understand
why these areas are the same. In either case the answer-is p-value =0.0176.

04,
e

Figure 2.4: Symmetry of t-distribution.

MECHANICS @F TESTS CONCERNING A POPULATION MEAN

Step i:.Chense the appropriate hypothesis test:

I iy One-tailed tests Two-tailed test
Ho: 1> o Ho: 1< o Ho: = po
Hal 1t < po Hal 1> po Ha: = po
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Step 2: Calculate the test statistic:

We have the same test statistic whether we face a one-tailed test or a two-tailed test.

The test statistic is computed using the following formula:

_ estimator — value in the null hypotheils'_ }_( —Fla

standard deviation of theestimator S;

It has a t-distribution with n-1 degrees of freedom.?
Step 3: Calculate the p-value:

One-tailed test, less than sign in alternative: p-vaiue =1 - ttail(n - 1, test statistic).
One-tailed test, greater than sign in alternative: p-value = ttail(n - 1, test statistic).

Two-tailed test: p-value =2*ttail(n =1, | test statistic | ).

| test statistic | means-the ehsoiuievalue of the test statistic. That is, it is equal to the test statistic

if the test statistic is positive;-and it is equal to -test statistic if the test statistic is negative.

Step 4:'Final decision:

_ Sunpose qur designated level of significance is o (e.g. 0.05 = 5%).

? Rarely, you may be given a value for o, the population standard deviation. In this case, use o in place

of S;, and use the standard normal (z) distribution in place of t.
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If p-value < «, we reject the null hypothesis (and accept the alternative hypothesis).

If p-value > o, we cannot reject the null hypothesis (and cannot accept the alternative).

TESTS CONCERNING THE POPULATION PROPORTION

Just as we have done hypothesis tests where the parameter is the popuiation mgan ‘we can do tests
about the population proportion. We form the test statistic in the same way-as ‘above., However, in

this case, since our estimator is the sample proportion, p, insteac of the sample mean, we need a

different formula for the standard deviation of the estimaior. ¥We™aill not make use of tests

concerning proportions until the next section on two [population prol:lems.

2.4 Consumer Packaging

The marketing department at d large consurper products firm is considering changing the
packaging of one of its primaiy sales items. 7 wo alternatives are being considered. To assess the
relative strengths of these twe-aiternetives, the marketing research department is directed to test
which package sells beitar. Accordingly, a collection of 72 sales districts (similar in terms of
demograpkic Chiaracteristics) is'selected; 36 are assigned for testing package 1, and the other 36
are used to test paciage 2. Sales figures for a one-month test period are collected (in the file
package). Trieaariables packl and pack2 contain the observations on sales for the districts
assigned toackages 1 and 2, respectively. Each variable has 36 observations. First, we will look

at tive descrintive statistics.

User>Core Statistics>Univariate Statistics>Standard (ktabstat)

88



tabstat _all, s(mean sd semean min median max range skewness kurtosis count)

stats Packl Pack2

mean 290.5439 262.7467
sd 53.08559 47.84755
se(mean) 8.847598 7.974591

min 168.14 163.95

p50 296. 825 265.115

max 411.65 350.13
range 243.51 186.18
skewness —.0657883 —.2580593
kurtosis 2.824849 2.439507
N 36 36

Figure 2.5: Univariate statistics for packl and pack2.

Now think conceptually for a moment. What are our two popu:atiGas here?'Or.:e is any store
where the product is sold in package 1, now or in the futirg;-and the ctheiis stores where it is
sold in package 2, now or in the future. The variable of Iaterest fcr esch population is sales, and
specifically we want to compare average moriealy sales from f-he iwo populations, i.e., average
monthly sales if we adopt package 1, to average monthly sales if we adopt package 2. Call these
numbers p, and p,, respectively. The first 36 distzictsn our experiment give us a sample from
population 1, and the next 36 districts give us'a sampie from population 2. We can use the sample

from each population to estimate itz populatior: parameters. Mean sales from the first 36 stores

(written X; = 290.54) give Gur estimate Ot p,, and, using the other 36 stores, X, = 262.75 is our

estimate of p,.

Obviously “our estimates suggest that sales will be higher on average with package 1 since we can
estimate the-difference w,-p, by X, —X, =27.79. So, if you had to make the choice right now
hatween the two packages, the rational decision (assuming that the packages cost the same to

- praduce, etc/) would be to go with package 1. However, you have other options. You could

chodze to continue or expand the marketing experiment, postponing your final decision until you

have more data. So, it is worth asking how confident you are that package 1 is the better of the
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two. After all, a month is not a long time, and 36 stores might not be a big enough sample. In
other words, it might be that package 1 is inferior, and unfortunately, you hit an atypical sample.
Hypothesis testing can help by telling you how strong the evidence you have is for a particular
proposition. In this case, since you have the option of continuing the experiment; youwant.to be
fairly certain of the superiority of package 1 before concluding that it is the-bettei~one. You-make
the alternative hypothesis the statement that packaging 1 is better in terins af avarage monthly
sales. (Recall that the alternative hypothesis is the one you want to-piove-— fiere yetl want to see if

the data convincingly show that package 1 is better).

Ho: M1 - H2/< 6

Ha1U1‘U2>0

How do we perform this test? For the Hurposes ot this example, we will use Stata’s ttest
command to do it. (You can see t'done “by-hand” 1ivne next section, which explains the

statistical theory of two-samplk tests.)

After loading packzage.uia-inte-Stata,.click Statistics>Summaries, tables, and tests>Classical
tests of hypotheses>Tiwo-sample mean-comparison test to open the ttest dialog box. Select
Packl and.Fack-2 from the “First variable” and “Second variable” lists, respectively. Check the

box nekt tH “Unequal variances.” Your dialog box should look like this:
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=] ttest - Two-sample mean-comparison test =R EC)
Main | by/if/in
First variable: Second variable: ]
Pack = Pack2 = no
[¥] Unequal variances — | U - .E‘H
[T] Welch's approximation ra ™, "
"y
1
95i v Confidence level RH ~
= \H. Hx\'-\.\. p
. N N
| { '.m ', :
“‘x
Y r — =
ok ] ][ T Submt |
5 1
—

The analogous command is ttest Pack1.== Pack2, unpaired unequal.® Execute the command,

., =,
R e "

and Stata will return the following: N~
- ."". 'H..\_
—— N B
| R .
. ttest Packl = PackZ, Lrpaured unequa'l
Two-sample t test wi oh ui: wequal variances
variable 6DS ——— _Meim std. Err. std. Dev. [95% conf. Interval]
Packl m&ﬁx "_Zz_li'. 54339 8.847598 53.08559 272.5823 308. 5055
Pack2 36 ‘*H 2“{5-2_. 7467 7.974591 47.84755 246.5574 278.9359
combined .— 72 2/5.6453  6.139193 52.09278  264.4041  288.8865
d'i rf i ~, * 27.79722 11.91109 4.036825 51.55762
dlf‘F = mean(Pac k1) - mean(pPack2) t = 2.3337
Ho: def‘“xz 0 Satterthwaite’'s degrees of freedom = 69.2579
— -
Ha' uaff < Ha: diff !'= 0 Ha: diff >
P <“i~) 0. 9887 Pr(iTl > It]) = 0.0225 Pr(T > t) = 0113
x\"\. ]
o Hx"*-

s Typing “Packl == Pack2” tells Stata that we are testing equality of means between the variables Pack]1
and Pack2. “Unpaired” indicates that we are not assuming any special meaning to the order of the
observations. In particular, the k™ observation of pack1 is not assumed to be any more or less related to the
k™ observation of pack2 than to any other observation of pack2. Finally, we type in “unequal” since we do
not assume equal variances for the two populations.
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Since our alternative hypothesis is H,: 4 —z >0, we will refer to the rightmost alternative
hypothesis. Stata gives us the p-value (p = 0.0113) associated with this one-tailed test. It tells us
that if package 1 is no better than package 2 (i.e., if the null hypothesis is true), there s a; most a
probability of .0113 of seeing as big a difference favoring package 1 in the sample averages as we
have obtained. Thus, we may be highly confident that package 1 is better tkian package 2. Foreny
significance level, o, above 1.13%, we can say that package 1 has (statstically} significantly

greater average sales than package 2.

A final important point here is that you should distinguish-between siatictical significance and
economic significance. That the difference in averagg seles across tie two kinds of packaging is
statistically significant means we have strong evidence, of a-iffeience. It does not tell us how
important that difference is, i.e., whether it.is economically significant. In this case, the estimated
difference does seem economically sigilificent: Gaing from package 2 to package 1 is estimated
to increase sales on average by (226.54-282.75)/262.75 = 10.58 percent. However, think about
the following scenario: Imagine ypu must chotse between two alternative packages and suppose
that you are currently usixng-pacisage “i;-sc-yor: will incur some costs if you switch to package 2.
Suppose further you.conduct &marieting experiment as above (but with a larger sample size),
and find that sales wita, pacicage Z aie higher by an estimated 0.3%, and this difference is
statistically sinnificant. In that.case, you would likely choose not to change over (at least for the
time beingj becatze tf:2 estimated difference, though statistically significant, may not be

econonticaliy significant. It may be too small to justify incurring the costs of switching over.
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2.5 Two Populations

This section expands on the example above and explains the statistical techiiiques-used to
compare two populations. This material follows from what you learneri abétit arie-ropulation

testing though the formulas may look a little more complicated. Csiisitei-the-follGving: We have
a sample from population 1, giving a sample mean of X, and a sample from pppulation 2, giving
a sample mean of X, . We will assume both samples are-iiot (o $mall (Say p; and n, are at least

30). For small samples, some extra issues arise (see ihe note at tie eind of this section). If

population 1 has a mean of p, and a standard deviation‘ef o, and pspulation 2 has a mean of p,
and a standard deviation of o, then the fii'st sample mean, X, is approximately normally
distributed with a mean of p, and a stanuard deviatioi.of
The second sample mean; X.., is.(apprexiinatzly) normally distributed with a mean of p, and a
standard deviation ¢i

oy, = 0,1 \/n_z :

Two prorerties of random variables are important to us here. If X and Y are independent random

variables, 'the mean'anc variance of their difference, X-Y, are given by the following:

‘7 Hxy = Hy — Hy

2 2 2
| O X-Y =0 X +0'v

We apply these formulas to X, and X, , giving the following:



So, X, —X, is (approximately) normally distributed with a mean of 4 .~ 1,"and a jtandard

deviation of the following:

Oz -x, = \/(012 /n1)+ (\5722//'15

As in the case of one population, because o; and o, ara unkiaows;i, we will need to estimate them

using sample standard deviations s, and s, instead. Thus, we use

Sil—iz X "

= \/(512 /T'l)_f (5?22 ,/nz) to estimate Oy

An approximate (1-.)(100)% ¢oniidence interval for 14 — s, is given by the following:*

X — X, *t

- a/2,n1+n2—zsil—¥2

The test'statistuc-for riypothesis tests concerning g4 — 44, is the following:

*The use.of I';+n,-2 degrees of freedom for the t in the confidence interval formula is only strictly correct if
tae variances ¢f the two samples are the same. If the variances differ, the approximate degrees of freedom
~.to use. is gaven by Satterthwaite’s formula:

( %1-%, )4

[EQ] df =




The equals value in the null hypothesis tells us what to insert for (p,-p,),. —

Recall the consumer packaging example of the previous section. The uriiveriate statistics were the

following:

tabstat _all, s(mean sd semean min median max ranaje 5kewn_9'_~;s_kurtos1's count)

stats Packl Pack2

mean 290.5439 262.7467 | |
sd 53.08559 47.84755 |
se(mean) 8.847598 7.974591 .

min 168.14 163.95

p50 296. 825 265.115

max 411.65 350.13
range 243.51 186.18
skewness —. 0657883 —.2580592
kurtosis 2.824849 2.439507
N 36 268

Figuire 2..6: Univariste siatistics for packl and pack2.

So, we have X, = 293:54;¢= 73.088 X, =262.75, s, = 47.848. Our estimate for the difference
in means -y, is 290.54-262:75 = 27.79. We estimate the standard deviation of X, — X, by using

the equation belovv:

Sy, = ((53.086)° /36)+ ((47.848)? /36) =11.91

Yot can werify this value by checking the Stata ttest output from Section 2.4. Stata lists the

standard deviation of x, —x, in the Std. Err. column and the diff row. Now we may, for



example, construct an approximate 95% confidence interval for our point estimate. It is given by

Ty~ Tyt Uy im0 Sug, = 27-79INVHtAII(N1+1,-2,00/2)(11.91) = 27.79+(1.9944)(11.91) = (4.04,

51.54). We also can do the hypothesis test that we had Stata perform for us previously. Tae null

and alternative hypotheses were as listed below:

|'|o: |~11'|~12§O

Hai|.11-|.12>0

The test statistic is equal to:

Gy,
27.75-50 _ 5 333
1.1

Calculating the area above 2.333 |n a t-distiibution with 70 degrees of freedom gives a p-value of
ttail(70, 2.333) = 0.01125. How ‘does iiris coripare with the computer output? Stata’s ttest
command gave us a.jvalue ni).0123. There are two reasons for the slight discrepancy. One is
our use of n;+n,-2 = 7¢.as tive number of degrees of freedom for the t-distribution. As explained
in the footnste-te-the formula Tor the confidence interval for z4 — £¢,, when the variances of the
populaions are not.equial there is a more exact formula for degrees of freedom (called
Satterthwaité’e degrees of freedom in the Stata output). In this example, this formula gives
approximately 69 rather than 70. The second reason is numerical round-off error, as we rounded

the“means and standard deviations to fewer decimal places than Stata did.
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POPULATION PROPORTIONS

Analogous formulas for differences in population proportions can be summarized brieflyas

follows. We will again assume the samples are large. (In practice, estimating populétioﬁ
proportions from small samples is unusual.) Given sample proportions p.-and.p, ,"we estimai¢

the standard deviation of their difference using the following:

A (1-a)(100)% confidence interval for p, — p, is given by tiietollswing:

D
17 P2 2,555,

e

The test statistic for hypothesig, tests concerhing p, — p, is the following:

ﬁl_pz_(pl_ pz)o

PPz

7=

The ccmparison of jproportions is the only type of hypothesis test or confidence interval for which

wewiil. uze a standard normal (z) distribution rather than a t-distribution.
“n Stata, you can conduct a one-sided or two-sided hypothesis test on the equality of proportions

by usirig the prtest command. As an example, we will use the file proportion, which contains

two binary variables, varl and var2, with 30 observations each. Varl has thirteen observations
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equal to 1, and var?2 has ten observations equal to 1. Therefore, p, = 13/30 = 0.433, and p,=

10/30 = 0.333. Suppose we want to conduct the following hypothesis test:

Ho:p, -p, <0 —

Ha p,-p, >0 ’ ~

Ty
=,

To do this in Stata, click Statistics>Summaries, tables, and tr;sts‘»UIasiigéﬁ té§t~3 of
hypotheses>Two-sample proportion test. Select var1 for the, first variabl2 and var2 for the

second variable, as shown in the following: i s

v '
LY N
o =
E| prtest - Two-sample test of proportions /™, L‘E’l_—‘léj
Main | by/if/in | AN
e N
First variable: “Second ¥ atjaﬁlé %
var (] - -'va:.?x . [
i i "-,\ L
\\'.
95] v Corfidencelevel | |
oo,
L L . _
-'L__ _
hy '\'x‘ —
= :x'_ et
.;'-\. —_—
N
", My
~ ",
™,
I N—
@0® )| (oK Ge ][ Som)

., |

~T he corrzsponding typed command is prtest varl == var2. Executing the command will

T

e,

=,
generate the following result:
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. prtest varl — var2
Two-sample test of proportion varl: Number of obs = 30
var2: Number of obs = 30
variable Mean std. Err. z P>|z| [95% conf. | Interval]
varl -.4333333 .090472 -2560114 . 606552
var?2 -3333333 - 0860663 .1646455 . 5020202
diff -1 -.1248703 —. 1447323 . 3547433
under Ho: -1255359 0.80 0.426 ’
diff = prop(varl) - prop(var2) 7z = 0.7966
Ho: diff =0 .
Ha: diff < 0 Ha: diff !'= 0 - = Hardiff > 0
Pr(z < z) = 0.7872 pr(lz] < |zl) = 0.4257 Fe(Z~> 7) = 0.2128

Given our alternative hypothesis, Ha: p, -p, > 0, we see that the p-value-is Pr(Z > z) = 0.2128, or
21.28%. Therefore, we do not have strong enough eviderice to show that p,-p, >0if we are

using a significance level below 21.28%.

There are two things to note when using Stata’s rtest:command. First, the standard errors of the

proportion for varl and var2 gan be fourid in the first two rows under the Std. Err. column

(which are 0.0905 and 0.0841, respeetively). The value for p, — P, is shown in the Mean column

and the diff row (= 6:1)-The veluefor s, is shown in the Std. Err. column and the diff row
(= 0.1249). Using theseepoited values, you can manually calculate the test statistic and the p-
values. Th&'95% canfidence interval for p, - p, is automatically calculated as (-0.145, 0.345).

|

Sesend, note titai Stata reports an additional standard error in the Std. Err. column and the under

Ho: row-(= 0.1255). In fact, this is the value that Stata uses in place of S5,p, in calculating the

test statistic and the p-values. This standard error is calculated using the following formula:

Std. Err. under Ho = \/pc *A-p)*(E+E
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Here, n; and n, denote the number of observations for varl and var2, respectively, And the

pooled estimate of proportion, p., is calculated as:

_ XX
n, +n,

c

where x; and X, denote the number of 1’s in varl and var2, regpectively. 'Stata_uses this pooled

estimator because if, in fact, the two proportions are equal. it is*the test esiimator of the common

proportion. If you calculated the p-value for the alternative hypottiesis Ha: p, -p, >0 using the

original standard error of the difference in proportions; Sp,_p;—0-1749, you would get a test

. 0.1-0
statistic of z =

= 0.8006 and a correspanding p-value of 1-normal(1.2085) = 0.2117,

which is slightly smaller than the s=valuc-calculatéd by Stata’s prtest command.

Note that to use Stata’s pitest cammiand,you-need to have an actual dataset containing binary
variables of interest, Sometinies yGi. may only be given the respective sample sizes and sample
proportions from two po_pu:atlons. i this case, you can still conduct a hypothesis test concerning
two population proportions by.i:sing Stata’s prtesti command. To do this, click
Statistics>sumniaries, tables, and tests>Classical tests of hypotheses>Two-sample
proportiori-calculator. In the ensuing prtesti dialog box, enter the respective sample sizes and
sample prenoiiions for your two populations and specify a confidence level.® Click OK, and Stata

~ will display an output very similar to the prtest output shown above. In the diff row, you will

*Alternatively, you can type the direct command prtesti sizel p1 size2 p2, where size# and p# corresponds
to the sample size and the sample proportion of population #.
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find p,— P, and S5.-7, in the Mean and Std.Err. columns, respectively, with which you can

calculate the appropriate test statistic and p-values.

NOTE ON SMALL SAMPLE SIZES

When doing two population statistics when one or both samples are small_(fewver tnan 30, say),
some additional issues arise. First, as in the single population case, \I‘_".; canriet assuma that our
estimators (the sample means) are normally distributed unlesswe'think the populations follow
distributions close to normal. Second, if for some reascii we keli€we that the two populations have
the same standard deviation, then we can make use cf that fact tc,ob'ain estimates that (in the
case of small samples) are significantly more efficient. Though we-will not cover techniques for
dealing with these special cases, you shouid ke aware these issues arise when you have small

sample sizes.
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Example: Political Gender Gaps

Men and women may have significantly different opinions on political candidaies. One moath
before the 2003 California Governor’s recall ballot, a Field Poll® noted sevéral getider gaps
among the top candidates including Cruz Bustamante, Arnold Schwarzenegaer; and Tom
McClintock. According to their press release, we are told that Cruz Bustamarite is ihe first choice
to replace Governor Gray Davis by 26 percent of likely male v'ote|rs and 35 Ipeu:ent of likely
female voters. Is this gender difference in support for Bustamania statistically significant? A
difference is statistically significant only if we can pyovg it is not-equal to zero using a hypothesis
test. To try to do so, we use the following hypotheses {wheia.n.-anc p,, are the true proportions of

men and women, respectively, supporting Bustamante):

Ho! Pm-pi-=J

Fa: Pm-Pw #= 0

To carry out this test,“we-neento kriaw the sample sizes. The last page of the press release tells us
that the total sample siza wag 505, so assume 252.5 men and 252.5 women. (This should be
approximately-riaht since they-svere sampled randomly.) Then we get an estimated standard

deviation of the difference in proportions:

=0.041

B \/.26(1—.26)+.35(1—.35)
V2525 2525

ﬁm 7ﬁw

and a test statistic:

® The Field Poll, Tuesday, Sept 9th, 2003.
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,_:26-.35-0
041

=-2.207

The above test statistic gives a p-value of 0.027 (=2*normal(-2.207)), i.e., there is.onlvia z 7%
chance that a difference this large could be due to sampling error rather than.a-ganuine dirference
in the proportions of men and women supporting Bustamante. If we were using 1 5% level of

significance, we would conclude that the gender gap in support for Bustariante v:as significant.

The exercises at the end of this chapter should give you plenty'of practice in using these

techniques.
Further information from the Field Poll, TuesGay, Sept 9tri;-2023:
Replacement candidatepreterences by subgroup

...There is a significant gender'gap-in voter preferences in the replacement election. Bustamante
holds a thirteen-point advaiitage-avei-Seriwarzenegger among women voters, 35% to 22%, while
men are slightly favaring-Schwarzenegger (29% to 26%).. ..
[ table 3 reports that 16% ¢f.mer and 10% of women voters prefer Tom McClintock. while table
7 shows ihat-in-the vate to recall Governor Davis, 38% of men and 41% of women support the
governor end would vote against the recall. ]

About the Survey Sample Details
‘he filidings in this report are based on a telephone survey conducted September 3-7, 2003, in
English and Spanish among a random sample of likely voters in California. A representative

sample of [505 likely voters was selected].... According to statistical theory, results from the
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overall likely voter sample have sampling error of +4.5 percentage points at the 95 percent
confidence level. Results from subgroups have somewhat larger sampling error ranges. There are
other possible sources of error in any survey in addition to sampling variability. Différent results
could occur because of differences in question wording, sampling, sequencing, r tiicagh
omissions or errors in interviewing or data processing. Extensive efforts weie magde to minimize

such potential errors.

2.6 Asset Returns

Another interesting application comes from finance. The datassi here consists of 20 years of
monthly data (1926-1945) on the returns for various different asset classes: the S&P500,
portfolios of small stocks (the bottom 20% f mailet capitalization of the New York Stock
Exchange (NYSE)), of corporate sonds, Gf.governriart bonds, and of Treasury bills. (The data
can be found in the file capm. Investment'decisions are often based in part on past performance,
S0 a natural question to ask'iz. wizether-geitormance has been stable over time. In this example, we

will try to determine-ifthe average iaturn on an asset class changed over the period.

This will be.a-hard question te-answer. For example, could one ever reject a theory that said that
every monih is uriique'with a different average return? Furthermore, if you define the asset class
closely‘anotgh, it is highly likely that the characteristics of the return distribution change across

tisie-due te, for example, industry-specific changes in regulations or technical innovations.

Beceauise of this, we will start with a simpler idea. We take our 20-year sample and ask if the data

suggest that average returns are stable over the period for the broad asset classes about which we
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have data, by comparing average returns in the first 10 years with average returns in the second

10 years.

We begin by taking a closer look at the data set. We can graphically examine th# perrsimance of

one of these portfolios, the S&P500:

S&P 500, 1926-45

f.5 — T
04 —

monthly 53 _|

change ' :

in 0.2 —

sp500 0

0.0
-0.1

-0.2

-0.3

Year

Figure 2.7: S&P 500 monthly returns (0.1 = 10%).

Market ieturiis.in tiis period displayed extraordinarily high variance compared with today.

Toearry sut'our test, we first need to create two new variables, sp500_1 and sp500_2, where

sp508., 1-contains the returns for the S&P500 in the first 10 years, while sp500_2 contains the

returns for the S&P500 in the second 10 years. To do this in Stata, you can open the Data Editor

105



and directly copy the first 120 observations from the sp500 column to the sp500_1 column. Then,

copy the next 120 observations from the sp500 column to the sp500_2 column. Your dataset

should look like this:

‘ Data Editor (Edit) - [capm] 3
File Edit Data Tools ' ]
=4 NN e [ sl - C TR
sp500_1[1] 0 — N
Eg date sSp500 smstk crpbon govtbor Lc‘]: , _55290;1 sp500_2
g’ 1 2601 0 .069863 .0072 .013756 | .003384 |\ 0 | .067014
'g 2 2602 -.034737 -.060187 .008224 . 010037 .'\-M .006405 +.034737 .027193
o 3 2603 -.051864 -.101712 .014007 _NN973%7, “0ne502 -.051864  .031658
4 2604 . 015907 . 008508 .000301_ . -.00181 I =, 005271 .015907 -.075067
5 2605 .023505 -.001029 .009982. . 006998 .005715 .023505 .054466
6 2606 .053215 . 045285 .007891 “.011303: | .01095  .053215  .023577
7 2607 .057324 . 020622 .015134%, ?c09§6° .011677  .057324 . 06525
8 2608 .030559 .031335 ;010114 ... 00572 . 00825 .030559 .00793
) 2609 .019444 -.005799 . -.000047 -.001984 -.003474  .019444 .00074
10 2610 -.032168  -.026507 ...00589 .006364  -.000615 -.032168 .079833

.,
", .,
=, .,

e,

8

Now that we have created the naw wariables, “ve can conduct our test by clicking
Y
|
Statistics>Summaries, tables; and tests>Clagsical tests of hypotheses>Two-sample mean-

LY 2

"'\-\.

£
comparison test. Choose 5050¢-, 1 and se500_2 as your first and second variable, and check the

1
-,

box next to “Unequal Variapc-_esr’ﬂ Clitk OK, and Stata will return the following:

.,

" Alternatively, you can directly type the command ttest sp500_1 == sp500_2, unpaired unequal.
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. ttest sp500_1 = sp500_2, unpaired unequal

Two-sample t test with unequal variances

variable obs Mean std. Err. std. Dev. [95% conf. ihterval]

sp500_1 120 .0118973 - 0093001 -1018772 -.0065178 .1303124

sp500_2 120 . 0065677 . 0058552 .06414 -.0050261 _ '.0:81615

combined 240 - 0092325 -0054861 . 0849898 —. 0015747 - 0206397
diff - 0053296 . 0109897 —-.6163407 . 0265238
diff = mean(sp500_1) - mean(sp500_2) = 0.4850

Ho: diff = 0 Satterthwaite's degrees &f fr=adem = 200.528
Ha: diff < 0O Ha: diff =0 - Hardiff > 0

Pr(T < t) = 0.6859 pr(iT] > |t]) = 0.6282 Pa(T-> ) = 0.3141

As shown in the output, the average monthly return foi th;a.fi;‘st 107yoars ;:1 the S&P500 is 1.19%,
and the average monthly return for the last 10 years i5 0.96%. Nofice the substantial difference
between the two sample average returns. A menthly retuin.of 1.16% gives 15.25% annually, and
0.66% per month gives 8.21% a year. Neiethieless, since the p-value for the test with the null
hypothesis that the two means are id(_enl_ical i.s large (.= 0.6282), we cannot reject the hypothesis
that the mean monthly return is the sarrie.in Bath halves of the sample. That may seem like a
surprising conclusion, but the :esson is that witn so much variation in the month-to-month

performance, as shown in“the giapi-2hove,drawing any conclusions is difficult. Mathematically,

X

the variation in retéms makes the stantard error, Sy, _x, » larger, which, in turn, makes the test

statistic closer to zero and tine p-walue larger.

If we dlo thie same hypathesis test for the small stock portfolio, we get a p-value of 0.6694. The
ave_rage mointhly return for the first 10 years of the small stock portfolio is 1.2%, and the average
monthlg/ return for the last 10 years is 2.0%. Again, despite our large estimate of the difference,
we.concluge that it is not statistically significant. That is, though the average returns in the first
decade seemed to be lower, there is no strong evidence that this difference was real, so you would

not want to rely on this difference as a basis for decision making.
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SUMMARY

In this chapter, we learned how to support or reject a claim with data. Hy:sothesis testing allGwis
us to ascertain the strength of the evidence provided by our data in supprt Gf.zn alternative
hypothesis (against a null hypothesis). After learning how to struciure and coriduct cne-tailed and
two-tailed tests for a population mean or proportion, we learne¢d tiow to c& 'dugt the same types of
tests for the difference between two means or proportiors: Ve learnediiow tu use Stata to handle
much if not all of the computational aspects of hypotnesis testing. W_hen we apply hypothesis
testing to regression analysis later on, the computer witl anticizate cur interest in conducting
certain important tests and will report back information about these tests making the
computational aspects of testing almost efioitless:Therefore, understanding how to interpret key
numbers such as test statistics ancp-values.and hbw to choose appropriate hypothesis tests will

be central to our study. .

NEW TERMS

Hypotliesis testing The method used to prove or support arguments with statistics
N hvgathesis<H,) © The default assumption; the opposite of the alternative hypothesis
Alternative izypothesis (H,) The statement you are trying to prove or show is true
~Type-l error’  Rejecting the null hypothesis when it is true

Type iterror  Failing to reject the null hypothesis when it is false

Level of significance (o) The maximum acceptable probability of making a type I error
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Test statistic ~ The number of standard deviations that our estimator is away from the equals
value in the null hypothesis

P-value The maximum probability of obtaining a test statistic value that is atfeast as
unlikely as the observed one if the null hypothesisis true; used to determine the-Stierigi oti.the
data’s support for the alternative hypothesis

One-tailed test A hypothesis test where the alternative hypothesis uses a >.0r <#'sign.

Two-tailed test A hypothesis test where the alternative hypothesis-usesine s=sigri
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NEW FORMULAS

Generically, the test statistic is computed using this formula:

estimator — value in the null hy pothesis
(estimated) standard deviation of the estimater

Specifically, we learned the test statistics for the following circi:nstances:
Test statistics having a t-distribution

For a test concerning a population mean when the standard deviation must be estimated:

follows a t-distribution with n-1 giegrees orfreedom i p = o
For a test concerning thediftereriea of two population means when the standard deviations must

be estimated:

X =X, _(ﬂl_ﬂz)o
S

t=

follows a r-distribution with approximately ni+n,-2 degrees of freedom if
- t =ty = (1= 413,

“Teststatistics having a standard normal distribution (assuming a large sample size)

For a test concerning a population proportion:
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where

. - [P=D)
n

For a test concerning the difference of two population proportions:
~

ﬁl _Ez _(pl - pz)o.-;
S [ |

=

P1—P2 1

where ’ S

Il..l- |. i -._. .'Ill

s _ \/ F_)1 (1_ ﬁl)ll'- it’)\(l_ ﬁa-' |

P n n -.-_.-'
1 2
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NEW STATA FUNCTIONS

Statistics>Summaries, tables, and tests>Classical tests of hypotheses>One-sample mean-
comparison test

This opens the ttest - Mean-comparison test dialog box, where you cari choose the variable for
which you want to conduct a one- or two-tailed test for the population mean. Steza will return the
test statistic as well as the p-values. The leftmost p-value corresporias to-the alteriaative
hypothesis that the population mean is less than the hypothesizad inean; the m'.ddle p-value
corresponds to the alternative hypothesis that population mezns is rict-egudl to the hypothesized
mean; the rightmost p-value corresponds to the alternative hypottiesis that the population mean is

greater than the hypothesized mean.

Alternatively, you can directly type the commaizd ttezt varname == #, level(#). Omitting the
level(#) option will tell Stata to/use-ine eefauit 95% confidence level for calculating the

confidence intervals in the output.

Statistics>Summaies, tables, and tests>Classical tests of hypotheses>Two-sample mean-
comparison test

This opetis the ttest- Two-sample mean-comparison test dialog box, where you can choose the
two variakles for wihicl you want to conduct a one- or two-tailed test with the null hypothesis that
tiie population means are equal. Checking the box next to “Unequal variances” specifies that the
two popelations are not assumed to have equal variances. Stata will return the test statistic as well
&s therpsvalues corresponding to the alternative hypotheses that the difference in population
means 15 less than, not equal to, or greater than 0. Stata also lists the standard deviation of

X, — X, in the Std. Err. column and the diff row. Note that Stata’s p-values, which are calculated
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using Satterthwaite’s degrees of freedom, may be slightly different from p-values calculated

manually using n;+n,-2 degrees of freedom.

Alternatively, you can directly type the command ttest varnamel == varnamez; Uripaated

unequal level(#).

Statistics>Summaries, tables, and tests>Classical tests of hypotiheses>Tvin-saimple
proportion test

This opens the prtest - Two-sample proportion test dialog boy, wiiare yollJ can choose the two
variables for which you want to conduct a one- or two-tailed test ywith the null hypothesis that the

population proportions are the same. Note that in conducting suchi a iest, Stata calculates

S differently from the formula specified in-this textbook, as under the null hypothesis the

variances of the two populations shou'd b4 eaual &nd Stata takes this into account in its

calculation. This is the reason for-slightly gifferent tast statistic and p-values than the ones you

would get using the formulas in the text. Hewever, you can find the value fors;, _; as in the text

in the Std. Err. column &aad tfic_aiEf row.

Alternatively, you can airectly-type the command prtest varnamel == varname2. To specify the

confidence level 1s-se for confidence intervals, add the command , level(#).

Statistica>Surniviaries, tables, and tests>Classical tests of hypotheses>Two-sample
sroportion‘calculator

This-ape:s the prtesti - Two-sample proportion test calculator dialog box, where you can enter
the reSpactive sample sizes and sample proportions of two populations of interest to conduct a

one- or two-tailed test with the null hypothesis that the population proportions are the same. The
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prtesti command is useful when you do not have an actual dataset. Note that you must enter

integer values for sample sizes.

Alternatively, you can type the direct command prtesti sizel pl size2 p2, where Size#and 'n#

correspond to the sample size and the sample proportion of population #.

CASE EXERCISES

1: The gender gap

Look at the Field poll numbers in the Gender Gap exanigle of Section 2.5.

a. Justify the claim in the last paragzapk: that “According to statistical theory, results from
the overall likely voter sample-have semplig error of £4.5 percentage points at the 95
percent confidence level”

b. The last paragraph notes that “Results for subgroups have somewhat larger sampling
error ranges.” Esiimate.the-‘larger sampling error range” for the approval ratings of
Arnold Schwarzenegger amoizg likely women voters.

c. Test using a 5%tever-of significance if a gender gap exists in the approval ratings of
Ainold Scirywarzenegger.

d. | Test using @ 59 level of significance if a gender gap exists in the approval ratings of Tom

—_tdcClintock.

e. ~Do the same for Gray Davis. In his case, would the gap have been significant if the

sample proportions were the same but the sample had included 1,000 likely voters? What

about if it had included 10,000 likely voters? What lesson do your answers suggest?
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2. The January effect

To carry out this exercise, you need to access the capm dataset. Look for a “January ¢ffect” in
small stocks, i.e., test if the average returns on a portfolio of small capitalizatios compdniet.are
different in January than in the rest of the year. Finance experts are particularly iriierested iri
looking for this kind of effect. (In finance, the efficient markets hypottiesis cuggests that any such
anomaly is a profit opportunity.) To carry out this test you can use-ine tiest cemmend in Stata. An
easy way to do this is to first create a “dummy variable” for Jenuary, i.e., 1a the data editor, you
will need to make a new column that contains a 1 whenever-the zell is-in-g rowv which
corresponds to January (look for the date in column ) aid a 0 for-aay other month. One way to
do this is to type the 1 and the eleven zeros for the first year. and‘then cut and paste all the other
years.® After creating the dummy variable (youcan call it January), click
Statistics>Summaries, tables, and tests>Classical tests of hypotheses>Two-group mean-
comparison test. Choose smstk as-youiariable rame, choose January as your group variable
name, and check the box next /o “Unequalvariances.” This tells Stata to conduct a hypothesis
test with the null hypothesis.that.the average returns in January (i.e., January = 1) are the same
as the average returns.in the rest oithe year (i.e., January = 0) for small stocks. Report the p-
value and explain whet, it suggests asout the existence of a January effect for small stocks. Repeat
the exercise far the S&P500.=irally, test to see if the return on T-bills was different in U.S.
presideitiai electian yaars than in other years. To do this in Stata, you need to create a new
dummy:variable for the election years, and conduct your hypothesis test using the new dummy

variahle ds.your-group variable.

3: fF=ast food nation

& See the Appendix for more detail on generating a variable with repeated patterns.
° Alternatively, you can directly type the command ttest smstk, by(January) unequal.
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A recent Gallup Poll (July 7-9, 2003) addressed the idea of holding the fast food industry
responsible for the social costs of obesity in the United States. One question divided thoge
surveyed into people who thought that fast food was good for you and those whi Gisagteed, Two
hundred thirty-six of the 1,006 people surveyed believed that fast food was-good-$ar you, aixd 770

of the 1006 surveyed thought that fast food was not good for you.

The survey examines if people should accept responsibility foy thzir dietai?/ behavior. The poll
asked people how frequently they ate at fast food restaurants. Half 67-thass Ivv'|o believed that fast
food was not good for them ate fast food at least once: a sweek. Thaiis, 50% of the “not good for
you” group ate fast food at least once per week. This compares v ith/62% for those who think that

fast food is good for them.

a. Does this data show that pesiie+wvho believe thiat fast food is good eat fast food more

often than those who believe thatit is ot good? Justify your answer.

The same survey asked infreguentfast food diners (less than once per month) if they would be
more likely to eat at Tast féad reswerants if the restaurants offered new healthier menu options. A
major fast food company has-decided to go ahead with such a plan because it believes at least half
of the infregueni-diners would respond Yes to that question. In the Gallup Poll, only 84 of the 204
infrequent fast food diriers surveyed answered Yes.

b. Isthis enough evidence to convince the company to change its mind? Justify your

answer.

4: Pro bowling for dollars
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Each year, the Hawaiian State Government pays the NFL about $5 million for the rights to host
the Pro Bowl.™ In return, the state gets to showcase its warm weather to about six mitlion viewers
in the depth of winter. Additionally, about 18,000 mainlanders who come to Hawaiitc-waich the
game help boost the local economy. Assessing the impact of their spending-is critical for the
government that spends almost 10% of its annual tourism budget on thg event. One'important
question is if these Pro Bowl tourists spend more or less time in the-staie-during trair stay than

typical mainlanders who spend an average of 10.1 days per visit.

In 2003, the Hawaiian Tourism Authority conducted a poll of 260-ro Bowl visitors and learned
that the average stay was only 8.6 days. The sample standard deviation, s, was 5.7 days. Is this

strong evidence that the average Pro Bowl Yisitor stays fewer than 10.1 days?

PROBLEMS

For problems 1-3, you wi!l need te-access thie file bigmovies™ that contains data on major films

released in 1998.

1. Studios-delieve-that one important predictor of movie revenues is the release date. Since many
young pecple have ‘more free time when school lets out for the summer, more big films might be
released duringtiie siimmer months to take advantage of the surge in demand. Of course, studios
rnight choos? to release their movies at other times when there might be less competition.

Anotrer-gocd time might be the holidays when more people have time off to go to the movies.

1% All data from Survey Adds Up Return on Pro Bowl in the Honolulu Advertiser, 2/13/03.
1 From Internet Movie Database at http://www.imdb.com
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a. If summer months are more popular for film releases than the rest of the year, then the
proportion of films released during the three months of summer should be more than 3/12
or 0.25. Define p; to be the true proportion of films released during the sumnier inonths.
Set up a hypothesis test to prove that summer months are more popular.as reicase dates
for big movies.

b. Use the data in the column titled “Summer Release” to carry ot the tesi you set up in
part a.

c. Conventional wisdom states that about 10% of all movies are reléeséo _dl.,ll‘lng the
holidays, but you disagree. Define py to be the pranortien oi-films relf:.ased during the

holidays. Set up a hypothesis test to show the ceaventionzs-wisdom is untrue.

d. Use the data in the column “Holiday Release® to tarry out the test you set up in part c.
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2. Another variable to consider is a movie’s Motion Picture Association of America (MPAA)
rating. An R rating, for instance, might prevent many younger moviegoers from seeing the film

which can reduce its revenue potential.

a. Calculate the sample average Total Domestic Gross (TDG) for eack ot tfie four MFAA
rating categories (R, PG-13, PG, and G.) To do this in Stata, ygu can use the command
tabstat TotalDomesticGross, statistics(mean) by(MPAAq-ating) cirectiy.or build it
through the tabstat dialog box (type db tabstat or use a tnenu).

b. Calculate the sample standard deviation of TDG for eath MiRAA :altir.g category.

c. Set up hypothesis tests to determine if a statistically signifizant difference in population

average TDG exists between each pair of categorias. You will need to set up six separate

tests (R vs. PG-13, R vs. PG, R vs. 5, ¢fc).
d. Use the formulas from Section.2.50 caiculate the test statistic for each of the six tests.
e. Use the test statistics from sat-d.to compute pavalues for each of the six tests.
f.  Repeat the calculations for each test directly using Stata’s ttest command. Ensure your
answers resemble-the ones you forind,in part e. Some rounding in the hand calculations

will give you slightly-difrerent answers.

3. Another important factor in dziermining movie revenues is genre. Certain film types like
comedizs riaght-have'a broader appeal than other types, e.g., horror films.
a. Calculate-tiie sample average Total Domestic Gross (TDG) for the following four types
of films: Action, Comedy, Drama, and Horror.

b. Calculate the sample standard deviation of TDG for each of these four genres.
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c. Set up hypothesis tests to determine if a statistically significant difference in population
average TDG exists between each pair of categories. You will need to set up six separate
tests.

d. Use the formulas from Section 2.5 to calculate the test statistic for each-OT tive-six tasts.

e. Use the test statistics from part d to compute p-values for each of the sixtasts.

f. Repeat the p-value calculations for each test directly using Sta‘a’s «test.corimand. Ensure
your answers resemble the ones you found in part e. Some-rguriging+isean the hand

calculations will give you slightly different answers.

4. The file Hawaiipercapita® contains information abot the annual per capita income for
Hawaii’s four county governments. This information, cohccte_d by the Hawaii Department of
Business Economic Development and Tourism, is used to allocate state funds for many social
services.
a. Calculate the sample mean-ana-ctandard Gaviation for each county.
b. Set up hypothesis tests to determing it a statistically significant difference exists between
each pair of countias. You viill necd to set up six separate tests.
c. Use the formulas from Seetion 2.5 to calculate the test statistic for each of the six tests.
d. Use the test $tatistizs rem-part ¢ to compute p-values for each of the six tests.
e. Repeat the p-value Calcriations for each test directly using Stata’s ttest command. Ensure
youi answersesemble the ones you found in part d. Some rounding in the hand

carculations will give you slightly different answers.

5..The fil¢ baunk has data from a mid-sized local bank. The bank has recently begun offering
oniine barking services to its clients and is curious about the level of interest in the new product.

The two columns contain data on the number of online banking brochures distributed on a sample

12 See http://www2.hawaii.gov/DBEDT/.
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of weekdays and Saturdays. Management has claimed that about 330 people are taking brochures

about the new service every day.

a.

b.

Calculate the sample mean and standard deviation for each column of data.

Test the management’s claim for Weekdays using o = 0.05.

Test the management’s claim for Saturdays using o = 0.05.

Use Stata’s ttest command to test if a difference exists in the rymber ei brochures
distributed on weekday and Saturdays using o = 0.05. Do-ihese fesuiiz. make sense given

your answers to parts b and c?

6. The file restaurantstocks contains monthly data ¢n tne excessreturns of five publicly traded

restaurant stocks from 1984—1994. The excess returns“measare-the difference between the stock’s

performance and the government T-bill rat«. e would like to know if each stock performs

significantly better, on average, than tkie povarnmiant T-bill rate over time. This would be true if

their average excess returns were.ositive:

a.

b.

Calculate the sample mean and staindaid deviation of excess returns for each stock.
Calculate the test stetistic foreacti stock appropriate for proving average excess returns
are positive

Test if each reztaurant stock performs better on average than the government T-bill rate
(i.e.-has.nositive average excess return) using an o = 0.05.

Wiich of“ihe tive stocks has performed the best over the 11-year period?

Whieh stozk has the smallest p-value in the tests from Part c?

Given that the sample size is the same for each stock, how can the stock which has the

highast average return be different from the one with the smallest p-value?
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7. The file forbeswealth® contains data on the wealthiest 100 Americans in 2001 and 2002 from
a list compiled by Forbes magazine. Due to the sagging stock market, the wealth of many
Americans declined between 2001 and 2002. We would like to know if the decline was
experienced by the wealthiest Americans.
a. Compute the mean and standard deviation of the net worth of the walthiest Americansin
both years.
b. Did the average value of the net worth of the top 100 Americaris-dectine 1vom 2001 to
20027

c. Was the change you observed in part b statistically sigriificaat? 1se ¢'= 0.05.

8. The file forbeswealth from problem 7 contains data ori fhe_a_oe of'the 100 wealthiest
Americans. An interesting question is if the-average age of tne wealthy is increasing, decreasing,
or remaining constant. A decrease in the average.age tends to correlate with new wealth being
created, whereas an increasing age.teivac-to be asseciafzd with less turnover and fewer new
members on the list.

a. Compute the meaii-and-staridard deviation of the age of the top 100 wealthiest Americans

in 2001 and 2002.
b. Did the meaiwage=ncrease-decrease, or stay the same?

c. Was the change you-absérved in part b statistically significant?

3 From Forbes, 10/6/2003, Vol. 172 Issue 7, p136
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CHAPTER 3

THE AUTORAMA: INTRODUCTIONFC

REGRESSION THROUGH INVENTORY PiL.ANNING

In this chapter, we will introduce linear regression. The Autorami case presens a situation where
a manager is planning how to allocate a limited amount efimeritory sgage in‘a new car
dealership. The manager has access to data from anoihe’ dealerskip; which allow us to explore
the relationship between car buyers’ income and the ainourit.of siloney they pay for their cars.
Since the income levels in the two areas wkere‘the dealerships are located are different, the
optimal number of each type of car to stock-migrit.be different as well. Projecting the relationship
between income and price that exisiS in i first dea!ership onto the new one using the technique
of regression analysis will allow the manager t2 plan the best mix of inventory. The theory of
regression is mostly left 10 e final sukscction of this chapter. The next chapter will elaborate on

the technique and extand.its apnlicahility.
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3.1 Introduction

Imagine that you work for a chain of auto dealerships. Your company is opening anevy
dealership, and you are in charge of choosing inventory. To do this, you need to predict- wh_at'
product mix is appropriate, i.e., what kinds of cars your customers will bdy. Fhg t(.)tal number of
cars you may stock is fixed at 200 (owing to considerations of space), arid vour jsb is to decide
how to break those 200 cars down by price bracket. You have two lI(ir.ds of c}a..ta' 2 help you. One
dataset consists of a sample of (accepted) credit applications faor financing Hev\;' car purchases.
These data come from another dealership (in the file auto.r_ar“la). The cre;ﬁi application tells you
the income of the applicant, and the price of the car eacly is buyirig. A second set of data shows
the neighborhoods served by each dealership:; specificaliy. yc_n] have obtained estimates of the
income distributions in each neighborhoed, i.2., for each neighborhood you know the percentage
of people in each income bracket. You-aiso kncw_ sGmething about the auto purchase habits of the
public. (Specifically, you know,ihe p.c.'.centage of people in each income bracket who buy a new

car in any given year.) The data fcr the new ne ghborhood (which is the data relevant to you) are

presented in Figure 3.1. Fhe total adultpo_nulation of the new neighborhood is 10,000 people.

income brac'.-;:n,t. '
<¥5(15-25| 25-35 | 35-45 |45-55|55-65|65-75(75-85
- I ~-£$000's)

] %in intpme
[ 7.7116.1|26.25|26.25|16.1|605| 14 | 0.2
. brackat
- I
| 9% (peryear) who
buy new cars
number of

7.7 | 48.3 [131.25/131.25| 80.5 |30.25| 7 1

customers

Figure 3.1: Income distribution and expected number of customers by income for the new neighborhood.
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How was this table constructed? We divided the population up into income brackets using known
information on the income distribution in the new neighborhood. This information is summarized
in the first two table rows. In the third row, we state the historical percentage of people in each
income bracket (nationally) who buy new cars in a given year. This enables us 1 Caicavate'our
expected customer base in each income bracket as a proportion of the total zopuiation. Recell,
this neighborhood has a population of 10,000 adults. For example, singe 1€.10% of 'these adults
fall into the $15,000-$25,000 income bracket, and each year 3% wiiiGuy.a car, We.arrive at the

number 10,000*(16.10/100)*(3/100) = 48.3 customers.

A first approach might be to examine the mix of cars/being purchasad in the sample from the
existing dealership (and shown in the histogram in Figure2,2) ard use that as an estimate of the

percentage of cars that will be sold in each wric2 bracket at the new dealership.

Frecuency
' /e
4

NN NI

10000 15000 20000 25000 30000 More

Price

Figure 3.2: Frequency of purchases by price.
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However, this approach has a problem, which is that you know the two neighborhoods have quite
different income distributions. Though the average income in the new neighborhood is about
$35,000, in the old one it is about $60,000. This suggests that your new customer basz will be
more interested in less expensive cars, so copying the product mix that is approsriate-er the other
dealership would be a mistake. You, therefore, decide to do something bettei: You will use*the
data from the first dealership to predict the car prices that people in a giver.income'bracket will
be interested in. You will combine this with what you know (from-Figure.3.%) abtut the income

distribution of your new customer base to get a more accurate prediction ¢f wirat they will want.

3.2 Regressing Price on Income

The first thing you need to do is understand the retationship between people’s income and the

amount they will spend on a car. 0 do thiz, you wit! use the technique called regression.

Look at the data (in the gutorania filey-—Tne gata consist of 100 data points, i.e., 100 credit
applications. The variai!e-incGme siands for the annual income of each applicant and the variable

price stands for the price of*the car each is buying. Both variables are measured in dollars.

User>Core-Statistics>!Jnivariate Statistics>Standard (ktabstat)
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stats Income Price
mean 60359 19522
sd 17104.88 5759.359
se(mean) 1710.488 575.9359
min 18900 5100
p50 59800 19650 -
max 101300 32500 L
range 82400 27400 . -
skewness .0691331 .0401359 # ",
kurtosis 3.017166 2.372187 ‘ - .'I
N 100 100 |
|"\.hx 'H._\.__'
M'\'\.
T ",
Figure 3.3: Univariate statistics of income a_nd'prige.. ) "‘xx “Hx

o

As you can see, the average income of applicants in our sample i< $60,359*Ian0| the average price

x"'\._ r
of the auto they are buying is $19,522. We get a better S,E‘i‘lS(:'Gﬂ?’z{h_at IS the data set by looking

at a scatterplot of Price vs. Income (see Figure 3.4). You can genéra'tf,e this graph in Stata by

clicking User>Core Statistics>Bivariate Statlstlcs>BJvar‘.ate ~lots (twoway) or typing db

twoway. This will open the twoway dlalor ’bo,< Click Create . and fill in the Plot 1 dialog box

as shown: &SN N
", -\.H. .,
\ N
r— ,
" .,
-, o
5 - R-\.\.
=] Plot 1 [ ' [E
Plot if/in £, o
o, H\"'\. H"'- _—
Choose a plot category and typ“txx e
e ——— S "
@) Basic plots ¢
=, ——e
(©) Range plots S =
- S,
() Fit plots H"'\-\.R "".\I
Immed- <-plots Y
| Pﬂvanpeﬂ nlots .
3 ‘“x. \
PIJ.:t tyre: (scatterplo) |
1 quable _— X variable:
; E|| F‘nceh R E| Income Izl [ Sort on x variable
| | Sl -
r\ M:?d(euipropertm ] [ Marker weights ]
N~ / /
"\._\M i
I\I\I\-\I\I\""\.
[ Accept || Cancel |[ Submit |
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Click Accept and OK, and Stata will generate the following scatterplot:*

Y
Scatterplot 1
| °
° |
. ° o
°% o oo o.o “ e
° L] ° d o. K 4
° o o° °
. )
b ° o® ® v e ® ®
3 i e® © Se $ ® d
i ... Y [ ]
° o _.
' [ J S°>
o ° °o.. °. e
° °
b ¢ i #. ¢ o°.
E _ |
° °
°
O_
T T — ! T T
20000 40000 ~ 60008, 80000 100000
“Ilncome

rigure 3:4-Scatterplot of price vs. income.

People seem to spend-more-0n cars-as their income rises, which is not surprising. More usefully,
the relationshin seems to be iiear, i.e., you could draw a straight line through the scatterplot that

would représent the deta fairly well. But how should we choose the line, i.e., what line is going to
|

give us'the “best fit” t¢ the data? The answer is provided by regression. We will ask Stata to

preduce tiie test=it line by using the regression command. To do this, click User>Core

.. Statistics >Rizgression (regress) or type db regress. Choose Price as your dependent variable

! Alternatively, you can directly type the command twoway scatter Price Income. After the graph is
generated, you can click File>Start Graph Editor to edit your graph (such as adding titles and changing
the scales of the axes). See the Appendix for more information on using the Graph Editor.
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and choose Income as your independent variable. You should have a dialog box that looks like

this:

regress - Linear regression L‘P_JT_M l"\\
Model |by/f/in | Weights | SE/Robust | Reporting| N IR
& Y |
QePeEdem variable: Inde?endem varnables: ; H« ;-I ‘ I
;Price ETE] ‘ Income \; J@
Treatment of constant e '\N\l\l\\x\,
| i
[] Suppress constant term \ l'\\ | |
‘ 1 ) .--. i
[7] Has user-supplied constant P \_\ -
[] Total SS with constant {advanced) f 7 A -
hY
)
\ —
__..\‘H o ____."'.
| Vd
| g \’
g F\
N )
| I
\l\\”’
QO E :_‘-— [ OK [ Cancel |[ Submt |

2 Alternatively, you can directly type the command regress Price Income. See the list of new Stata

commands at the end of the chapter for more explanation.
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. regress Price Income

source SS df MS Number of obs = 100

F( 1, 98) = 82.37

Mode] 1.4997e+09 1 1.4997e+09 Prob > F =\ 0.0000
Residual 1.7842e+09 98 18206075.5 R-squared = 0.4567
Adj R-squared '= '0.4511

Total 3.283%e+09 99 33170218.2 RoOOt MSE _ = 1266.9

Price coef. std. Err.  u P>|t] [95%—<enf. Intervar]
Income . 2275402 . 0250709 9.08 0. 000 S1777878 | . 2772927

_cons 5787.9 1572.261 3.68 0. 000 2€57.798 8908. 001

Figure 3.5; Regression of price vs. incoms.~

What does all this mean? First, we can write the estimated-reqressiori-aauation using the

regression output table. In the regression we ran, Pri‘e is the varisi!e on the left-hand side. On
the right-hand side, we have the constant coefficient (5787:9) plué the coefficient on Income
(0.2275) times Income. By equating left-hand side to right-hand side, we obtain the following

equation:

| price = 5737.9 + 0.2275*income

This equation represents wha. Staza has determined to be the best-fit line, as shown in the

following diagram:”

® This-graph can be generated in Stata by clicking User>Core Statistics>Bivariate Statistics>Bivariate
Plots (twoway) or typing db twoway and creating two plots — a scatterplot as above and a “Fit plot” using
“Linear prediction” of Price using Income and then clicking OK. This is equivalent to typing the command
twoway (scatter Price Income) (Ifit Price Income). See the list of new Stata commands at the end of the
chapter for more details.
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Scatterplot

S

T T T I T
20000 40000 60000 £€0000 100000
Income |

® Price — Titted \7alues1

Figure 3.6: Scatterplot-orrice V. income with regression line.

What it says is that the averagg amount spent ¢n a new car by people with a given income is equal

to, or best estimated by, $5;787:9 pltz-02275.times their income. So, for someone earning
$20,000, this estimate_is $(_5'/8_7_.9*O.22_75*20000) = $10,337.90, and for someone earning

$80,000, it comes to $(5767,9+0.2275*80000) = $23,987.90.

All we have done-is piess a few buttons on the computer, so this may seem like magic. Before
|

going cn towse this'eauation, we will attempt to answer the two important questions that will

allew us te, uideistand regression better:

1. “Where does this equation come from?

2. Why should we believe it provides a good estimate?
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3.3 Method of Least Squares

Given any scatterplot, we would like to draw the best-fit line through the points in the.diagram.
To do so, we need to have some criterion for measuring what is a good fit. Intuitively,'a line is a
good fit if it is as close to the points as possible. So start off with a line, and see how var-it is Tiram
each point. We call this distance the error, and we would like to make thz errorsas small as

possible. We can see these errors more easily on a scatterplot with feweroints, s in Figure 3.7.

3.5 — ]

° -

2.5

2_ /
*
1.5

1 4

\

erior 1

0.5 -

Figure 3.7: Generic scatterplot.

In this [piciure, we Fiave drawn a straight line through a set of five points. The error associated
with-eacis.pointis thevertical distance from the line to that point. (We have marked the first two
rrors Iikthepicture.) We define the sum of squared errors as the number obtained by calculating
2ach-af thesz distances in turn, squaring each one, and then adding all these squares. Intuitively,
the nuivber we get this way will be small if the line is close to the points, and large if it is far from

them.
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We can use this procedure to compare two different lines for goodness of fit. Do the calculation
for each line, and then say that the one with the smaller sum of squared errors is a better fit. This

suggests that we define the best-fit line as follows:
The best-fit line is the line that produces the smallest possible sum of sguaied errors.

Now, we can answer our first question. The equation that Stat spjits out fram he dataset is the

equation of the best-fit line. Examine the following equation of‘the tast-fit lire:

price = 5787.9 + 0.2275 incoms;

If we take this line, calculate the sum of‘squared. errors, and take any other line at all and repeat

the calculation, we will get a bigger numpber the sacont: time.

How does Stata do this? Far our puinoses vwe really do not need to know. That is not to say that
we will be using regressioni a zindiess or mechanical way, but what we need to understand are
the underlying statistics ang-internretztion and not the mechanics of selecting the best-fit line. In

practice and in this text, the~mecnanics of regression are always carried out by computer.

This approach also provides a partial answer to our second question. For example, if you look
back at 18 summary statistics, you will see that the average price of a car ($19,522) is about one
&ird of tre average income of the people in our sample ($60,359). So, rather than running a
regression;’'someone might suggest using the simple rule of thumb that people will buy a car
whose price is about one third of their annual income. We will need to justify why the regression

equation is considered a better way of estimating than this rule. One argument is that the
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regression equation is better than the one-third rule in the sense that it provides a better fit. We
can represent the one-third rule by the following line, depicted as the ‘rule of thumb’ line in

Figure 3.8.*

price = 0.333 income . ~ 4‘

T I_r : T T T
20000 <00Q0 60000 80000 100000
. Income
._0- Fiise = Fitted values
T Tele of thumb!'

__Figure 3.8: Scaifu’p'at of price vs. income with regression and rule of thumb lines.

|
Using this ine, the sum of squared errors is larger than the sum of squared errors from the

rearessioit.liie. The practical consequence of this is that estimates found using the regression line

* This graph can be generated in Stata by typing the following commands: 1)generate pricel =
0.333*Income; 2) twoway (scatter Price Income) (Ifit Price Income) (line pricel Income) (or using the
twoway dialog box to generate the equivalent command); and 3) using the Graph Editor to change the label
in the legend to read ‘rule of thumb’ rather than Pricel.
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will be more precise (i.e., have a smaller variance) than estimates from the rule of thumb or any

other line.

Now we will examine how to use the regression equation to predict demand for.Carset-our

dealership.

3.4 Predicting Spending from the Regressicin EQuaticti

Think about the people in our customer base (in statistics jargon -the, population) who earn
$30,000 a year. Not all of them will want to spend the:same-ameunt/on a car, so what we would
like to find is a distribution of their spendiryg levels. We will make two assumptions about the

distribution of spending levels for a given.income
ASSUMPTIONS

1. For each income lgv2l_speiiding-an a car purchase is approximately normally distributed.
2. The distribution foi-diffezent incoine levels need not have the same mean, but it does have to

have the same standard devigation.

Later ir: this-text, we will discuss the second of these assumptions in some detail. For the time

being, we wiliasK you to take their validity on trust. They can both be tested, and in this case, the

tests sugaast they are reasonably correct.
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Starting with our $30,000 income group, the first assumption implies we only need to know two

things about the distribution of spending for this group: its mean and its standard deviation. The

regression output gives us estimates of both. The mean is estimated by setting income, ='$30,000
§ 5

in the regression equation, so it is $(5,787.9+0.2275*30,000) = $12,612.90. Y(_?'i C_ar.-fi:'“.d &QH
estimate of the standard deviation in the regression output from Figure 3.§_L:I'tﬁé'ﬁq_v; I;bﬁekl"ésih_x
Root MSE. It is estimated by s = 4266.9, i.e., it is $4,266.90. So, our hes-t gues;is flnat, among
people with annual income of $30,000, spending on a car purchasra 1s-r.;-ma‘h¥ d”é&g\buted with a

S

mean of $12,612.90 and a standard deviation of $4,266.90, as ohclvvn in f\e\ hldltogram in Figure
\ |

3.9. The estimate of the mean depends on these people ha\unq an\ﬁ‘cﬂme of $30 000, but the

estimate of the standard deviation does not, which fITa ass umptlon above

~ »
Price D|str|but;on fe_rHPeople with $30,000
- |n"t>0mx\
'_ . H_.
I ..Ill
b !
Sy
o o IR
O
H"H 'i——_ L
., \_\
\ "-H | \
— N
B e o L o L
1 E000 11000 17000 23000
Price
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Figure 3.9: Price distribution for income level of $30,000.

What we will do now is divide our cars into a series of price brackets and use our kngwizdge of
the normal distribution to say what proportion of these people will buy autos in each bracket. For
example, we know that the proportion of prices paid by this income group, wirich are belGw
$16,000, is the same as the area to the left of 16,000 in a normal distributior with a mean of
12,612.90 and a standard deviation of 4,266.9. One way to calculate this area is ta_use the
standard normal distribution. Standardizing the value 16,000 by stintracting tf:e mean and

dividing by the standard deviation yields the following:

,_ 160001261290~ o0
4,256.9

Therefore, for this income group, the groportien of-prices paid that are less than $16,000 is the
area to the left of 0.7938 in a standard-norma! distribttion. Using Stata, you can calculate this
area by typing display norma}(0.7938) in the (Command box. This area is 0.7863. So, this tells us
that an estimated 78.63%-af tfiz.pGpulation in the $30,000 income group buys cars priced below
$16,000. By a simiiar analysis, the preportion buying cars priced below $14,000 is 62.74%, so
this tells us that (.7863-.6274%100 = 15.89% of these customers will buy in the $14,000-$16,000
price bracket. Wegan do the same calculations for $10,000-$12,000, $12,000-$14,000, and
every qther price brackzt, giving a complete picture of the demand for customers with an income

0f-$20.080. (Fur-convenience, we have divided car prices into $2,000 price brackets.)

We riow know something about the price preferences of the customers with a given income. How
do we"gse this information to get a picture of the overall spending distribution? Well, there are

several steps.
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For each income bracket in the table giving the income distribution for the new neighborhood, we
will assume that all individuals in a bracket behave as if they had the median income ‘for'that
bracket. The median for this neighborhood happens to be the mid-point of each.incuinctrarige,
with the exception of the lowest income bracket, for which the median is $0,008-.Also, the
median for the highest bracket is $120,000. Now, for each income branket,we 1:se the regression

estimates to calculate the number of customers we expect to fall inside-each-price=aracket.

For example, if we want to predict the number of customers.in ihe $25.000;$ 45,000 income
bracket who will buy a car in the $12,000-14,000 ca! bracket, we.groceed as follows: First, we
calculate, using the regression estimates and the median il;r‘ome *or the bracket, that purchases of
cars by that income bracket are normally districuted with a mean of $(5,787.9+.2275*40,000) =
$14,887.90 and a standard deviation of.$4.266.59. Then, we use the normal distribution to find
what proportion of that demand lies-setaeen $12;200 #nd $14,000. You can work this out by the
same technique as above. You should getan answer of about 0.1683 (or 16.83%). Then, multiply
this proportion by the nuriaer ¢f customers in/that income bracket (131, from Figure 3.1) to get

the number who are expectet-to by in that price bracket ((131*0.1683) = 22.05, or about 22

people).

For any/pariicuiar price bracket, add the number of customers from each income bracket who will
want t¢, buy.a car in'thét price bracket. This gives the total number of cars in that bracket that

would besoia-in-a-year, given our neighborhood of 10,000 people. This gives you the demand

rizformation you need to make your decision on what mix of cars to stock.
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WARNING:

This procedure is reasonably good. However, we have made one dubious approximation.,For the
purposes of our prediction, we are acting as if the estimates of the mean and standard deviaiions
of prices for each income level were exact; they are not. The mean and standard aaviations &«
estimates from our sample and, therefore, subject to sampling error. Tliis culdpe iaken into
account by using slightly more sophisticated statistical techniques; whichwe will fearn when we
talk about prediction intervals. Meanwhile, you should be awere fhat we haye lused this shortcut.
Of course, some other approximations are present as well;<da@ té.incoivie dracketing.
Additionally, you should worry about whether the sempiing techyiigile is genuinely unbiased
since people who buy cars on credit are not necessarily,a represzntative sample of all car buyers.
The problem with income bracketing is nottoc serious since we can always use smaller brackets
to reduce the degree of approximation,’but Ve cai.do nothing about the sampling problem short

of collecting more data from a different scurce.

3.5 The Regression Niouci

Remember the-kasic ideas beriind statistical inference: We have a population of interest, and this
population’is charecterized by some population parameters that we would like to know. We
take a sampi= fron thr: population, and estimate the parameters. Since any estimate is based on a
saanpie, it Wwill contain some sampling error, and we use probability theory to quantify that error,
so-a/e are/able to produce confidence and prediction intervals and carry out hypothesis tests. For
exarrnle.‘our population might be the adults living in Texas, and we may want to know the

average amount they spend on dining out each year. The relevant population parameter is,
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therefore, the population mean, and we would estimate it from a sample by looking at the sample

mean. For reasonable sample sizes, we know the sampling error is normally distributed around

the true value, with standard deviation equal to

where o is the population standard deviation.

Regression analysis involves the same concepts; however, the populatiori-naremeters are
different, and we must be certain we understand exactly what taey ‘are. We‘wi'i illustrate them

using the Autorama example.

DIVIDING THE POPULATION BY 'W&OME LEVEL

When predicting auto purchases, we-aivided the papulition (our customers) into many sub-
populations according to incone. in otherwords, we did not think about the distribution of
demand for all our custorriers bet atieut the distribution for all customers with a given annual

income.

Each of these sub-populatioiis hz's different auto purchase patterns. For any given sub-population,

a mean price exizts that people in that population pay for a car. If we knew these means, we could

see hovy the.mean price varies across the different income brackets. A nice way to do so is by

drawing &giagh-6i mean price against income.

’7 VG Regression Assumption 1. This graph would be a straight line.
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Of course, this assumption may not be true. Later on, we will talk about how you can check the
data to see whether this is a reasonable assumption for any particular data set, and what you can

do if it is not.

Returning to our example, as a consequence of Regression Assumption 1, v.é may.assume taere
are some constants, 3o and B, such that for any given income level, the average price paid by

people in that income level satisfies the following equation:

average price = Bo+p;(inccme;

Bo is the intercept and B, the slope of the graph of average priccagrinst income as shown in

Figure 3.10 below.

average
price

slope B

income

Figure 3.10: Regression line for price and income.
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WHAT REGRESSION ESTIMATES

We can now talk about two of the population parameters regression estimates: They ére the
intercept and slope of this line, i.e., the constants B, and B,. Look at the regression output if: _

Figure 3.11.

. regress Price Income
source sS df MS Number ¢f obs = 100
F(C 1, | 98) = 82.37
Mode] 1.4997e+09 1 1.4997e+09 Prob > F = 0.0000
Residual 1.7842e+09 98 18206075.5 - K-sguarad = 0.4567
: Adj R<squared = 0.4511
Total 3.283%e+09 99 331702182 . ROOTt MSE = 4266.9
Price Coef. std. Err. - o P>|ri / [95% conf. Interval]
Income . 2275402 . 025070 ™. 9.08 n_o0g) .1777878 . 2772927
_cons 5787.9 1572.261 3.68 0. 000 2667.798 8908. 001

Figure 3.11:'Regression ¢f price vs. income.

What is Stata providing here? |Based on ou: sample, 5787.9 is the best estimate of the intercept
Bo, and 0.2275 is the best.estimate.of the slose B;. The constants 3o and 3, are the population
parameters we wou_:d liKe'ic knew; drd the regression formulas that Stata implements give us
estimates (often writtenh, ="787.9 and b, = 0.2275) of the parameters. We can use these to
estimate thz-average expendituie for any income group by substituting for income in the

regress,ior equatiori,prcvided by Stata. This estimate is often written § and is referred to as a

precicted.valueor a fiited value.
' QUANTIFYING THE SAMPLING ERROR

These estimates are based on our sample, and if we had a different sample, we would get different

estimates. Remember from Chapter 1, by thinking about the sample mean obtained from each
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possible sample we may obtain a sampling distribution, i.e., something like a histogram of all the
possible sample means one would obtain from different random samples of the population. The
same concept applies here, so we can talk about the sampling distributions of by and ;. ¥We are

less often interested in by, so we’ll focus on b; and summarize what we have leainea-scfar:

The idea is that when we compare two different groups of people, one of whom/hag an average
income (say) $1,000 higher than the other, the difference between treaverage ameunt that the
higher-income group will spend on an automobile and the average amouni.tha the lower-income
group will spend on an automobile is equal to $1,000 times soni2 coistant’B; /(This conclusion
follows from the straight-line equation.) We do not knowv this corstant, but we can use our sample
to estimate it, which we do by taking the slope of Stata’s best-fit-4inc through our sample points.
The estimate this produces is called by, andit is'a random variable, i.e., the outcome of an
experiment. If we repeated the experiment 2y taking a different sample, we would get a new
estimate, and if we did this many fimes; e would getd distribution of estimates. The important

things about this distribution a'e the folloving:

1. On average.eisright.i.e.;~5(by) = B1 (by is called an unbiased estimator).

2. The distributica of 2, has a standard deviation, written o, , which is estimated by Stata.
We-caiithis estimate s, , and in this example, s, =0.02507. Stata reports this number in

th2 Std. Er7. column as seen in Figure 3.11.

-2 e cai-generally assume that the distribution of by is normal.

Regresston analysis usually makes a number of other assumptions of varying importance in
additicri to the straight-line assumption. Later, we will discuss some of these other assumptions

and talk about what happens when they are not satisfied. Nothing we have said so far in this
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section depends on the other assumptions, with one exception, noted below. For the time being,

we will mention one of these assumptions, which you have seen in the previous section:

Regression Assumption 2. The standard deviation of price

for each income group has the same value, o.

Of course, o is another unknown population parameter. Stata prou’uceé an‘estimate ef o in the
regression output, which is denoted by s. Stata prints the valug ofls in the r¢w Jabeled Root MSE
(here, s = 4266.9). The units for this estimate are the sarigas the-nits Tor yedr dependent (y)

variable. Here, s = $4266.90. The formula Stata uses|to get s, (: .02507 here) makes use of this

s, S0 point 2 in the box above does depend on this assuraptior:

Do not confuse o, the standard deviatien of piice tGz.each income group, with o, , the standard

deviation of our estimate of B;.,in Cligpter 1, e made the same distinction between the

population standard deviation, 'z, aad the stancard deviation of the sample mean, o .

CONFIDENCE iNTERVALS ON THE REGRESSION COEFFICIENTS

We can use our knowledgeef thi: sampling distributions to make statistical inferences, i.e., to
form caonfidzrice.and*arediction intervals and carry out hypothesis tests with our regression

results.

Since b, s aistributed normally, we know
bl |
Oy
has the standard normal distribution. So, for example, we can be 95% confident that (3, is within

+1.96 standard deviations of by. In other words, b;+(1.96) o forms a 95% confidence interval for
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B1. We do not know oy, , SO We use our estimate S instead and must use a t-distribution instead

of the standard normal. The general formula for a 100(1-o))% confidence interval for B, is the

following:

bittozn2 5,

twon-2 1S the a/2 t-value with n-2 degrees of freedom (where n is the samole-size)<{display
invttail(n-2, o/2)). Later, you will see that Stata output tells you Fow mari/ degrees of freedom to

use, so you have one less thing to worry about.

For example, try to produce a 90% confidence interved foi-8,. _If you'look at the last regression
output, you will see the sample size was 109, s& we have 98 degrees of freedom. (This value is
given directly in the Residual row and.the df cltimn.) The 90% confidence interval is

2275+ 0506(.02507) = .2275+inVtIi(98:-0.05)(.02507; = .2275+(1.6606)(.02507) = .2275+.0416
=(.1859, .2691). The interpretaticn is that*90% of the time we take a sample of size 100 and use
it to calculate an interval aceoraing to-the-iorraula, the interval will contain the true slope, ;. We

are therefore 90% cerfident ((2859-.2691) contains the true slope, B;.
HYPOTHESIS TESTS Oi+'THE REGRESSION COEFFICIENTS

Supposé.the 'enmmon industry wisdom is people will spend on average an extra $180 on their
new duto for every extra $1,000 in income. In terms of our regression model, this says that the
true-slope, By, of the regression line is 0.180. (Make sure you understand why.) Our estimate
seems-te'be higher than this, but is the difference large enough to indicate strong evidence that the

true slope is higher than 0.1807 If it is, then we might want to re-evaluate the common wisdom.
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Therefore, we would like to know if our estimate is statistically significantly greater than 0.180.

We test this by the following hypothesis test:

Ho: Bl <.180

H,: B; >.180

We will follow the usual hypothesis-testing procedure. Give the senefit of the-doubi-to the null
hypothesis by assuming that 3; = .180. Under this assumption, w¢ know oury test statistic, t,

follows the t-distribution with 98 degrees of freedom:

Using Stata’s numbers, we have t.=(.227¢-,180)/.02507 = 1.895. To determine the p-value, use
Stata’s ttail command rememl.ering that w2 ara conducting a one-tailed test and want the area in
the upper tail. This commarid (aisplay-ttzil (93, 1.895)) yields a p-value of 0.0305. This tells us
that if the null hypothesis were.true;.there would only be about a 3% chance that a sample of size
100 would give an estimated. slope as large as ours here. So, unless we want to be particularly
careful about-making a type I"arior (i.e., unless we want to set our level of significance, o, at less
than .03), xve willweject the null and conclude that our results do shed doubt on the conventional
Wis_dom ana-stroneiy suggest that for every additional $1,000 of income, people spend more than

andaaditiorial $180 when they buy a new car.
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READING SIGNIFICANCE IN THE REGRESSION OUTPUT

We can now explain the t and P>|t| columns of Stata’s regression output. Consider the fcllowing

(two-tailed) hypothesis test:

Hoz Bl = 0,

Ha: B]_ ES 0.

S

The relevant test statistic would be ¢ =

= .2275£0256% = 9.0/5F5is is so large that the

corresponding p-value is 0.000. If you look back at the-regression cutput in Figure 3.11, you will
see Stata has done this calculation for us: k1 the Income row that tells us about b;, the column
labeled t contains the test statistic, anc' the next cGiumn labeled P>|t| contains the p-value.
Similarly, if we wanted to test whether orisnt the triia<intercept, By, is equal to 0, we can look in
the _cons row to find the p-value for the test wnere B, = 0 is the null hypothesis (which we reject

since p = 0.000).

Traditionally, people hawe bean especially interested in testing coefficients against zero because
they often.sse regrassion to tesi if one variable has any effect on another. In this case, saying that
B1 = 0 meins that incorne has no effect on the price people pay for cars. Since the test is so
cammorily used;-Stata and any other standard statistical package reports it automatically.
Typicaily, we will be able to determine what affects what but we also need to know the effect’s
size-The‘example here illustrates that nicely. Rejecting the null in this automatic hypothesis test
allows-us to conclude that your income affects how much you spend on a car. This is not very

profound. However, we do care that the extent of this effect is larger than the conventional
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wisdom. In other situations, we may be interested in small non-zero effects. (For example, in

finance, tiny effects can provide arbitrage opportunities that are important.)

The usual terminology is to say that the estimate b, (or the variable income) is statistically
significant at the o level if the two-tailed test of 3, against zero leads to a rejectioi, of the null
hypothesis (at the o level of significance). Remember that all this indic¢ates+s _that vve have
evidence that we have a non-zero coefficient. If we want to test agdinst &y Giher value as we did

earlier with 0.18, we will have to calculate the test statistic ang p-yalue for'ourselves, as in the

previous section.

Finally, you may wonder why Stata reports both the tést stetistic-ana the p-value for the test. The
answer is that some people like to know the test statistic. However, the p-value contains all the

information you need.

OVERVIEW OF THE REGRESSIOGN QUTPUT TABLE

It may help you to go-throuahpart Gf the regression output again. After running a regression,
Stata produces a tabia.as sauwirin-Eigure 3.12.°

> We have included an option to generate an additional column labeled Beta so that we may explain what it
means. As you can see from the output, the Beta column is obtained by typing the command regress Price
Income, beta. Alternatively, navigate to Users>Core Statistics>Regression(regress), click on the
Reporting tab, and check the box next to Standardized beta coefficients.
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. regress Price Income, beta

source SS df MS Number of obs = 100

EC- A, 98) = 82.37

Model 1.4997e+09 1 1.4997e+09 Prob > F =, 0.0000
Residual 1.7842e+09 98 18206075.5 R-squared = 0.4567
Adj R-squared '= 10.4511

Total 3.2839%e+09 99 33170218.2 ROOT MSE e 4266.9

Price Coef. std. Err. t P>|t] w.Beta
Income . 2275402 . 0250709 9.08 0.000 .6757781

_cons 5787.9 1572.261 3.68 0. 000 &

Figure 3.12: Partial regression output.

We will go through this table now. Recall that the regression estimetes the-coefficients of a

straight line. These coefficients are the intercept o, 21d e coefficient on the income variable,

B1. The row labels tell us which of these coefficients each-zow ccacerns. Thus, the _cons row is

concerned with the constant coefficient or ititeriept, Bo, and the Income row is concerned with

the coefficient on the income variable.3;.. 7he Ceef. column contains the actual estimates of

these coefficients (bo = 5787.9, b.="0.2275). The Std. £rr. column is more interesting. Each of

the coefficient estimates is suhjec]. to sampiing error and has a distribution whose standard

deviation we can estimatg. Thosa estimates are found in this column. For example, we know that

by is normally distributed, its expecied value is the true slope B3, and we can estimate its standard

deviation to be s, =.02507:Similarly, the estimated standard deviation of by is denoted by s, (=

1572.261)-"The neszt two columns tell us the results of specific hypothesis tests. There is one test

for each estimator. The null hypothesis is that the true value of the parameter we want to estimate

is zarn, he tcelamn.iells us the test statistic value we obtain from this test, and the P>|t| column

talls usthe ¢orresponding p-value. The Beta column tells us the beta weight corresponding to

“~.income. 7he beta weights are coefficients of a regression where, instead of the variables

themselves, standardized versions of the variables are used. Looking at the regression output table

in Figure 3.12, we see the beta weight on income is 0.6758. This tells us that, on average, for a
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one standard deviation increase in the income, price will increase by 0.6758 standard deviations

of price.

SUMMARY

We looked at how Stata chose the best-fit line through a scatterplot.and hov:.to uzse the equation
of that line to make predictions. We applied this to predict the aveiage prige of a car bought by

customers with a given income.

We assumed that, for any given income level, the amauni.spent on a/car is normally distributed
and the standard deviation of that distributic: iz the same Tui-€ach income level. The mean of that
distribution is the estimate provided by tne regrassion equation, and the regression also provides

the estimated standard deviation.

We used this information, together=sith sorne demographic data on our customer base, to predict
the overall distribution of car.purehases. e divided our customers into income brackets and our
cars into price brackats. Far-cach income bracket, we worked out how many of our customers
would come from that bracit aizd how their purchases of cars would fall among the different
price brzckets:~This tald us how many cars would be sold in each price bracket by adding up how
many carswould be sold in that bracket to people in the lowest income bracket, the second

iowest, €.
Vir2 exéamiried the regression model and learned that regression studies how one variable (e.g.,

auto price) varies across different populations indexed by another variable (e.g., income). It

assumes that this relationship is linear on average and estimates the linear relationship. We can
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use this estimate to make predictions and use statistical theory to perform inferences about those

estimates, including confidence intervals and hypothesis tests.

NEW TERMS

Best-fitline ~ The line generated by the least squares method tha’g produiees the smallest
possible sum of squared errors

Unbiased estimator An estimator whose expected value is\equal to the bar:ameter it estimates
Residual degrees of freedom  The number of data noin';.: in a regressiesi minus the number of
coefficients (including the constant). This is used to'calculate the| proper t-statistic to use in
confidence intervals and is used in calculating-n-values of hyp-ofhesis tests

Standard error of the regression (s) An eztimate of o, the standard deviation of the

dependent variable (y) given (or conditional ori}-a fixed value of the independent variable (x)

NEW FORMULAS

100(1-a)% confidence interval for B,:b; £ invttail(n-2, a/2)* Sp,
100(1-a3% confiderice interval for Bo:by £ invttail(n-2, a/2)* s,

Hypothesis test to sce ir coefficient k is statistically significant:

Ho: Bk =0,

Ha: Bk #0.
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NEW STATA FUNCTIONS

User>Core Statistics>Bivariate Statistics>Bivariate Plots (twoway)
Equivalently, you may type db twoway. This command opens the Stata twowzy dialog box,

where you can create various types of graphs including scatterplots and best-fit lines.

To generate a scatterplot, click Create.... Choose Basic plots as your' plot-caiagory-and choose
Scatter as your plot type. Select the appropriate X and Y variables and click #ccept>OK. Once

Stata generates the graph, you can open Stata’s Graph Editoro inake Tevisiciis to your graph.
Alternatively, you can directly type the command twoway seatter varY varX.

To graph a best-fit line, click Create. ... Ciicose Fit plots as your plot category and choose
Linear prediction as your plot tv;se. Seleet the approuriate X and Y variables and click
Accept>0OK.

Alternatively, you car-directly-type-the command twoway Ifit varY varX.

If you want te-add a best-fit Itz on top of a scatterplot for variables X and Y, you can click
Create... again tG-crecte Plot 2 (Plot 1 is your scatterplot) for your best-fit line by following the
steps atiove=The divect command is twoway (scatter varY varX) (Ifit varY varX). For more

arapiing options, type help graph into the Command box.

Useir>Ceore Statistics>Regression (regress)
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Equivalently, you may type db regress. This command opens the regression dialog box asking
you to select a dependent variable from a list of all variables in the current data worksheet. You
are asked to choose one (or more) independent variables from the “Independent variable? list.
Clicking OK will produce the regression output. Stata reports the estimated coeiTiCierct (uader
the Coef. column), estimated standard deviations of the coefficients (Std. Ei'r.), test statisties for
the coefficients (t), and p-values (P>|t]) for a two-tailed test with the null Kipothiesis that the true
value of the parameter of interest is zero. You can find the appropriate uearees orreedom with
which to manually calculate confidence intervals for the parameter of interest in the Residual row

and the df column. In addition, you can find the standard errox of the regression in Root MSE.

Alternatively, you can directly type the direct commaand regress.depvar indepvars, where depvar
corresponds to the name of the dependent variable, and indepvars correspond to the name(s) of

the independent variable(s).
If you want Stata to report the beta-weighi(s) 1or independent variable(s), you can either check

the “Standardized beta cozificients™hox wider the Reporting tab in the regress dialog box, or you

can type the direct command-xegrass depvar indepvars, beta.

CASE EAXERCiIGES

I7AT¢le-neek at tne Autorama

Cansider the 80.5 expected car buyers in the $45,000-$55,000 income group from the Autorama
case. Using the same assumptions we made in the chapter, determine the expected number of

sales in each price bracket from this group. Hint: Use the normal distribution to determine the
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probability that someone in this group would buy a car in each price bracket. You may wish to do

your calculations in a spreadsheet.

2. Autorama: The big picture

Take the entire set of potential car buyers at the Autorama described ir Figure_ 3.1 z2nd complete
the objectives of the case. That is, using a spreadsheet, determine-iiie nurmbeér.of cers to stock in
each price bracket at your new dealership to match demand. Ylou can do ttiis ir; three steps:
a. For each income group, determine the expected number.nf saieswithin each price
bracket.
b. Sum the expected sales with each price bracket to"gaterrviine the total expected sales
within each price bracket.
c. Multiply the fraction of total expectad s&!as in each price bracket times 200 to determine

how many of each type of.cdarts-stock in yaur.inventory.
3. Shore Realty
Shore Realty.calls real estate in-Oklahoma. The company would like to be able to predict the
selling price of nésw hémes based on the home’s size. It has collected data on size (“sqfoot” in
square reet)-and seliing price (“price” in dollars) which are stored in the file shore. Use the data

in-uvet file*to ariswer the following questions:

2. lJse a computer to construct a scatterplot for these data with size on the horizontal axis.

b. Determine the estimated regression equation.
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c. Predict the selling price for a home with 2,600 square feet.

PROBLEMS

For problems 1-3, you will need to access the bschools2002 file, which zontaiiis deta regarding

the top 30 business schools based on the 2002 Business Week ratings.

1. Many business school surveys including this one report mean l:ase salaties'and median base
salaries. These two statistics tend to be similar. Stata zan he'p us*ind a relationship between the
two for this dataset.
a. Construct a scatterplot with mean base salary oirthe vertical axis and median base salary
on the horizontal axis.
b. Does this relationship appear Iingar?
c. Perform a regression of.ineas-hase salary vs.'median base salary. Write out the estimated
regression equation.
d. Use your regressian eg:lation to estiinate the mean base salary for a school with a median
base salary<of $77,00U.
e. Use your regression e€guation to estimate the mean base salary for a school with a median

bhase salary-of $88,000.

2.Swuderits fromi detter schools might command a higher salary. Comparing a school’s mean base
salary te.its rank might help us understand this relationship.
& Develop a scatterplot for these variables with mean base salary as the dependent variable.

b.*Does this relationship appear linear?
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Perform a regression of mean base salary vs. rank. Write the estimated regression
equation.

Use your regression equation to estimate the mean base salary for a school ranked eighth.
Use your regression equation to estimate the mean base salary for a schu0i Tairied '25th.
Use the coefficient on the rank variable to estimate the expected inciease-in mean liase
salary from a one-unit improvement in a school’s rank. Provid: a $5% <onfidence
interval for your estimate.

How confident are you that the true slope, 34, is significajitly diffezent:from zero?

3. Schools with larger enrollments might have more ;esgurces, mzaking their students better

prepared and more valuable to employers and, subseg:jentiy.. corimanding a higher salary. Of

course, smaller schools may give students riore personal attention, which develops better skills

and could yield a higher salary for smaiier.cchodGis. Studying the relationship between mean base

salary and enrollment might help vs-arigerstand thic, refationship better.

a.

Develop a scatterplot for these variables with mean base salary as the dependent variable.

b. Perform a regressitna or'meds-basg salary vs. enrollment. Write the estimated regression

“D

equation.

Use your regirassiG:, equaticn to estimate the mean base salary for a school that enrolls

800 students.

Usé youi-regrassion equation to estimate the mean base salary for a school that enrolls

1,600 students

Uze tiie-euefficient on the enrollment variable to estimate the expected increase in mean

biise|salary as enrollment increases by one. Provide a 95% confidence interval for your
stimate.

Is the true slope, B4, significantly different from zero? Use a 5% level of significance.
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g. Isthe true slope, B4, significantly greater than zero? Use a 5% level of significance.

4. The top-selling beer in the world is Budweiser, which is produced by Anheuser-Buscl:. The
company’s annual reports provide the data in the file budsales, which presents i2 years of
combined sales (in 31-gallon barrels) of all Anheuser-Busch beers. The file“also Cantains
information on the U.S. population (US Pop) based on census estimates.

a. Develop a scatterplot for these data with barrels sold as the dependent variable and US

Pop as the independent variable.
b. Perform a regression of barrels sold vs. US Pop. MWritethe éstimated. regression equation.
c. What does the coefficient of the variable US/Pojp represeriiin this regression equation?

Be specific and clear in your answer.

5. Access the file taxfranchise. The dsta camefxom a regional tax preparation company with 19
locations across the Midwest. The fistveriable measutes the Output per Worker in terms of
customers’ tax forms completed per montti, and the second is the annual Computer Budget per
employee at that location.

a. Construct a scatterplct. of Qutput per Worker vs. Computer Budget.

b. Perform a regzessien of Sutput per Worker vs. Computer Budget and write the estimated

regression equation.
c. /Usé the egression equation to estimate the Output per Worker at a location with a

Computer Budget of $2,500 per employee.

2

Use trie-regression equation to estimate the Output per Worker at a location with a
Computer Budget of $3,500 per employee.

a. Use the coefficient on the Computer Budget variable to estimate the additional number of
tax forms completed per month for each one-dollar increase per employee in the

Computer Budget.
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f.  Provide a 90% confidence interval for your answer to part e.
g. Using a = 0.05, determine if the Computer Budget is significantly related to Output per

Worker.
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CHAPTER 4

BETAS AND THE NEWSPAPER CASE: USiNG THE

REGRESSION EQUATION

In this chapter, we will learn more about regression and how tb ugse it to mzake predictions. We
will see one of the major applications of regression in fizaiice tfia estiriiatior: of asset betas,
which are numbers measuring the riskiness of different investmeits: Then, we will explore a new
product start-up problem in the newspaper industry. Aiong tre-way, we will learn to do statistical
inference with regression: In addition to prodi:Cing estimates, we will be able to say something
about the accuracy of our predictions *hrougn.theuse of confidence and prediction intervals and

hypothesis tests.
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4.1 Capital Budgeting and Risk

How to deal with risk in capital budgeting is one of the central issues in modern finar:ce theory.
Some of you may have encountered, at work or in finance classes, many of the zoncepts ccvered
in this section. We will concentrate on the use of regression to measure asszt betas, These
numbers measure the riskiness of different assets, forming the basis fo: the rn(_)sl widely used
approach to capital budgeting under uncertainty, the Capital Asset-Priciiig.Viadel {ZAPM). This
section should explain enough to enable you to appreciate the importance @f a‘set betas and how
to use them in simple examples. You may wish to supplement tiis section oy, reading the relevant
sections of any standard finance text, such as Princigies/of Corperete Finance, by Brealey and
Myers.! There, you will learn about some factors we iave ignored here, most notably the relation

between capital structure and the cost of capita'.

CAPITAL BUDGETING ANSTrHE OPPCRTUNITY COST OF CAPITAL
Suppose your company has the opportunity; to hegin a new project. The project will take place
over two years. In year 1,yst will have tsinvest $10 million, and in year 2, you expect average

returns of $11.5 million_after=which.the project will end. Should you undertake the project?

The answer isvou should undzariake the project if it has positive net present value (NPV). If you
are unfamiiiar with the, concept of NPV, Brealey and Myers or any other finance text will cover it
in detal’, FGr.a given irterest rate or cost of capital, r, the net present value is given by the

fohawing:

! Principles of Corporate Finance, 7/e. Richard A. Brealey and Stewart C. Myers. McGraw-Hill, 2003.
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11,500,000

-10,000,000+
1+r

You can check that the NPV will be positive if r is smaller than 15% (.15) but will be w_ega.tive
otherwise. This means, you should invest if your cost of capital is less than or_equal to i5-nercent.
This makes intuitive sense: If you make the investment, you will get a returr’of 1596 in exchange
for having your capital tied up for one year. The cost of capital refers to Fiew muzh it costs you to
have your capital tied up for one year, which is the rate of returi ysu cGuld achieva with it. Since
this investment pays 15%, you should make it if you cannot earn raore thar' 15.3/0 elsewhere. Here,
“you” means your shareholders, since as a corporate rianages it is yourisb to maximize

shareholder value.

Risk and return

However, things are more complicated once werecogaize the role of risk. Assume that this
investment is somewhat risky, so ttié retern 0%, $11.5 hillion is uncertain and is merely your best
estimate. Your shareholders neled ta_ be compensated for bearing that risk. To determine their cost
of capital, we need to see fiew riicri-they-could get for bearing the same risk in a different
investment. Again,this makes sense: kisky investments pay more on average than safe ones, but
that does not mean that yoe.shGeld automatically choose the riskiest investments you can find. In
practice what.it means is that you need to know how high a return your shareholders need to be
compehsa:ed for bedring the risk your project represents.

The CARMNM formula
T'Ris brings us to the bottom line of the CAPM: What it says is that the riskiness of a project or
asset can be measured by a single number, known as the beta (j3), and the required rate of return

satisfies the following formula:
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r-re = B(rn-ry)

Here, r is the risk-free interest rate, i.e., the return on a totally safe asset, and r;, is the retura.on a
market portfolio. We usually think of r; as the return on US Treasury bills{T-billsj, which
historically have paid about 3.5%, and we often think of r,, as the retura,on the/5&:500 index,
which has earned a much higher return (around 12%.) The differsiice betuvaefi-the feturn on any
asset and the risk-free return is called the excess return, so the formula says that the excess return
on any asset should be proportional to the excess return ciitivg marketasa wiiole, with the
constant of proportionality equal to 3. If we know tht bista of ou:"project, we can use this formula
to learn the correct cost of capital, r, calculate the NPV and-&ecide :whether to make the

investment.

Measuring Risk I: unique vs:markei-risk

When we think about a project’s tiskiness, ‘e nave to distinguish between two different kinds of
risk: unique risk and masket iisk.-Rational irvestors will hold a well-diversified portfolio of
investments, with money rirestocks of many companies. This may be justified by the principle
of not putting all your €gas Iiv.one basket. On a more technical level, as we saw in Chapter 1,
when you take iive.average of anumber of independent random variables, the standard deviation
of that average becames low. For instance, if you have n independent risks, each with the same
standarc-deviation o, tnen their average has a standard deviation of o/vn. What this means is that
i;ivestors dc,not have to worry much about the risk of any single investment, provided that risk is
independent of their other investments’ risks. For example, one risk facing Hewlett-Packard is if
Dell v#ili continue to steal market share away. However, whether or not that happens is mostly

independent of anything else that might happen in the world, which suggests that a well-
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diversified investor should not have to worry about it. That is an example of a unique risk, also

known as a specific risk, unsystematic risk, or diversifiable risk.

On the other hand, suppose that the economy slides into a recession. Hewlett-PacKard™s sases will
fall and so will those of most other corporations in the United States. So, th¢risk af a recession:is
undiversifiable because any companies in which we invest will face thg sarae risk. 'he
companies’ risks are not independent and their eggs are all in the szitie basket. This kind of risk is
called market risk, systematic risk, or undiversifiable risk. Since i.vestors'canaot avoid this risk
by diversification, they have to be compensated for bearing it. 2ecatize sr~:nle companies face
more such risk than others, they must offer a higher retu:n to interest people in investing in them.
For example, during recessions, people often put off uyirg cars, bus such economic conditions
do not greatly affect their use of the telephciie, 50 auto companies have more market risk

associated with them than do telephone‘compariias.

Measuring Risk I1: defining heta

Now that we know the kisnG-0f risk tt-measure, what remains is learning how to measure it. We
can get at the right measureniant by.thinking about how the share price of an auto company like
Ford will vary with tria maiket as awhole, compared to that of a telecommunications company
like AT&T. It turns out that when the market is doing well, Ford’s shares do extremely well, but
when the miarketis doing badly its shares do very badly. This is what you would expect: When
the ecofnoniy is booining, the markets are up and many people buy new cars, but when things are
slr‘,'.:,', fewpeopic-do. Between 1984 and 1989, Ford’s shares went up/down by 1.3% for every 1%
cirange up/down in the market as a whole (on average and after subtracting the risk-free rate).

Thiz.number (1.3) gives us a measure of how much risk is involved in holding Ford’s shares. By

comparison, AT&T shares were safer than the stock market as a whole during this time, with a
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change of only 0.76% for each 1% change in the market. These numbers are what we call the

betas of the assets.

Beta measures the amount the stock price changes for a 1% change in the mzirket as awnole, J

In the next section, we will see how regression is used to calculate/estimatezetas. What this

section has explained is how to use the beta to make investment decisions;

Summary
We reviewed the following procedure for deciding when to make a risky investment.
1. Obtain a numerical measure of the riskiness catled Its-seta, {We defined the beta, but did
not explain how to measure it.)
2. Use the CAPM formula, r-r; =.B(:-7). to'¢htain the appropriate cost of capital figure r.
3. Use that value of r to ca'culate the MPV.
4. Make the investment if it'has positilze INPV.

Implementing step 1 wili-be dGisctissed in the‘next section.
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4.2 Estimating Betas

The firm you work for owns a chain of upscale pizza restaurants in New England. Ycur CEO

believes the lower end of the market has room for expansion and wants to start up aiarge chain of

fast food pizza places to compete in the fast food market. You are asked to.inake & preliminaty
study of the advisability of this investment, based on an initial investmgnt ¢f $&/mi‘lion and
projected average annual profits starting at $1 million and increasisg 102 miilliori-after the first

two years. You write out the NPV formula for these figures (ail irs $milliors):

1 1 7 /7 2 2
=t + = 4 +
(I+r) (Q+ r)2 ( +V)3 § +r)1 (1 +r)5 -

NPV=-8+

Before you can calculate this sum, you tieer to“now the relevant discount rate, r. The projected
profits are estimates since the true profits are uncertairi; so this is a risky investment and the
discount rate must reflect this riskiness. £s yoi know from the previous section, the correct rate

for discounting uncertain £ash vlows.is given by the CAPM formula:

r-re = B(rp-re)

Suppoge the curreitt risk-free rate is 4.0%, and the expected excess return of the market is 8.0%;
so, r = .84+.C8R._Ail vou need is a figure for beta, which measures the riskiness of this kind of

inivestinent.
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ESTIMATING BETA

Fortunately, you have data on the share performance of some other companies, which operate in
the fast food market. Since they are in the same business as this project, their riskiness should be
a good guide to the proposed investment’s riskiness. You decide to use regressiorito estimaie.thie
beta from these data, which consist of the monthly excess returns of (anong.ottiers; the shares of
McDonald’s Corporation and of a portfolio representing the mark<ias a v.'hc_)la.. Ttiase data are

contained in the stocks file;” the data on monthly excess returns are repofted ily percentages.

How does regression help us here? The definition of the beta tells‘uz how much the share price
moves (relative to the risk-free rate), on average, compared-with-a 1’;/<) move (relative to the risk
free rate) in the market as a whole. So, if we draw a scatterplot of the monthly excess returns of
McDonald’s (stored in the MACS colinn}-agairict the monthly excess returns of the market
portfolio (stored in the column MARKET.). and plct a Fest-fit line, the slope of the line should tell
us the beta.’ .

As you can see, the line is f_alr!y_swqo. The regression equation (MACS =
0.253+1.458*MARKET_, Trom Figuie 4.2) tells us that the beta is estimated to be about 1.458; so,
on average, a 1% change in tire rnarket is associated with a change of almost 1.5% in the value of
McDorald’s shares.* We can use this estimate to get the discount rate: r = .04+.08(1.458) =

1566, which is, about 15.7 percent. Substituting this value into the NPV calculation (and doing

“Derived tsiny data from The Center for Research in Security Prices at

. http:/gshwww.uchicago.edu/research/crsp/.

>We also obtain the intercept of the best-fit line, usually called the asset’s alpha. The estimated alpha
shows.nu: best estimate of the excess return of the given asset if the market excess return were 0.
According to the CAPM equation, the intercept should be 0 (verify this for yourself).

* The estimated intercept is about .25% monthly, or 3% annually. In practice (finance), the intercept is
usually omitted when computing the asset’s expected excess return. That is, the estimated beta is plugged
into the CAPM formula as if the constant estimate were zero. We do it the same way below.
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some algebra), we find this gives a profit of about $3.1 million, so this investment seems to be a
good idea. Before jumping to conclusions, we should check the accuracy of our beta estimate
since if it is rough we cannot be too confident that the NPV is positive. The true beta'might be a
lot higher than our estimate, leading to a much higher discount rate, which couls Tip-aie praject

into unprofitability.

Excess Returns: McDonalds vs. Market POrtfu!i,g,‘1984-94

20

10

-10

-20
I

 _MARKET

Fitted values

S~MAGS

Figure 4.1 Fxcess returns of McDonald’s vs. the market portfolio.

CONEICENCE INTERVAL FOR BETA

70 produge & confidence interval, we need an estimate (commonly called the standard error of
thie_coetficient) of the standard deviation of our estimate of beta, which we can find in the

regression output from Stata.
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. regress MACS MARKET
source SS df MS Number of obs = 132
F( 1, 130) = 148.38
Model 2711.90756 1 2711.90756 Prob > F =, 0.0000
Residual 2376.02066 130 18.277082 R-squared = 4 0.5330
Adj R-squared ‘= '0.5294
Total 5087.92822 131 38.8391467 ROOT MSE 4 A.2752
MACS Ccoef. std. Err. P>|t] [95%—<Tenf. Intexnvalj
MARKET 1.45837 .1197247 12.18 0.000 1.221509 | 1.695231
_cons .2528197 . 3785496 0.67 0.505 ~. 4360954 1.001735

Figure 4.2: Regression of MACS vs. market.

The estimated standard deviation of by, which is listed uraeir-the-Std. &iv. ceiumn, is 0.1197, and
we know that our sample size is 132 (11 years of mo_n.thiy -data). Therefo.re, a 90% confidence
interval is given by 1.4584+(0.1197)t; 05 130, and tg 05 13¢-iS alzeLt 1..6F,I7 (using the command
display invttail(130, 0.05)). This is 1.458410,1.984 = (1.26,1.6568). We are interested in using
beta to determine the discount rate usiag tne"€APi equation r = .04+.08f3, so we can turn this
into a confidence interval for r. ""nat.is.. we have 2;1 beta between 1.26 and 1.6568 with 90%
confidence, so we can say with 90% confidanc that r is between .04 + .08(1.26) and .04 +
.08(1.6568), i.e., betweei.. 1488 &nd .1725.

We can do a kind of warst-caae analysis using this interval as follows. Suppose we have seriously
underestimsied eta. The true tiscount rate will be much higher than the 15.7% figure we used
above.IWo can use'the zonfidence interval to produce a sort of upper bound on the true discount
rate’s siig: We.do-fiot know the exact value, but we are fairly (95%) confident that it is no more
than 17.259%. If we repeat the NPV calculation using r = 17.25%, we will get a figure of $2.01

- rﬁiliirm, which is still positive by a wide margin. The project will be profitable even under a
worsi-case assumption where the appropriate discount rate is much higher than the one used. The

confidence interval enables us to choose a number we may treat as our worst-case scenario.
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You might wonder why we did not do a hypothesis test here. The answer is that we could have
done that, but you would have needed to work out the relevant test. Finance theory stiggests that
the appropriate thing to prove (i.e., the thing you should use as the alternative hypoties:s) is
whether the true discount rate is less than the internal rate of return (IRR). ¥ou ceuld calcurate
this IRR with Excel or a financial calculator (it turns out to be about 2%.9%) and carry out the

hypothesis test.

To prove the true discount rate r is less than 21%, the approoriate hypothesis test is the following:

Ho: r>0.21

.1 <0.21

The next step is to use the CAPM-iormula;-r-r; = f(#.ts), to rewrite the hypotheses in terms of
beta. Using r; = 0.04 and r,, = ().12), the alteinat;ve hypothesis becomes 0.04+0.08p < 0.21 or,

rearranging, B < 0.17/0.C8 = 2.125. So, the hypothesis test is the following:

Ho: B > 2.125

Ha B < 2.125

IJsing theesults fror the regression, we can calculate a test statistic of t = (1.458-2.125)/0.1197
=-5.57. Therefore, the p-value =1-ttail(130, -5.57) ~ 0, and we can reject the null hypothesis. We
are exremely confident the true discount rate is less than the IRR, meaning this is a profitable

project. This is the same conclusion arrived at using confidence intervals above.
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Summary

We used regression to estimate the beta of McDonald’s from a sample of excess returns on its
shares and on the market as a whole. We used this beta to estimate the correct discount rate for a
capital budgeting problem. We used a confidence interval approach to get a range ot possil:le
values for the beta and did a worst-case analysis to check whether the propssed irivestment woxild
be profitable under rather pessimistic assumptions about sampling errcs. We aflco carried out a

similar analysis using hypothesis testing.
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4.3 Predicting Circulation

A newspaper in a large metropolitan area is thinking about issuing a Sunday edition. vianagement
estimates that this would involve a start-up cost of $2 million and fixed anrual operating costs of
$1 million. Once the project is up and running, it figures a profit (net cf the mgrginal costs of
printing and distribution) of $5 per reader per year. Therefore, if the newsnaper gets X thousand
readers, it will realize an annual profit of $(5,000X-1,000,000) in/perpetui t_v..‘i'_hé cost of capital

for this industry is 15%, so the NPV of this profit stream is the following:”

1 1™ 1
5,000X —1,000,000) —=— + —==— +.
( )((1 r.;.5)+ (1+.157 * (1+.15) ' J

(5,000X —1,000,00¢)
15
= $(33,333X — 6.855,8A7)

If readership is low, this:walua will be rregative, but even if it is positive, it has to outweigh the

initial cost of $2 miliici-tn-ofizar werds, the project is a good one if the following occurs:

_33,333X— 6,666,667> 2,000,000

This is tiue wienever X is greater than 260. So, the break-even figure is a circulation of 260,000.

® Using the perpetuities formula, which says that the value of $1 per year in perpetuity is $(1/r). If you have
not seen this, you can read about it in any standard finance text.
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THE DATA

This projection is useless unless you can forecast what circulation will be. We will use regression

to produce such a forecast, based on a data set called newspapers, which consists of the 'Haily and

Sunday circulation figures for 35 newspapers in other cities around the country.” The Gaily

circulation of the paper is 190,000. We will use these data to forecast Sunday saléz.and to assess

the forecast’s accuracy. We begin with a preliminary look at the data, first ‘ia descriptive

statistics and then graphically on a scatterplot.” All figures are in thousarids. ™

. tabstat sunday Daily, statistics( mean sd semean max ramzge-minmmediam-zount.) columns(variables)
stats Ssunday Daily
mean 609.029 432.4135

sd 385.5468 265.3619 K 1 |
se(mean) 65.16931 44.85435
max 1762.015 1209.224 .

range 1559.402 1075.986
min 202.613 133.238
p50 440.923 355.627
N 35 35

Figure 4.3: Univariate Statisticz.for Sunday and daily circulation.

Examine the data in the scatternlo? shown i Figure 4.4:

1992.

®Derivad from Hedblad, Alan, ed. Gale Directory of Publications and Broadcast Media, Gale Research,

" To generate univariate statistics for Sunday and daily only, click User>Core Statistics>Univariate
Statistics>Custom (tabstat) or type db tabstat, select Sunday and Daily as your variables, and choose the
appropriate statistics in the “Statistics to display” field.
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Scatterplot: Sunday vs. Daily Circulation
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Figure 4 jf: Seaitarplot for Sunday vs. daily.
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It looks as if the relationship isl'close to lifiear. Now, we will do a regression to see what the

B
et

estimated relationship is ziid chack te-see it a.strong relationship exists.
- "‘-\. ‘H‘.

k.,

. regress sunday-Dai :.3( T
source | RSS:‘ ™ df MS Number of obs = 35
e L F(C 1, 33) = 211.19
“odel J ~4370974.89 1 4370974.89 Prob > F = 0.0000
Resigual ., 6%3001.518 33 20697.0157 R-squared = 0.8649
— — Adj R-squared = 0.8608
| Tt al 5053976.41 34 148646.365 ROOT MSE = 143.86
b ]
. :;".fntiay _|.- Coef. std. Err. t P>|tl [95% conf. Interval]
5 - LY
| 1 Dai ly 1.351173 - 0929771 14.53 0. 000 1.16201 1.540337
. J.cans 24.76346 46.98668 0.53 0. 602 -70. 83165 120.3586
.\.xm k. W S
., Figure 4.5: Regression of Sunday vs. daily.
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From Figure 4.5, our estimated regression equation is Sunday = 24.76+1.35 Daily. We may use
the regression equation to produce an estimate of Sunday circulation for our newspaper.

Substituting the daily circulation of 190 gives the following:

Sunday = 24.76+1.35(190) = 281.26 - _‘

As the units are in thousands, this equation tells us the estimated Sunday ciicuiationis 281,260.
So, it looks as if we are saying that circulation will exceed our breéak-even tigure of 260,000. But
we have to be more careful than that. Regression is a statistical pracedure: We are estimating the
true relationship between Sunday and daily circulation, and the estirnate is based on our sample,
so it will contain some sampling error. In other words,there isd tri'¢ line describing that
relationship, which we do not know exact!y but have estimated. Our best estimates of its intercept
and slope are 24.76 and 1.35 respectivaly, btt.thosz are only estimates. We need to take this into

account and quantify the samplirg error in-aur estiniaie of Sunday circulation.

SAMPLING DISTRIRUTGM OF THE FITTED VALUE y

Earlier, we talked about ithe estéimator b, and its sampling distribution. Most of what we said
about b; aiS0 applies to the estimator by. Now, however, we are interested in a third estimator.
The paranieter we vyani to estimate is the average (or expected) Sunday circulation of a paper
witi-adaily circalaticn of 190,000. If the regression model is right, then this is given (in

thousanis) by Bot+P1(190), and we estimate this average by using the following:

9190 = bo + bl (190)
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We need to know the sampling distribution of this quantity, which is called the fitted or
predicted value corresponding to x = 190. It makes sense to talk about the sampling distribution
as this estimate is the outcome of an experiment. If we repeated the experiment by taizing a

different sample, we would get a different outcome, i.e., different estimates.

The sampling distribution of this estimator has the following properties:

The fitted value is normally distributed, with mean equal to th trie valuei.e.;
E( 10 )= Bo +3,(:90)

so it is an unbiased estimator. Its standarc deviation is written o; ~and can be estimated from

the sample. This estimate, which we call the“stanaeard error of the estimated mean, is denoted by

Yoo "

CONFIDENCE INTERVALSWITHTHE FITTED VALUE

Since we know the distritzutiori-9f our estimator, we can use it to produce confidence intervals as
we have sione with every other estimator. By now, you should know what the formula will be. To

get a 100(L-a)% conficence interval for B, + 31(190), use the following:

‘7 Y100 Tt i2n-25g,,
[
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Here, tyo 02 IS the /2 t-value with n-2 degrees of freedom, and n is the sample size (i.e., tyon2 =

invttail(n-2,0/2)). Next, we present an example showing how to use Stata to calculate s, and this

confidence interval.

—— 5,
— .,

. ",

. 5

As an example, let’s produce a 90% confidence interval for Bo+f:(190). _Ff rst, !;xunx.*he regregéion
v

of Sunday versus Daily in Stata. Then, open the Data Editor and enter 320 feiihe 37" observation

- ht "

under the Daily column (we leave a blank row to remind ourselves Whe_ré 'tiaé Cfi‘gi‘ 12l data ends).

A T
Your data should look something like this: -, P

@ Data Editor (Edit) - [newspapers]
File Edit Data Tools ", ~ _
",
=2" JERY Y o= el A = A 3 -
Daily[37] 190 7 .
- -
[&'_-‘-' Paper - x*.ﬂ x~.h sunday paily
4 22 san Frangisco.c_hronixclg ™ 704.322 570.364
% 23 _eh'ic.igq__Sum_ﬁmes“ 559.093 537.78
g 24 r-n'nnea,&oh’s Sta?“*.Trwbune 685.974 412.871
25 ! .'xBaTti'F:Dr'i sun 488.506 391.951
26 ¢ ™ “Rittspurgh/Press 557  220.464
27 ] “*Qoz‘kgg;r-xovntain News 432.502 374.009
28 4 i éc_ston Herald 235.083 355.627
29 3“"“&"\ 0:'J:ea'n5 Times-Picayune 324.24 272.279
30 "-.__ ‘c'qlar‘lotte Observer 299.45 238.554
31— E Hartford Courant 323.084 231.177
3_'_'; R:;;h-:st%:;_ Democratic and Chronicle 262.048 133.238
éB [ H*_ | st. Paul Pioneer Press 267.781 201.86
_,4 m‘u&_ ~rovidence Journal-Bulletin 268.059 197.119
25" T L.A. Daily News 202.613 185.735
~36 ™, .
i'_\ 37% . 130
H-\.
. .

Next, click User>Core Statistics>Prediction, using most recent regression (confint) (or type

db confint) and enter 90 in the “Confidence Level in %” field:
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Generate confidence intervals for prediction and estimated mean ==

Main | f4n i

Column names for prediction, SE_est_mean, SE_prediction: i
predicted se_est_mean se_ind_pred T

Low and high column names for PI:
Pllow Plhigh

Low and high column names for Cl for estimated mean:
Cllow Clhigh

Confidence Level in %:

Replace existing variables
.-"-.H‘m-I
.-".-. kh
@ B SoJ 0K J [ Cancel ][ Submt |

&

— U

Click OK, and Stata will genela;ate'xthe following:

.capture drop se_ind_pred
.capture drop PIlow ’
.capture deop PIid .
. capture-drop CIlow

.captur;: drop Cilzigh

using 3 cegrees friedom
using f-vilue of 1.(92360309030345
.predict predicted, xb |

(1 missng ¥alue gener;ted)
.pradict™se_esizmé€an, /stdp
(1 missiag=yalue g_g_z:erated)
A .peedict $o_drd-pired, stdf
4 |41 miszing walue generated)

# .gen CITsw =\ predicted - 1.692360309030345%se_est_mean
missing v41ue generated)

.gen CThigh = predicted + 1.692360309030345%se_est_mean
1 missing »alue generated)
\TQQQR;E ow'= predicted - 1.692360309030345%se_ind_pred
C
.gen

1 mdssing value generated)
tiigh = predicted + 1.692360309030345%se_ind_pred
(1 missing value generated)
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Now, open the Data Browser and scroll down to the 37" observation (i.e. Daily=190). You will
see that Stata has generated the information we need, as shown in Figure 4.6. The predicted

column gives us the actual estimate (the fitted or predicted value) y,,, = 281.4864, tte

se_est_mean column gives us the standard error of the estimated mean, s, = 33.15637,

which is the estimated standard deviation of y,, treated as an estimate of average tirculation;-znd
the Cllow/Clhigh columns give the requested 90% confidence intervai.. This.ciata sheet also gives
output relevant to prediction intervals, which are the subject of the next section. The-se_ind_pred
column gives us the standard error of prediction, the estimated standara' fdeviation we use in

calculating prediction intervals. The Pllow/Plhigh colusins tive-the 90% pradiction interval for

j Data Editor (Browse) - [newspapers] !;

File Edit Data Tools

=2 e ) Bl = AR

Daily[37] [19

[e_' Paper Sunday Daily prediCted se_wst_mean se_ind_pred CIlow CIhigh PIlow PIhigh

j’ 35 L.A. Daily News 202,513 185.7%35 275.7236 33.4272 147.697 219.1528 332.2945 25.76716 525.6801
z|| 36 o e E % ? : 5 %
=3 37 . 290 231.4864 33.15637 147.6359 225.3739 337.5989 31.63323 531.3395

Figure 4.6: Prediction of Sunday sales.

PREDICTION INTERVALS AND THE FITTED VALUE

Predictioyi intérvals are particularly useful tools. A 90% confidence interval gives us a range of
values lin which we fare 90% confident that the mean value falls, i.e., the mean Sunday circulation
cialipaners with daty circulation of 190,000. In contrast, a 90% prediction interval is a range of
values which we are 90% confident would contain the circulation of a particular Sunday paper

' salected at yfandom from all those with a daily circulation of 190,000.

Below is the formula for prediction intervals:
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It is similar to the one for confidence intervals except that it uses a different (larger) standard
deviation. This standard deviation is often referred to as the standard error of predicticn. Inthe

formula, s is the standard error of regression, s is the standard errcr of th? estimated

mean, and ,/S? + sém is the standard error of prediction. The stiersyrihols are familiar:

Yo 1S the estimated value of the dependent variable, t. . is the lo/2 t—statilstic- with n-2 degrees

of freedom, and n is the sample size, i.e., ty2 02 = iNVttaii(n-2.u/Z;

A word about terminology is called for at this point fornoweiStatz users. Confusingly, Stata’s
built-in predict command — accessed via gilalsg box by typing db predict — refers to the standard
error of prediction as the “standard errar of tlie forecast”, and uses the term “standard error of the

prediction” to refer to what we cil the staridard erro~of the estimated mean.
HYPOTHESIS TESHS WA T4 THE FEYTTED VALUE

The fitted value, 3, , iS*our éstimator for the population average y when x = 190 as well as for an
individuatvalue, yi;.when x = 190. As we have seen in the previous two sections, we can
determinelthe range arcund y,,, Where the population average should fall (when x = 190 with a
oiverr-corifidence) using the standard error of the estimated mean, and a similar range where an
individual value, y;, should be using the standard error of prediction. We can use these standard
arrors-te'develop hypothesis tests regarding the population average y at x = 190 and confidence

statements about an individual y; at x = 190.
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First, we try to prove the average of the Sunday circulations of all newspapers with a daily
circulation of 190,000 is greater than 260,000. The basic steps are the same as in all previous

hypothesis tests. The hypotheses are the following:

Ho: at x = 190, population average y < 260

H,: at x = 190, population average y > 260.

We calculate the test statistic that shows by how many standard efrors the estirpator is greater
than 260. The estimator is y,,, , and since the hypothesis.is-auoutthe pcpulation average, the
correct standard error to use is the standard error of the 2stimated mean (at x = 190), which we

can find from Figure 4.6.

t = (D90 -260) / (se_est_n*e;at ¥ = 190) = (281.49-260)/33.16 = 0.648.

Now we can proceed to calculate the p-valuz of the test with the following:

p-va'ug = ttail (#degrees of freedom, t-value) = ttail(33, 0.648) = 0.26.

Since p #26%, we-cannot reject the null at a 5% significance level. In other words, we cannot
prove it a\5% signiticance level that the average of the Sunday circulations of newspapers with a

dzify-edition of 190,000 copies is greater than 260,000.

/AS a’maiager at your newspaper, you are not necessarily interested in the above result. You are

more Iiiterested in determining whether your own Sunday edition will exceed 260,000 copies per
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day (you do not directly care about the industry average for papers with your daily circulation);

that is, you might want to test the following:

Ho: atx =190, individual y; < 260

Ha: at x = 190, individual y; > 260.

This is not a statement about population parameters, and is therefore nat a valis hyvpothesis test.
However, you can still use a similar procedure to better understasd ydur riewSpaper’s potential
Sunday circulation. The estimator for your Sunday circulatior, is the same as Lefore, Yo » DUt the
correct standard error to use in the calculation is now the-staridard error of prediction at x=190.
Using the information from Figure 4.6, we calculate tha! the bredk-even level of 260 is 0.146

standard errors of prediction below the estimator:

t-value = (3,4, -260)/(se_ind_predzx = 190) = (281.49-260)/147.64 = 0.146.

If this were indeed a hypothesis iest_its p-value wouid be given by the following:

p-value = ttail(#clal aes of freadc m, t-value) = ttail(33, 0.146) = 0.442,

or 44.2%. This is tiie area that lies beli:w a prediction interval with lower endpoint 260. In this
sense, we are only 1-0.442. = (:558 or 55.8% confident that Sunday circulation exceeds break-
even. In siher worGs, we expect the Sunday circulation of an individual newspaper with a daily
circulatior of 190,090 1o exceed 260,000 but there is still a reasonable chance it does not.

THE UECISION

Rememiber that the break-even point for this project was a circulation of 260,000. The regression

gives a point prediction of 281,486, but if we look at the 90% prediction interval (31,633 to

181



531,340), we see this point prediction is of little use because the margin of error is enormous. The
same conclusion arises from our latter hypothesis test, as we cannot prove at any reasonable
significance level that our newspaper will have a Sunday circulation in excess of 260:000. In

other words, knowing the daily circulation is not informative enough about Sunaay creulation.

Was this regression useless? No; however, it suggests we need to collect mare information to
obtain a prediction accurate enough to make the decision. Newspazeitireulation can be predicted
much more accurately if we add in some extra variables (varicus gemographics) and perform a

multiple regression. We will examine multiple regression techriiques-in ceimirig chapters.

Though daily circulation on its own is not informative. enciigh to/maxe the kind of prediction we
need, it did explain a large fraction of the variation in Sunday circulation. We know this because
of something called the R-squared statistic-which you can see in the regression output (R-squared

= 0.8649).
THE R-SQUARED STATISTIC

If you have ever studiad regressioiruefore, you will likely recognize the R-squared. It is a number
that tells you how much variatica in the y or dependent variable is explained by the regression
equaticn. L this'examile, the dependent variable is Sunday circulation, and its total variation is

definec.thisaway:

. B >0, -5)
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y is the mean Sunday circulation of all the papers in the sample. This quantity is usually known
as the total sum of squares (SST). You can find it by running a regression using Stata, and
looking at the value in the Total row and the SS column. Next, we take the estimated regression
equation Y = by+b;x and ask how much variation it predicts. Taking each paperin the sample in
turn, look at its daily circulation x;, and calculate the Sunday circulation thdt the regression
equation predicts for that x;. This number is called the i" fitted value 7. Thiz.value 3, is not equal
to the true Sunday circulation of the i paper because the regression is not itatly aceurate. But
we can ask how much variance there would be if this regressign vvere totaliy accurate, so that

each y, was the true value for its paper. This is given by-appiving.the variation formula to the

y,’s instead of to the y;’s:

Z_(j}i _J-/)z

This quantity is known as the sum-of squares due to r.egression (SSR). You can find it on the
regression output table in the Mode!.row and the SS column. The SSR tells us how much
variance there would be in Gur sampléiisunday circulation were exactly related to daily
circulation by the estimaicaregrassicori equation, i.e., if our best-fit line were a perfect fit. If the
best-fit line is close to the Gata paints, the SSR will be close to the SST since in that case the best-
fit line iy preaicting ascurately; if the best-fit line is a poor fit, the SSR will be much smaller than
the SST.

This intuitior leads to the mathematical definition of the R-squared:

SR X(-3)
ST N -7y

R2
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In this case, the high R-squared (0.8649 or 86.49%) tells us that daily circulation does an
impressive job of explaining/predicting the variation in Sunday circulation; however, there is an
enormous amount of variation overall. The remaining 13.51% variation that is unexpiainzd
represents a thin slice of a very large pie. In this example, the unexplained fractiof istco niuch to
make the prediction useful. One moral of this example is you should not overvalte the R-sguared.
One of the most common mistakes in using regression is thinking that i high R-squared means
the regression is automatically useful for prediction. As we have sezit, trat 1s-not tre case.

Similarly, a low R-squared does not mean that a regression is tse;jess.

R-SQUARED AND ASSET BETAS

If you look back to our regression of McDonald’s excass returns-against the market, you will see
that the R-squared in that regression is onlvabsut 53%. Should we have worried about this? The
answer is no. All we were interested in‘was-the aecuracy of our beta estimate, and the R-squared
is irrelevant to this. What it does teiiusiz-how muieh ¢ the variance in McDonald’s share price is
explained by the market’s moyemnents as a*whole. This has a nice interpretation. Recall that a
basic idea behind the beta aad tre CARPM.inorel is that some risk is specific to each firm, and
therefore diversifiable: the rest.is Gue to the movements of the whole market and cannot be
avoided by diversificetion:<The R-sgjuared is the ratio of variance (i.e., risk) due to the market and
the total variance in McDonaid’s stock. In other words, it tells you what proportion of the risk in
holding M<Donaid’s shares cannot be diversified away. So, in this case, about 47% of
McDorald e risk is/firm-specific, related to things such as the success or failure of its new ad

campaign-ar rievv1ood ideas; the other 53% is systematic risk, related to factors like people

spanding .ess at McDonald’s in hard times.
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SUMMARY

In this chapter, we learned two of the important things that regression can be-usad for: studying
how changes in an independent variable relate to changes in the dependent varigble/through the
coefficient and using a particular value of the independent variable to make ofedrctions of the
dependent variable. In both cases, we observed point estimates‘ang interval estimetes. In the
finance case, we estimated a beta and gave confidence intervals reflacting our .uncertainty about
the estimate. With our newspaper circulation case, we estiimicted Sunday-sales for a paper with a
certain daily sales level and gave a prediction interva! to‘demonstrate the limitations of our

estimate.

Between the two cases, we used four ditferent siandaid errors computed by Stata. Though each of
these represents the same basic/ided, a nieasuie of the uncertainty of some estimate, you must

keep track of which estimates cre t:2ing ass2ssed by which standard errors.

NEW TERMS

Fitted valle  The value of the dependent variable (y) predicted by the regression equation for a
given vaie of-the'independent variable (x). It is a prediction for the average value of y given x
znd for-an irdividual realization of y given x

Staridard‘error of the coefficient An estimate of the standard deviation of a regression coefficient
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Standard error of the estimated mean  An estimate of the standard deviation of the fitted value.
It is used in constructing confidence intervals for the average value of y given x and in
conducting hypothesis tests concerning the average value of y given x

Standard error of prediction An estimate of the standard deviation of our estifiaie=+or &n
individual value of y given x. Calculated by combining the standard error of'regression witi+the
standard error of the estimated mean. Used in constructing prediction ijitervals for an individual

value of y given x and in conducting hypothesis tests concerning as-inuididual vaiie of y given X

NEW FORMULAS
CAPM formula r-r=prm-r
Confidence Interval for the average valiie of y'given x = p v, + Lar2n-2Sy,

Prediction Interval for y given x =p i -.Ti_taIZ,n—Z'\/Sz +85

Total Sum of Squares (SST) SG,-3)
Sum of Squares due to Regiession.(SSK) > -y)
SSR
R-squared RZ =20
SST

NEW ETATA EUNCTIONS

=User>Carre Statistics>Prediction, using most recent regression (confint)
Equivalzntly, you may type db confint. This command generates fitted or predicted values, the

standard error of the estimated mean, the standard error of prediction as well as prediction and
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confidence intervals. Because it uses the output of the most recent regression, you must run a
regression before using this command. After running the regression, open the Data Editor and in
some blank row(s) enter values in the respective column(s) of the independent variabte(s) from
which you want to generate the fitted value. Then, follow the menu path or typs Gioconfir:it to
open the dialog box and set the desired level of confidence. The default is @5% cenfidence.*Ahzn
you click OK, results will be calculated for each set of values you have entared.{as/well as for all
of the original observations on your datasheet).
If you want to generate only predicted values, only the standarc.errgiof fhel estimated mean, or
only the standard error of prediction after running a régrzssion, yew.can click
Statistics>Postestimation>Prediction, residuals, et¢. of 'fyp(_e db predict. In the “New variable
name” field, type in the name for which yol:' want your predicted values or standard errors to be
displayed as, and choose the appropriaté variabie. from the “Produce” list:

a. To generate predicted-values, chGase “Linear prediction (xb).”

b.  To generate the standard error)of the estimated mean, choose “Standard error of

the prediciion.™
€. To generate‘the standard error of prediction, choose “Standard error of the

forecast.”

The coressonding divect commands are:
a. predict newvar, xb
i-—pvedict newvar, stdp
(. predict newvar, stdf

wriare newvar is the name of the newly generated variable.
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CASE EXERCISES

1. Estimating betas

Access the stocks dataset and use it to estimate betas for the following stocksAnple, IBRK%, and
HP. Suppose the excess returns on the stock market (as measured by the 'S&P509, stored under
ESP in the dataset) were to be negative 20% next month.

a. What would you expect to be the excess return on Apgie sihares #ext morita? How about
IBM and HP shares? Base your estimate on the estimaied eta and '[he.theoretical CAPM
equation; that is, discard the estimated constait (zipina), as We-aid In the chapter.

b. How much money would you expect to lose nexi.month if yu had $10,000 invested in
Apple shares at the beginning of the.itianth? For tiie p.-.!rposes of answering this part of
the question only, assume that tkie risk-free rate next month is 0.25%.

In the example from the chapter, we used the variable- MARKET to measure the market excess
return. In this problem, we ask you:to use.an cilternati.ve method of measuring the market excess
return using the variable ESP. I\‘»o, or this exerlise, use ESP. One problem with the CAPM is that
it is not obvious how to measure-the warket return. Market is a combination of bonds and the
S&P 500, and ESPncludes anly the $&P 500. Finally, all the variables in the dataset are excess

market returns (i.e., markat reeirns minus the risk-free interest rate).

2. Slippery soap <ales

Gre_enflb!r), Inc., a.mianufacturer of a popular bathing soap, tried to find the relation between its
product’siprice and its sales. It supplies over 2,000 retail outlets in the United States. It collected
deta from 25 of these stores during one week and ran a regression using these data. For each store
in the sample, it observed the independent variable Price (measured in dollars), and the

dependent variable Sales (measured in thousands of dollars). The results were as follows:
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. regress Sales Price

sales | coef. std. Err. t P>t [95% conf. "Interval]
_____________ +_______________________________________________________ L T ——
Price | -.2929416 .0616406 -4.75 0.000 -.42045495 ~. 165428
_cons | 5.8291984 .4241016 13.74 0.000 4.9518744 6.70&5194

a. If the price of the bathing soap is reduced by $0.50, what is the e;x0ecied.increase in sales
per store? Additionally, provide a 95% confidence interval .far the expectedncrease.

b. The product manager claims that if the price is reducefl by, $0.50, ;"/erﬁge sales will
increase by at least $160 per store. Do the datzal Ilow you te.reject this claim at a level of
significance of 5 percent?

c. The price in all stores next week is going to be $9.99. Predict the total expected sales

including all of the 2,000 stores c'urir:g next week.

3. Shore Realty revisited

Retrieve the shore dataset, Whl;Ch we used in Case Exercise 3 in Chapter 3, and run the regression
again. Provide a 90% confidence Iriterval for the coefficient on the sgfoot variable, and explain
clearly and concisely What this interval means. Predict the selling price for a home with 2,600
square feet, provide the associated 95% confidence and prediction intervals and explain clearly
and concfsely. what2ach means. Suppose that Shore Realty sells a large number of houses of this

size: what,proporticn of them would you expect to sell for over $383,000?

PRAOBLEMS
' Access.the Retailsales data file to answer problems 1-3. This data file reports the percentage

change’in total domestic retail sales and the percentage change in the U.S. GDP over a recent ten-

year period. (from A.C. Nielsen’s Facts, Figures and the Future. Feb. 2003).
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1. Perform a regression of percent_chginRetailSales using percent_chginGDP as the
independent variable.

a. Write the estimated regression equation.

b. Use the regression to estimate how much a one percentage point inciease-in GDP will

affect retail sales.

c. Provide a 95% confidence interval for your estimate in partis:

d. Provide a 90% confidence interval for your estimate in part b.

e. Using a = 0.05, can you reject the null hypothesis that the trae cn:;flﬁcient multiplying

percent_chginGDP is zero?

2. Use the regression from problem 1.
a. Predict the percent _chginRetailSales'in a year where the GDP increases by 3.0%.
b. Provide a 95% prediction irteirval for you:.estimate.
c. Provide a 98% prediction intervai-for your estimate.
d. Using the same prediction, estimate the probability that the percent_chginRetailSales

will be greater than &:5.
3. Overall how would you rate the quality of this regression? Justify your answer.

Accessithe*Salaries file to answer questions 4-6. These data represent the salaries of 41 workers

at A majoi.ciiporation based on the number of years employed with the company.

4. Rerforrvi a regression of Salary vs. Years Experience.

a. Write out the estimated regression equation.
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Use the regression to estimate the effect of one additional year of work experience at the
company on a worker’s salary.

Provide a 95% confidence interval for your estimate in part b.

Provide a 99% confidence interval for your estimate in part b.

Using a = 0.05, can you reject the null hypothesis that the true coefiicient.is zero?

5. Use the regression from problem 4.

a.

b.

Predict the salary of a worker with nine years of experience at the'conipany.

Provide a 95% prediction interval for your estimate. |

Provide a 75% prediction interval for your estimate.

Provide an interval that you are 90% confider:t confair]s tne true mean salary of workers
with nine years of experience.

How confident can we be that vvorl experience is significantly related to salary?

6. What percentage of salary cin be explained using an employee’s work experience with the

company? Does this number sound ieasonable to you?

For problems 7-9, you wiineea-te-access the eurodata file, which contains information from the
Statistical Annex of the EurGpeari Economy, 2003. The dataset consists of 42 years worth of wage
rate growth-ana eneninloyment rates for 10 countries in Europe. Multinational corporations might

be interested in stuclying how unemployment impacts the growth in wages for some or all of these

10 _countiies:

7. Parforri a regression of wage growth vs. unemployment in Belgium (BE). Do the same for

Denmark (DK).

a.

Write both estimated regression equations.
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b. How does a one percentage point increase in unemployment relate to the growth rate of
wages in each country?

c. Provide a 95% confidence interval for the coefficient multiplying unemployraen’ for each
country.

d. Predict the growth rate in wages for each country in a year that has-3% uiremployniant

e. Provide a 90% confidence interval for each prediction from pa;it d.

8. Perform a regression of wage growth vs. unemployment in Germany (L£). Do the same for
Greece (EL). |
a. Write both estimated regression equations.
b. How does a one percentage point increase in .lnemplo_yn".ent relate to the growth rate of
wages in each country?
c. Provide a 95% confidence interval-for tixa coefficient multiplying unemployment for each
country.
d. Predict the growth rate in wages 1er ecch country in a year that has 3% unemployment.

e. Provide a 90% coiifidence 1iaterval‘for'each prediction from part d.

9. Perform a regressian oi*&dye-growth vs. unemployment in Spain (ES). Do the same for France
(FR).
a. /Wriie both estimated regression equations.
b. ' Hcwv does &' on2 percentage point increase in unemployment relate to the growth rate of
viages-in-gach country?
c. Plov.de a 95% confidence interval for the coefficient multiplying unemployment for each
ceuntry.
d. Predict the growth rate in wages for each country in a year that has 3% unemployment.

e. Provide a 90% confidence interval for each prediction from part d.
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CASE INSERT 1

ENERGY COSTS AND REFRIGERATOR FRICING

As a manager in charge of a brand of refrigerators, you are confronted wiih triefollowing
scenario: A representative from your company’s research and development team.sends you a
report announcing a breakthrough in energy-efficient refrigeration teeinology. Specifically, the
team believes that for an additional production cost of $80 per|retsigerator, the/consumer’s annual
energy costs to run the refrigerator will drop by $20. Siiould you Iircorporate this new technology

into your next refrigerator model?

One key issue is how much extra you cot:id cnarge for a more energy-efficient fridge. To get an
estimate of this, you order a study of tiva.velatienship.between the annual energy costs and price
of a refrigerator. The data gathered fsr-this study provide information on 41 popular models of
refrigerators.* Using these date, a 7egressior of price on annual energy costs is performed. The
variables are “Price,” which giwesthe refrigerator price (in §), and “Energy cost,” which gives the

annual energy cost.:0f running trie refrigerator (in $/year).

1 You can access this data in the newfridge file. Source: Consumer Reports, July 2003, Vol. 68, No. 7.
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regress Price energycost

source SS df MS Number of obs = 41
F( 1, 39) = 7.97
Model 1228208. 25 1 1228208.25 Prob > F = 0.0075
Residual 6011613.7 39 154143.941 R-squared = 1 0.1696
Adj R-squared = '0.1484
Total 7239821.95 40 180995.549 ROOT MSE =X 3_92.61
Price coef. std. Err. t [95%-con1-=._ fnttryér]
energycost 17.14957 6.075478 2.82 £.860756 | 29.43838
_cons 300.1567 290.463 1.03 ~287.3601 887.6735

— .\.x-\. oy

u .L"'\. .L"-
- T, H x\'\.
Case Questions .

1.

L N ] |
Given this output, what is an estimate for the change in prize of.a refrigerztor model when its

annual energy costs decrease by $20?

Given this estimate, would you go ahead with thé_ new _technc"lo_o'y?

Does this estimate make sense? Explain.” ™,
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CHAPTER 5

CALIFORNIA STRAWBERRIES;

DUMMY AND SLOPE DUMMY VARIABLES

In this chapter, we will learn about using two kinds of dummy ariables to ;':arture qualitative

features in regression in the California Strawberries arid the-CEO Seex-Cdses.
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5.1 Dummy Variables

DUMMY VARIABLES: REVISITING THE PACKAGING CASE

A “dummy” or “qualitative” variable is one that only takes on the values 0 and1. T he idea of a
dummy variable is it measures not a quantity but a quality. For ax exémpie, go-back-to the
consumer packaging example from Chapter 2. The dataset cor sis'ed of 72 sales figures, 36 from
locations using packaging one and 36 from locations usiry packéging tw0. If'we number these
locations 1 through 72, we can define y; to be sales a1 lozation i (30 y; is a regular, quantitative

variable) and x; to be a dummy variable defined by the-follGwing:

0 if locatian 1'éses packaging on

"7

(1 if location i uses packaging twc

You will see that dummy veariaztes ae one of the most useful techniques available in regression
because they enable us ta measure the effect of qualitative differences. This section introduces
you to dumiity Veriables and how to use them in regression by reproducing the two-sample results
we obtaingd in Cheanter, 2.

INTERPRETING DUMMY VARIABLES IN THE REGRESSION MODEL

Suppose we regress sales on our packaging dummy. What is the meaning of this regression?

Remember the regression model: The assumption is that we may write the following:
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E(y)= Bo +Bx

That is, the average value of y for a given x is a linear function of x. That seemzd to make sense
when x was measuring income and y auto price. What does it mean when x’is a duiamy variaste?
Suppose x = 0; then, the equation says the expected value of y is Bo. Su;-B, Is#he expected value
of y when x =0, i.e., expected sales in districts using packaging @ne. Ifor X'z 1-the €quation says
the expected value of y is Bo+p:11; S0, the expected sales in disiricis using p<qckaging two equals
BotP:. What is the difference in expected sales betweer-aistriZts tging packaging two and districts
using packaging one? It is Bo+p:-Bo = B1. When we 1un'the regressicn and estimate 3;, what we
are estimating is the difference in expected sales between. the two types of packaging, which is
what we wanted to estimate in the first place in Chapter 2 because it tells us which packaging we

should choose.

THE REGRESSION

Go ahead and run tiis regression using the allpack file. Our data should consist of two columns.
The first (called allpack)is a lict of sales figures, one for each district, and the second (called

dummy21Xs O for ti= first 36 entries since the first 36 sales figures come from districts that used
packagling one (P1); anl 1 for the next 36 since the next 36 sales figures come from districts that

used-packaging two (F2).!

! This-dataset was generated from the original package file from Chapter 2. To create the allpack variable,
we opened a blank datasheet in Stata and pasted the sales figures for Pack1 and Pack?2 into one column
(i.e., the first 36 entries were from Packl, and the next 36 were from Pack2). To create the dummy1
variable, we typed the following commands: 1) generate dummy1=0 in 1/36, and 2) replace dummy1=1
in 37/72.
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. regress allpack dummyl

source SS df MS Number of obs = 72

EC. A5 70) = 5.45

Mode] 13908. 3405 1 13908. 3405 Prob > F = 0.0225
Residual 178761.353 70 2553.73362 R-squared = 0.0722
Adj R-squared'= '0.0589

Total 192669. 694 71 2713.65766 ROOT MSE = 150.534
allpack coef. std. Err. t P>|tl [95% Cor)f. Intervai]
dummyl -27.79722 11.91109 -2.33 0.022 -51.55514 | -4.041301

_cons 290. 5439 8.422413 34.50 0.000 27.3.7459 307.3419

Figure 5.1: Allpack regression.

If you look back at the consumer packaging section, you will sze that we es'tirr-:ated the difference
in average sales with P1 versus P2 to be 27.79 in favos of.P1,_ Heresin fhe.regression output we
have b, = -27.80 which says that we estimate that when ¥ goes from 0 to 1, i.e., when we change
from P1 to P2, sales go down on average by 27.80. So, tfie re_g-ression has given us the same
estimate we had before (the 0.01 difference is-due to rounding when we estimated the difference

in average sales).

One convenient thing about using the regressicn is Stata has automatically tested this coefficient
for significance: The t-staiistic is -2:23. qiving a p-value of .022. Recall that this is the p-value for

the following hypcthesis test:

Ho: B1:0

| HaiB1#0

$o, the-n-value of .022 tells us we are quite confident (over 97% confident) that 3, # 0. What
“does th_if, mean in the context of our example? Since we worked out that 8; = -y, it means that

we are-guite confident that there is a difference in true average sales between the two types of
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packaging. Is this what we wanted to know? Not exactly. We wanted to see if the data provided

strong evidence that average sales with P1 were above those with P2 using the hypothesis test:

Ho: pu-p, < 0

Ha: Mo >0

Since By = W, - Wy, this may be rewritten as

Ho: BlZO

Ha B1 <G

Using the regression output, we calculate the p-value for-this test 10 be p = 1-ttail(70,-2.33) =
.01135. Thus this data provides very streiig evidence that average sales with P1 are higher,

supporting a decision to go with packaging 1 rather tiran continue the marketing experiment.

When we used Stata to conduct the same hypothesis test using the two-sample t-test in Chapter

2.4, it reported a p-value G£,,01%3 &rd we rcached the same conclusion.

A NOTE ON OUR ASSUMPTIONS

Even tnough the p-valugs in the example are similar for the test based on the regression as for the
two-saimpie t-test in. Chapter 2.4, the two methods of comparing two population means rely on
different-assiimptions. As you know, regression assumes the y values have the same variances for
Gifferent x »7alues, which, in this example, is equivalent to assuming the y values have the same
variance for each of the two populations. The two sample t-test used in Chapter 2.4 did not use

this assumption. Formally, using regression with a single dummy variable yields the same results



as using a two-sample t-test assuming equal variances, and these results may differ from those

obtained by using a two-sample t-test without assuming equal variances.

SUMMARY

Dummy variables capture qualitative differences rather than quantitative 0rias. ‘When we have
data from two populations, we can define a dummy variable to reziesentihich population each
data point comes from, run a regression to estimate differences in/the two poptlation means, and
test the difference for statistical significance, etc. This is an-2lteinative-technigue to the two-

sample methods we learned earlier and provides a first epplicaticsi ¢f dummy variables.

5.2 California Strawberries

Susan Lee is the chief manage,” of Califorriia Strawberries, Inc. Her firm transports strawberries
from local farmers to a ckiair, of*arocery-siores. The strawberries are packed into the retail boxes
in two locations, using.two differerit. packaging systems. One is used at the plant in Bakersfield
and the other in Monterey."Gusan wants to compare the efficiency of the two systems and decide
if one of the svstems should 2.abandoned. The personnel and equipment needed for the two
systemsg ar# basically ifentical. However, the time taken to pack a box of strawberries in
Bakersiiela-and Manterey differs. Susan wants to adopt the quickest system. She asked her
assistant te.observe the time (measured in minutes) taken to pack different amounts of

stiawberries {measured in number of boxes) at Bakersfield and Monterey. The data he obtained is

in tiie california file and is shown in Figure 5.2:
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Monterey Bakersfield

Row Time Boxes Time Boxes

1 102 175 95 140 '|

2 69 110 104 153

3 133 225 48 | ¢
.! N

4 37 57 108 161 =]

5 28 47 89 128

6 124 217 85 125

7 71 120 o) 133

8 36 60 81 122

9 41 “‘_ 55 68 95

|
10 164 180 98 143
11 |_126 ~ 210 109 161
|

12 | &3 106 54 80

13 | 34 50 85 128

|+ 38 60 137 205

[ 15% 88 150 85 125

Figure 5.2: California Strawberries, Inc. data.

201



We can use a regression analysis to study the relationship between the two variables. Time is the
dependent variable and Boxes is the independent variable. In this first regression (see Figure 5.3),

we use only the data obtained at the Monterey plant.

. regress Time Boxes in 1/15

source SS df MS Nutiber’ of | obs = 15
Fis 1, 13) = 5225.42
Model 19568. 2507 1 19568.2507 Prob-> F = 0.0000
Residual 48.6826593 13 3.74481995 —~R=sauared = 0.9975
Adj R=squarec¢ = 0.9973
Total 19616.9333 14 1401.20952 ROO%E, MSE = 1.9352

L -I
Time Coef. std. Err. t P>yt | [25% /conf. Interval]
Boxes . 5677365 - 0078539 72.__2§ _(.000 5507692 - 5847039
_cons 3.593778 1.081558 3:32 0. 00 1.257215 5.930342

o

Figure 5.3: Simple regression for tisa Moriteicy system.

Now, consider a similar regression for the Bakersfield system (see Figure 5.4). In this regression,

we use only the data obtained at the Bake.‘sfjled bl'ant

.'\-

. regress Time Boxds in 15/30
source S5" df MS Number of obs = 15
— : EC 1, 13) = 3574.47
Model “HB842. 040949 1 6842.04949 Prob > F = 0.0000
Residual 24. 8838389 13 1.91414145 R-squared = 0.9964
- Adj R-squared = 0.9961
Total 6866.9333? 14 490.495238 ROOT MSE = 1.3835
Time Coef. std. Err. t P>|tl [95% conf. Interval]
BoXxes .13585395 .0110148 59.79 0. 000 .6347435 . 6823355
—cens 2.622385 1.489348 1.76 0.102 —-. 595156 5.839927

Figure 5.4: Simple regression for the Bakersfield system.

<’As shown.in Figure 5.3, we need to add the command in 1/15 to specify that we want to run the
regresziori of Time on Boxes using only observations from the Monterey plant (observations 1 to 15).
Similarly, we need to add the command in 16/30 when running a similar regression for the Bakersfield
plant (observations 16 to 30) as shown in Figure 5.4. If using the regress menu option or dialog box, these
restrictions on the observations to use can be entered by selecting the by/if/in tab in the dialog box,
checking the box next to “Obs. in range,” and specifying the appropriate range.
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What is the interpretation of these two regressions? The constant term indicates the time needed
to start the system (literally, the time to pack 0 boxes). The coefficient on Boxes indigates the
time it takes to pack each additional box. The regression analysis suggests it takes aiciiger.time
to set up the Monterey system (3.59 min) than the Bakersfield system (2.62-inin):-However;-once
the system is ready, the Monterey system (0.57 min per box) is faster than the Bakersfield system

(0.66 min per box).

Susan believes the time to set up both systems should be similar, anc-she.giecides to maintain this

hypothesis unless she discovers strong evidence agaist at.

Before she examines the regressions, Susan-does not have any reason to believe that the time to
pack each additional box in Monterey is smallei-than in Bakersfield, nor does she have any
reason to believe that the time per agaitional box'in Baxersfield is smaller than in Monterey. By

looking at the regressions, she reeis tempted t¢, abandon the Bakersfield system. However, she

decides not to do so unless-significant statistical evidence shows the Bakersfield system is slower.

Susan has good reastas tG-he cautieus. Suppose the Bakersfield system is actually faster than the
system in Monterey. In this¢ase; if Susan switches to the Monterey system on the basis of the
sample Jatz; Caiifornia Strawberries, Inc. will incur the costs of forcing the workers to adapt
themselves:to a new (and slower) system. Moreover, she will not be led to correct her mistake in
the-future hecause;once the Bakersfield system is abandoned, no more data will be available

1wom it.

If the current sample evidence is not strong enough to prove that one system is faster than the

other, it may be wise to obtain more data before making a decision. On the other hand, if the
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statistical evidence strongly convinces her it takes less time to pack an additional box in the
Monterey system than to pack it in the Bakersfield system but there is no strong statistical
evidence that shows the time to set up the Bakersfield system is shorter than the time'to get up the
Monterey system, then Susan can safely decide to abandon the Bakersfield system. s cin

Susan perform these statistical tests?

A simple and effective solution to this problem is to use dummy ardsicge aemmy.variables. A
slope dummy variable is a variable that takes the value zero in some rowg anil the value of
another independent (i.e., X) variable elsewhere. |

Such a slope dummy variable may be constructed by/muitiplying.a-dummy variable times another

X variable.

In simple regressions, we fit the data to-a singlectraight line. However, in this case, the data come
from two different sources and may-=ct-be well niadeled by a single straight line, but may fit two

different straight lines. A simpie i'lustraticn ofthis possibility is given in Figure 5.5.
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Figure 5.5: Example of data well-modeled by two straight lines.

If the Bakersfield and Monterey systems are different, then the data may fit naturally;in two
straight lines. One line is associated with the Monterey system, and another line is-assgciased with
the Bakersfield system. A dummy variable allows for differences in the intercegts of thesetwo
lines. A slope dummy variable allows for differences in the slopes of thzse iwo lines. Next we

apply these important dummy variable techniques to Susan’s problem.

Consider the dummy and slope dummy variables Plant and Bo:pldat. Plant quaIs 1 if the data
come from the Bakersfield plant and 0 if the data corrie frarii the Moriteiey plant. Boxplant is
equal to the variable Boxes if the data come from the Baiersfield plent and 0 if the data come

from the Monterey plant (i.e., Boxplant = Plzrie*Boxes).

If we put all the data together, we obtain Figure z.6.

Row [ Time | Boxes Plant Boxplant
1 i 102 | 175 0 0
2 ]: 59 - 110 0 0
.3 . ! 133 225 0 0
| g 37 57 0 0
5 | |28 47 0 0
) ! ) 124 217 0 0
7 71 120 0 0
8 36 60 0 0
9 41 65 0 0
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0 104 180 0 0
11 126 210 0 0
12 63 106 0 0
13 34 50 0 0
14 38 60 0 0
15 88 150 0 ‘ET_
16 95 140 1 RN
17 104 153 1 153
18 48 70 7 | W
19 108 161 "{ 1 161
20 89 128 M 128
21 85 125 1 125
22 90 123 1 133
23 81 ‘ngz 1 122
24 68 25 1 95
25 '}75? | 143 1 143
26 { 162 161 1 161
27 =4 80 1 80
28 85" 128 1 128
29 137 205 1 205
‘30 85 125 1 125
i

Figure 5.6: Complete dataset for California Strawberries, Inc.
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Consider a new regression (see Figure 5.7) making use of all the data. Time is the dependent
variable. The independent variables are Boxes and the dummy and slope dummy variables (Plant

and Boxplant).

MULTIPLE REGRESSION ANALYSIS INCLUDING A DUMMIY AXMD A SLOPE

DUMMY VARIABLE

Examine the results in Figure 5.7. The constant term indicates|the| time ne.éujed':to set up the
Monterey system. The coefficient on Boxes indicates the-additicnal packing time for each
additional box under the Monterey system. The cons_uén*. pius the coafﬁc‘ient on Plant indicates
the time needed to set up the Bakersfield system. The ‘soefticient bh IBoxes plus the coefficient on
Boxplant indicates the additional time to pzck ¢ach additional box under the Bakersfield system.

(This is not obvious. A good exercise 0 uritarstaind dummy and slope dummy variables is to

think about the interpretation of these cbtf.fi_cienté.’, _

. regress Time Boxss ¥lare, Boxpiant:

source sS .. df MS Number of obs = 30

- - F( 3, 26) = 3341.30

Mode ~283€2_4335 3 9454.1445 Prob > F = 0.0000
Residual 72, 5654982 26  2.8294807 R-squared = 0.9974
- Adj R-squared = 0.9971

Total 28436 29 980.551724 ROOt MSE = 1.6821
Time l coef. std. Err. t P>lt] [95% conf. Interval]
EnXxes . 2677365 . 0068269 83.16 0. 000 . 5537036 . 5817694
PTant -.9713931 2.040275 -0.48 0.638 -5.165238 3.222452
—=20xplant | . 0908029 .0150316 6.04 0. 000 . 059905 .1217009
% COAs 3.593778 .9401294 3.82 0.001L 1.661315 5.526242

Figure 5.7: Multiple regression for California Strawberries, Inc.

For the Monterey system, the regression equation simplifies to the following:
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Time =3.593 + 0.568 Boxes-0.971 Plant+0.091 Boxplant
=3.593 + 0.568 Boxes-0.971 (0)+0.091 (0)

=3.593 + 0.568 Boxes

For the Bakersfield system, the regression equation simplifies to the fc!lowing;

Time =3.593 + 0.568 Boxes-0.971 Plant}0.)91 Boxptant
=3.593 + 0.568 Boxes-0.271{%)+0.091(5oxes)

=2.622 + 0.659 Boxes

These are exactly the same equations as wg okiained before using two simple regressions. What is
the difference? Our regression equatici usirig.durizmy and slope dummy variables allows Susan
to perform the desired statistical t&sts, which she coeld not easily do using two separate

regressions.

The key coefficientsare-the-confficients on the dummy and slope dummy variables. The
coefficient on Plant measurez, difference in the time needed to set up (i.e., the constant term for)
the Bakersficta-and Monterey zystems. The coefficient on Boxplant measures the difference in
the time nzeded tG-pacic each additional box (i.e., the slope term) in the Bakersfield and Monterey

systems.

Thie.coefficient on Plant (-0.971) is not significant. The reported p-value is 0.638. Thus, we
canriet conclude that the time to set up the Bakersfield system is different than to set up the

Monterey system. On the other hand, the coefficient on Boxplant (0.0908) is significant. The
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reported p-value is 0.000. The p-value for the one-tailed test with alternative hypothesis that the
true coefficient on Boxplant is greater than 0 is therefore 0.000 as well. So, we can conclude that
the time to pack each additional box under the Bakersfield system is significantly lorigerithan the

time to pack each additional box under the Monterey system.

Our conclusions are as follows:
1. The time to pack each additional box under the Monterey syster-is signiticantly shorter
than the time to pack each additional box under the Bakeysfield systeri.
2. The time to set up the Monterey system is not sianificantly uiffercnlt than the time to set
up the Bakersfield system.

3. Susan decides to abandon the Bakersfield system:

5.3 Head-Hunting Agency

Having finally completed-yaur MB#:..vorvnave landed work at a prestigious consulting firm.
Your first project is with CE@.Seet, a head-hunting agency. CEO Seek looks for CEOs as well as

lower-level managers:

To stayyahead orzompetition, CEO Seek recently came up with a “Within 15 days. Guaranteed!”
marketing $cheme. 7'he agency wants to guarantee finding a well-suited candidate within 15 days,
or t?h_e service-ic-free of charge. You are asked to evaluate the scheme and propose possible
lipproverrents. Naturally, you have inquired where the number 15 came from. However, the

ansaer ycu got was, “It’s a nice round number and will catch the eye.”” This did not satisfy you.

You decide to investigate further.
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You suspect it is harder to find a CEO to manage a bigger company than one to head a small firm.
It is, after all, a more responsible job, involving more skills and experience. So, fewer candidates

may be suitable for it.

However, the staff at CEO Seek does not agree with your hypothesis. They.iiad tire same iaea in
the past, and they intensified all searches on behalf of larger clients. This niethed brought no
improvement. Thus, they concluded, no relation exists between the-size-2f trie firriz.to manage and

the time needed to find a candidate.

But is it true? You decide to check this hypothesis using-regressiesi-analysis. From the past
performance of the agency, you take a random sample, of 48 o_bsprvaiions from each of the two
categories of searches that CEO Seek condiicts: CEO searches and lower-level searches. Each
observation includes the size of the firri to-he nienaged and the time it took to produce a well-

suited candidate.

The dataset is in the headiinting tile. In the variable SIZE, the size of the client firm is
measured in hundreds of emgloyees. DAY'S denotes the number of days it took CEO Seek to find
a suitable candidate."The WiFst4G-csservations are from lower-level searches and the remaining 48

observations are from CEOQ s2arches.

You weuld+ike to 1:se the data to answer the following questions:
-1 Isthesize of the firm related to the number of days needed to find a suitable candidate? If
it'is, describe the relationship.
2. What would you recommend concerning the 15-day guarantee?

3. Isitefficient to treat searches for large firms the same as for small ones? If not, do you

have any recommendations for improving the system?
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Start with a simple regression. DAYS is the dependent variable, and SIZE is the independent

variable (see Figure 5.8).

. regress DAYS SIZE

source ss df MS Nuriber of |obs = 926
Fé&, 1% 9%) = 0.09
Model 2.40630981 1 2.40630981 Prob~> F = 0.7695
Residual 2618. 55202 94 27.8569364 ~R=sauared = 0.0009
Adj Rusquarel = -0.0097
Total 2620.95833 95 27.5890351 ROOET, MSE © = 5.278

xl \
DAYS Coef. std. Err. t P>t [95% conf. Interval]
SIZE . 0059746 .0203283 0._':9 _0.769 —.0343877 . 046337
_cons 12.81924  1.109055 11/5¢° 0.00C 10.61719 15.02129

Figure 5.8: Simple regression 0E:DAY S-Gii SIZ:=.

The estimated slope coefficient is 0.0Co witi.a b—;'alue of 0.769. At first glance, there does not

appear to be any relationship between the :iie of ii.e.g‘fient firm and the number of days CEO

Seek took to find a well-suited ca 1didate..'This explains why focusing search effort more on

searches for larger clients did notjm'pi‘e‘v'e' the'system.

-,

Nevertheless, the plotaf D2.YS and SIZE (see Figure 5.9) indicates the size of the firm and the

search time are related. Hov'v'ex'r.r, there appear to be two relationships; a positive one for CEO

searches arid a negativa one for lower-level management searches.
|
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Figure £:9: Scatterploeof DAYS vs. SIZE.

We could proceed in two ways. Gne is to iun sgparate simple regressions for CEO and lower
managerial positions. The'ctherds to+un a‘muitiple regression with a dummy and a slope dummy
variable. We choose the lattei-here- hecause it is more convenient and facilitates comparisons. It

would have been fing+o dc-thisariatysis with separate regressions.

First, we create o new variables. We will call the first one LOWconst . It is equal to 1 if the
|

positioi is iawer-level management and 0 if a CEO is demanded. The second new variable we

call.l OWzlope.+tis a slope dummy variable and is the product of LOWconst and SIZE. It is

.. €gual to SIZK: if the position is lower-level managerial, and it is equal to zero if the position is

CEQ, Figure 5.10 shows the output from a regression of DAYS on SIZE, LOWCconst and

LOWslope.
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. regress DAYS SIZE LOwconst LOwslope

source SS df MS Number of obs = 26
F(C 3, 92) = 275.57

Model 2358.49289 3 786.164297 Prob > F =, 0.0000
Residual 262.465443 92 2.85288525 R-squared = 0.8999
Adj R-squared = 0.8966

Total 2620.95833 95 27.5890351 RoOt MSE % 1.689
DAYS coef. std. Err. t P>lt] [95%Tenf. Intenvar]
SIZE .0887339 . 0099333 8.93 0.000 - 0£90055 | .1084622
LOowconst -1.022163 .7195078 -1.42 0.159 ~—2. 4517168 .4068411
LOowsTope -.1650824 .0131664 -12.54 0.000 =, 19312319 -.1389329
_cons 13.17457 . 5483776 24.02 0. 000 ! 14.2637

12. 08545

",

Figure 5.10: Regression of DAY'S using dummy and s'ope/dummy \./'a'iabl-les.
| |

The estimated coefficient on SIZE, 0.0887, is the effect on DAYS-of increasing the size of the
client firm by 100 employees when looking for a CEQ. Testing k.: [+, > 0, we see we are

convinced the time to find a suitable CEO candidate increasesas the client firm’s size grows.

For a lower-level managerial position;-the estimaied etfect on DAYS of increasing the size of a
= x\ -

client firm by 100 employees is given by the sum of the coefficients on SIZE and LOWSslope or

0.089+ -0.165 = -0.076. .

The basic descriptiQ/e-stati;i.gus for SIZE (for CEO and lower-level management searches) can be

seenin Figurg 5.11.

|
User>Core'Statistics>Univariate Statistics>Custom (tabstat) (or db tabstat)

‘. tabst:l.g SIZE, scatistics( mean sd semean max range min median ) columns(variables)
[ staks SIZE
‘ " mean || 47.68948
_ sd ' 26.63812
sefmean) 2.718742
maix 99.61
range 99.09
min .52
p50 48.85
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Figure 5.11: Univariate Statistics for SIZE.

The descriptive statistics tell us client firms have between 0.52 and 99.61 hundred emiployees.
The mean is 47.69 and the median is 48.85. Thus, we can consider a firm where S1ZE ¢quals 90
as a large firm and where SIZE = 110 as an exceptionally large firm. A cliept-firm with 2,800

employees is relatively small, while 5,000 is typical.

We will use our new regression with the dummy and slope duraimy variakle to maie predictions
about the time needed to find suitable candidates of both categaries-for different sized clients. The
95% confidence and prediction intervals for time to find zwell-suited - CEO candidate for firms

with SIZE = 20, 50, 90, and 110 respectively can be obtained using Stata (see Figure 5.12):

User>Core Statistics>Univariate Statistice>Prediction, using most recent regression (confint) (or db

confint)
DAYS SIZE LOwconst LOWslope predicted se_est_meT se_ind_pred CIlow CIhigh PITow PIhigh
96 23 94.01 0 o 21.%31644 1 .5053223 1.763019 20.51283 22.52006 18.01493 25.01795
97 .
S8 . 20 0 l ] 14.9492¢ .3808078 1.731444 14.19293 15.70557 11.51045 18.38805
29 . 50 2 U 17.61127 .2438543 1.706561 17.12695 18.09558 14.22189 21.00064
100 . 20 0 o ZITIo062 . 4708245 1.753443 20.22552 22.09572 17.67813 24.64311
101 . 110 a = 22.935% .648988 1.809439 21.64635 24.22425 19.3416 26.529

Figuie®5.12: Predictions for CEO position search times.

For CEOQ pesiirgns, the lower &d upper levels of the confidence and prediction intervals increase

as the gize of the fizm increases.

® Before using the confint dialog box, you need to enter the values for prediction of 20, 50, 90, and 110 in
the SIZE column as well as 0°s in the LOWconst and LOWslope columns (since we are interested in CEO
positions) in some blank rows (we chose rows 98 through 101).

214



For firms of all sizes, the upper limits of confidence and prediction intervals are greater than
fifteen. Thus, it appears it would be quite costly to attach a 15-day guarantee to CEO-level

searches. You would not recommend applying the new guarantee for these searches.

The 95% confidence and prediction intervals for lower-level management s¢arcries for firmis.wiih

SIZE = 20, 50, 90, and 110, respectively, are also easily obtained (see Figuze 5.43),"

User>Core Statistics>Univariate Statistics>Prediction, using mojt r:zcent regresgion (confint) (or db

confint)
DAYS SIZE LOwWconst LowsTlope predicted se_est_mean  se_ind_r red wIlow ZIhigh PIlow PIhigh
96 23 94.01 o o 21.51644 .5053225 1.763019 20.51283 22.52006 18.014393 25.01795
97 .
98 . 20 1 20 10.62544 . 3311247 1.7212 9.9(7797 11.28308 7.206988 14.04389
99 . 50 1 50 8.3324984 .246319% 15706915 7.645773 8.824155 4.944303 11.72506
100 . 90 5 90 5.281042 .4522069 1.7485326 %.38292 6.179164 1.8083 8.753784
101 . 110 1 110 3.754071 . 6049955 =942 2.552498 4.955645 .1907728 7.317369

Figure 5.13: Predictions for iower-level management search times.

For the case of lower-level management, the.upper aiid lower levels of the prediction and
confidence intervals for time t find a well-5uifed candidate decrease as the size of the firm

increases.

For all sizes of the clientfirni;the confidence and prediction intervals are below 14.05. Thus, the
15-day guaiantee-could be offered at little cost for lower-level managerial positions. Therefore, it
would pe jdvisableto ¢pply the new policy only for lower-level managerial searches but not for

CED . searches:

= 0ur-eonciusions can be summarized as follows:

* To generate the predicted values for lower-level management, change the values for prediction in the
LOWCconst and LOWslope columns to those shown in rows 98 through 101 of Figure 5.13. Then, use the
confint dialog box again.
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1. The size of the firm and the search time are related but the relationship depends on the
category of employee desired. When a CEO is needed, it takes more time to inc,a
suitable candidate for large firms than for small firms. On the other hand, itiar2s i2ss

time to find a suitable lower-level candidate for large firms than forSmaii-firms.

2. The 15-day guarantee policy is quite feasible for the case eFiower-evel pasitions. This
policy would work poorly for the CEO searches. A lorige; time hérizon for the guarantee

should be considered for candidates in this category.

3. We might improve the current system (in terras of red_uang the lengthiest searches) by
allocating more effort to finding CEO candidates for Targe firms. Alternatively, CEO
Seek might want to solicit more bu:siness.from small firms looking for CEOs and large
firms looking for lower-levei-+ranagemerit.since it seems to handle these searches more
efficiently. Since it takes more tirne to,find a CEO candidate than a candidate for a lower
managerial positisi, a policy.recagnizing the increased difficulty of finding CEOs would

be sensible.

SUMMARY

Bumriis.ad slope dummy variables can be used to test statistical differences between the

constant-anaislope coefficients (respectively) of two regressions.
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When we have to decide between adopting different systems, these statistical tests are useful. It
may not be easy to tell which system is best and these statistical tests help quantify the strength of

our evidence for this question.

A single simple regression may be unsuccessful when the relationship betw:gen trie indepeniant
and dependent variables is changed by a third factor. You need dummy‘ané.slose dummy

variables to deal with this.

Situations in which slope dummy variables can prove useful can often be.detected through
graphical analysis. The regression output on its own <an-oe inadeguate or misleading as in the

simple regression in the head-hunting agency case.

NEW TERMS

Dummy variable An-artificialiy-censtricted variable which takes on the values of zero and
one only. Used to quantify nor-nuriarical qualities or categories. When included in a regression,
effectively allows the eonsient to chidnge depending on the value of the dummy variable

Slope dummy.variable A vaiizble that takes the value zero in some rows and the value of an
indeperideyit variable e!sewhere. The product of a dummy variable and another variable. When
includesd in"a.regression, effectively allows the slope on the independent variable used in its

censtrycticn twcnange depending on the value of the dummy variable used in its construction
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CASE EXERCISES

1. Valuing an MBA for yourself

The purpose of this example is to compare the “value-added” of two diiferent busiress schools by
looking at the incomes of the student body prior to beginning the MBA-program, and comparing
it to the incomes after completing the program. The data consist ¢r infornmiation on 400 students,

half from school A and the other half from school B.

‘preMBA’ = income in year before beginning the prc.).]ran:, in_thc'us;fnds of dollars
‘postMBA’ = income in year after completirig rhe program, irmthousands of dollars
‘school’ = a dummy variable equal to Q-tor.studants attending school A, and 1 for students
attending school B

The following regression sutput was.obtaixed:

regress postMBA i eM2A-_sChool
Number of obs = 400
R-squared = 0.8310
Adj R-sgUared-= 0.8300
RoOt MSE =+ 11.26
T e DT et
postMBA | Coef std. Err t P>t
N EreMBA | 1.83628 .0417 43.96 0.000
scinoTl | L. 732 1.136 1.52 0.128
: . cons | 24.659 1.868 13.20 0.000
v PRETSSS i s s

a. Explain clearly, and as concisely as possible, the interpretation of the coefficient on the school

variable.
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Suppose we define a new variable as follows:
‘schoolpreMBA’ = ‘school’ multiplied by ‘preMBA”. —k

b |
We redo the regression with this extra variable added as another predicior eénd cotain the

following regression output: -

regress postMBA preMBA school schoolpreMBA %
Number of obs = 400
R-squared = 0.8340 f
Adj R-squared = 0.8330 .Y L
RoOOT MSE = 11.17 ., |
poOsStMBA | Coef. std. Err t P>t
-------------- +--------------- e ————————————————————
premMeA | 1.70426 . 06206 7.03 0.000
school | -7.314 2. 447, -2.12 0.034
schoolpremMBA | .23227 . 08264 ™~ 2.78 0.006
_cons | 30— 2.6%,_ »11.23 0.000

Answer the remaining géastitns, “easing yoit: answers on this second regression:

-,

b. Suppose your incomé+his “year is $15,000 and you are choosing between the two schools’
programs,./Assurrie-the two schools have the same fees, similar locations, etc. Which one should
you chpose? What'if yeur current income is $65,000?

Ve ask-Staia to bredict the post-MBA income of someone entering school A with a pre-MBA
“.incume of $40,000 and to give 90% confidence and prediction intervals for post-MBA income.

This gives the following additional output:
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predicted se_est_ mean | Cllow Clhigh Pllow Plhigh

98.171 0.79 96.868 99.474 79.71 116.632

c. What is the predicted post-MBA income of graduates of school A having pre-MBAiccme of
$40,000? If 60 students entering school A this year have pre-MBA incomes of $42.000, abGut

how many of those students do you estimate will make less than $80,070 tiie year they leave?

d. Explain briefly the meaning of the R-squared statistic in this cqntext (i.€,, do not simply say

what it means in the abstract, but say what it means for this regrassiGr-ang application).

e. In a few, non-technical words, summarize what the'diffezence seems to be between the two

schools.

2. Valuing an MBA for your esipiGyer

A well-known consulting company is intereste:l in comparing the performance of the consultants
it recruits from MBA pregrems “with that-5f consultants it recruits from non-traditional
backgrounds (such as-2h.D. piagrams). The accounting department has developed a method of
allocating all billing te-indiwiduals, so it is possible to say how much revenue any given
consultant has nroduced in tfie.Jast year. You collect data on 130 consultants. For each person,
you get'three piecas ofinformation, stored as follows:

experience.= tie iength of time they have been with the company (measured in months)

biiting = the revenue they brought in in the last year (in thousands of dollars)

MB:A = 1if they came from an MBA program; O for those from non-MBA programs
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You define a slope dummy variable as follows:
experienceMBA = experience multiplied by MBA

Then, you run the following regression:

regress billing experience MBA experienceMBA ‘ =l

Number of obs = 130
R-squared = 0.8630 ‘

Adj R-squared = 0.8590
ROOT MSE = 62 ‘
billing | Coef std. Err t P>'tlf
_______________ +_________________________________ P Y
experience | 9.0681 .4516 20.08 0.Ga0
MBA | 68.43 22.73 3.01 0.003
experienceMBA | -1.4317 . 6167 -2.32 0.022
_cons | 44.13 15.43 2.89 ﬁ.ﬂiij

Answer the following questions.

(a) What do you predict to be the averag: billing of consultants with two years of experience
if they came in with an MBAY? \What 7 they-came in with a PhD?

(b) Does the extra value to the c.crr;oanyk.of an MBA as compared to a non-MBA change over
the time the MBA is with'the comﬁ iny? Test at the 1% level of significance.

(c) The sample consists Gf.consultants who have been at the company for up to five years.
Suppose ysu are asked o L-JSE wour results to predict what the difference in billing
(between MBAS and non-M BAs) will be after 10 years. What does the estimated
regressiofr-aquation predict?

(d).' Usse your judgraent: What do you think of this last prediction and why?

.. FROBLEMS

For preulems 1-4, you will need to access the pizzasales file.
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The Waialua Pizza Company is a medium-sized chain of pizzerias located at beaches all over the
South Pacific. The chain is known for its delicious pizzas served at all the nice beaches, and it is

known for its use of statistical techniques to improve operations.

The company has obtained data reflecting its sales in its 50 beachfront stores. Thie.Waialua™Rizza
Company feels the income levels of the nearby community and the presenc2 or absznce of

competition might be major factors in determining sales.

The following variables were tallied:

Sales = $ per day
Income = Average per-capita income in $ pr week in the surrounding neighborhood
Competitor = 1 when one or more ceinpatingpizzerias are located within %2 mile; 0 when no

other pizzerias are !scatad nearby

1. Conduct a regression ofSalez vs."Comnratitor (only use this one independent variable for now)

and use the results to answer-the tellowing questions:

a. Estimate the daily sa'es ior a store that has no competition.

b. /Estimate-the caily sales for a store that faces competition.

c. ' Calculate the difference between your two estimates and comment on the practical and
siatistical-significance of this gap.

d. Plov.de a 95% confidence interval for the effect of competition on sales.

D

Wnat percentage of the variance in sales can be explained using only the Competitor

variable?
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2. Conduct a regression of Sales vs. Income (only use this one independent variable for now) and

use the results to answer the following questions:

a. Estimate the daily sales for a store whose neighborhood income is $205 per-vicek!
b. Estimate the daily sales for a store whose neighborhood income is.%$300 per week.
c. Estimate the impact of a $100 increase in neighborhood incorie per week 9n sales.
d. Provide a 95% confidence interval for your estimate in parc:

e. What percentage of the variance in sales can be expla:ned using ¢aly the Income

variable?

3. Create a scatterplot of Sales vs. Income and plot tha regzessior: lire as well. Does the picture

reveal any likely opportunities to improve your’model?

4. Construct a new variable, Comp!ne;£y. multipiying the Competitor and Income variables
together. Run a regressior: to predict sales using all three variables: Competitor, Income,
and Complnc.

a. Is the Competitor vaiiable-in this model statistically significant?

b. Estimate the*daily-saiester-2/store without competition whose neighborhood income is
$300 per week.

c. /Estimate-the ¢aily sales for a store with a competitor whose neighborhood income is $300
per.week.

d. Carvigare-your answers to part b and part ¢. Reconcile the results of this comparison with

your|answer to part a.
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5. Access the eurodata2a dataset, which is a restructured version of the file eurodata used in
problems 79 in Chapter 4. This file contains information about unemployment and wage growth

in Belgium and Denmark. The dummy variable Belgium is set to 1 in Belgium and 0'in Denmark.

Perform a regression of Wage Growth vs. Unemployment, Belgium, and REUnerisnloyment:2

a. Write out the full estimated regression equation.

b. Write out the estimated regression equation for Belgium.

c. Write out the estimated regression equation for Denmark

d. Compare the equations from part b and ¢ to your answeis from-Pioblem 7, Chapter 4.

e. How does a one percentage point increase in'unémploymerit relate to the growth rate of
wages in Belgium?

f.  How does a one percentage point iricredse in unemployment relate to the growth rate of
wages in Denmark?

g. Estimate the difference in.iiow ur‘.employr.‘.qm relates to wage growth between the two
countries.

h. Provide a 95% cenfiderice iritervai for the difference in how unemployment relates to
wage growth hetweerthe &0 countries.

i. Predict the grawtti-rate inmwages for each country in a year that has 3% unemployment.

j. Provide a 90% confidance interval for each prediction from part i.

6. Access tire eurocata2b dataset, which is a restructured version of the file eurodata used in

praslams 7—Yiii-Chapter 4. This file contains information about unemployment and wage growth

in“Germany and Greece. The dummy variable Germany is set to 1 in Germany and 0 in Greece.

® BEUnemployment = Belgium*Unemployment
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Perform a regression of Wage Growth vs. Unemployment, Germany, and DEUnemployment.®

a. Write out the full estimated regression equation.

b. Write out the estimated regression equation for Germany.

c. Write out the estimated regression equation for Greece.

d. Compare the equations from part b and ¢ to your answers from Prao%iem €, Chapter-4,

e. How does a one percentage point increase in unemployment reiateo tha growth rate of
wages in Germany?

f. How does a one percentage point increase in unemploymgnt relate.to the growth rate of
wages in Greece? |

g. Estimate the difference in how unemploymerit relates to wiage growth between the two
countries.

h. Provide a 95% confidence interval for the difference in how unemployment relates to
wage growth between the two countries:

i. Predict the growth rate in wages-for eacheguniry in a year that has 3% unemployment.

j. Provide a 90% confidence intervat.foreach prediction from part i.

7. Access the eurodata2c daiaset;=wvhich is a restructured version of the file eurodata used in
problems 7-9 in Chagter «_ITiis fiie-contains information about unemployment and wage growth

in Spain and France. The duramy variable Spain is set to 1 in Spain and 0 in France.

Perforr a regression or Wage Growth vs. Unemployment, Spain, and ESUnemployment.’
2. Writesuithe full estimated regression equation.
b. Write out the estimated regression equation for Spain.

. Write out the estimated regression equation for France.

® DEUnemployment = Germany*Unemployment
" ESUnemployment=Spain*Unemployment
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Compare the equations from part b and ¢ to your answers from Problem 9, Chapter 4.
How does a one percentage point increase in unemployment relate to the growth rate of
wages in Spain?

How does a one percentage point increase in unemployment relate to th2 groviih rete of
wages in France?

Estimate the difference in how unemployment relates to wage Growth between the two
countries.

Provide a 95% confidence interval for the difference in how unehrplé)ymlent relates to
wage growth between the two countries.

Predict the growth rate in wages for each country in a year*hat has 3% unemployment.

Provide a 90% confidence interval for each prediction from part i.
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CHAPTER 6

FORESTIER WINE: GRAPHICAL ANALY 5i15,-NON-
LINEAR REGRESSION AND SPURiIOUS

CORRELATION

In this chapter, we will learn how to use graphical analysis to supplement regression. We will
study residuals and how to use residual plots'tG:supplementour regression analysis. Additionally,
we will expand our regression model’s diomain-ef applicability by learning how to conduct one

type of non-linear regression. Finally, e will exglorethe notions of outliers, influential

observations, and spurious cortela:ion.
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6.1 Snowfall, Unemployment, And Spurious Correlation

The following data (see the unemploy file') provides the annual inches of snowfall irrAmierst,

Massachusetts, and the annual U.S. national unemployment (in %) for the years 1273 to 1982 (see

Figure 6.1).

In principle, should we expect any relationship between snowfall in Amhesst and U.S.

unemployment? Look at the plot of these two variables in.Fiqui® 6.z:

Row | Snowfall Unempﬁment {Year
1 45 49 | 2973
2 59 Tb.e 1974
3 82 I 8.5 1975
4 89 7.7 1976
5 71 A 1977
(6. |80 161 1978
7 i 55 5.8 1979
g 60 71 1980
9 < 79 7.6 1981
10 95 9.7 1982

! From Statistics for Business and Economics, by Heinz Kohler, Thomson Learning, 2002.

Figure 6.1: Snowfall data.
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There is clearly a linear relatiolhshp betwézan tae two variables in the sample, and a regression

. . LN
will do well here (see Figai2 6.2). ™
- "‘-\. ‘H‘.

k.,

. regress unenp'i'qnnei_:!:: snowi al

., &

source | & df MS Number of obs = 10
e i ~ ~ F( 1, 8) = 236.70
éﬁod_e1 ~18.4068885 1 18.4068885 Prob > F = 0.0000
Residual ™ . .‘v§22109633 8 .077763704 R-squared = 0.9673
— ' Adj R-squared = 0.9632
| Qta1 |19, 0289981 9 2.11433313 ROOt MSE = .27886
\ . )
; unempﬁu;{?ruant _l - Ccoef. std. Err. t P>lt] [95% Conf. Interval]
Z - "h._
SF!L)_*{fE.-'I 1 . 0954467 . 0062038 15.39 0. 000 . 0811406 .1097527
H ..cons . 3764566 .4400908 0.86 0.417 -.6383946 1.391308

e,
=,
R

.,

Figure 6.3: Regression of unemployment on snowfall.
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The R-squared of 0.9673 (96.73%) is exceptionally high, which indicates we are explaining most
of the variation in U.S. unemployment. Based on our data, should we conclude that there exists a

significant relationship between snowfall in Amherst and U.S. unemployment?

To answer this question we can do a hypothesis test on the slope coefficientto firid out if it's
significant. The t-statistic is 15.39 and the associated p-value is 0; thus; we-rejest the null

hypothesis that the slope is zero and conclude there is a significant-reiationsiip.

This example shows that on occasion, clear patterns pop un at randoi._Sirice our inferences are
based on data, we will make errors. The relationship vetiveen unesiployment and snowfall is

spurious.

Spurious correlation occurs when the.data.coriiing from two unrelated variables are apparently

linearly related.

The example suggests thatif penple=aant 0 reach a certain conclusion, and they search for data

with this in mind, they can o*en Tiad a dataset which supports the conclusion.

For example, we generated 49 cglumns of random data with 10 numbers in each column. We
know that rione cf them are related to unemployment or to any other real dataset because the data
was raridoraly generated in Stata. However, some of the regressions turned out to fit the
unp-moloymcnt datd pretty well with the slope coefficient statistically significant at a standard 5%

ievel of significance. For example, a regression relating unemployment and the 33" randomly

geierated-column turned out this way (see Figure 6.4).
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. regress unemployment ¢33
source SS df MS Number of obs = 10
F( 1, 8) = 5.67
Mode]l 7.89522072 1 7.89522072 Prob > F =, 0.0444
Residual 11.1337774 8 1.39172218 R-squared = | 0.4149
Adj R-squared '= 10.3418
Total 19. 0289981 9 2.11433313 ROOT MSE 3 R.1797
unemployment Ccoef. std. Err. t P>|t] [95%5<enf. Intenval]
c33 2.134833 . 8963098 2.38 0.044 S 0679394 | 4.201727
_cons 7.412109 .4094806 18.10 0. 000 ( 6.467846 8.356373

Figure 6.4: Regression of unemployment on random.data.

Our conclusions are as follows:

1. Unemployment and snowfall in Amherst have: a statistically-sigaiiicant linear relationship
over this period. This relationship is spurious. '

2. Itis always possible to find a spurious-relation betwee-n an independent variable and a
dependent variable if you try maiy diiferent independent variables. This occurs because
each relationship you examine fias somg.charice of appearing significant due to luck or
sampling error even if tnerg1s ne qn'"darlying.relationship. Using a level of significance o
when testing a sinale rlolatianship ensuires the probability of finding this type of spurious
result is at most a. HO-V\/C:‘.\{EI, it you examine 100 different possible relationships, the
probability ihat at !.c_:st.;\ne of'them appears significant even if none of the relationships
are real may be z;ls iah s 1-(1-0)'®. So, when a = 0.05, this probability is 1-(0.95)*® =

_ 0.5;34.

3. | For this reason) always think hard about what variables are sensible to use in a regression
andiysis hetore running the regressions. This helps to limit your risk of obtaining spurious

| results. Similarly, when presented with others’ analyses, make sure to find out the process

“that led to the reported results. If they were the result of searching through a large number

of relationships and reporting only significant results, you should be skeptical.
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6.2 Wine and Wealth

In this section, we present some simple (yet deceptive) regression examples. The purpgse'is to

motivate techniques that move beyond an examination of the basic regression output.

Robert Owen is the new chief manager of Forestier, a company that produces, markets, and
distributes wine. Forestier produces four brands of wine: Almasen -Biaaco, €asar0sa, and
Delacroix. Almaden and Casarosa are high-quality wines. Biarco's a regular \vine. Delacroix is a

specialty dessert wine sold only in specific locations.

Robert believes that wine sales are directly related to the-average Household income of the
neighborhoods in which the wine shops ai'e l¢cated. Robert is considering expanding the business
to rich neighborhoods with $15,000 mozithly average.income. To learn how the various wines are
likely to sell in these neighborhgods,+ie.warits to estimate how average income affects sales of

the four Forestier brands.

Robert obtained so:ne data on average:monthly household income (measured in units of $1,000)
and average monthly wirie.sales (measured in units of $1,000). He has figures from 11

neighborhoods for-each brand. The data are in Figure 6.5 and in the wineandwealth file.?

— | Aimaderi Bianco Casarosa Delacroix

Iniome A | Sales A | IncomeB | SalesB | IncomeC | SalesC | Income D | Sales D

8 6.95 8 8.14 8 6.77 8 5.76

‘ 10 8.04 10 9.14 10 7.46 8 6.58
|

? Data adapted from Anscombe, F.J., Graphs in Statistical Analysis, American Statistician, (27) February
1973, ppl7-21.

232



13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84
11 8.33 11 9.26 11 7.81 8 8 AT\
14 9.96 14 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 g - I _-5.25_ '
4 4.26 4 3.1 4 5.39 A9 w125 | .
12 10.84 12 9.13 12 815 | &/ I5.56
7 4.82 7 7.26 7 6.42 8 . 791
5 5.68 5 474 5 5.73 xESK __ 689
Figure 6.5 Forestier data. | —

Robert decides to use regressions to get a feel for the efiect of average income on wine sales. He

,

intends to use the regressions to predict wine sales in néighborhoads of $15,000 monthly income.

=,

Consider the Almaden data. Sales A is-the dxe‘par!dénf. variable. Income A is the independent

8

variable (see Figure 6.6). o= \,

b

. regress Sales_A Tixcome. _R'
source —s5—u  wgf MS Number of obs = 11
= — - EG 4, 9) = 17.99
Mode 2?._51('.‘9009' B 1 27.5100009 Prob > F = 0.0022
Residual 12.76259 9 1.52918778 R-squared = 0.6665
— Adj R-squared = 0.6295
TotsT ! 41.2726529 10 4.12726909 RoOOt MSE = 1.2366
l's.aTes_A ™, Coef. std. Err. t P>|t] [95% Conf. Intervall]
I ‘_coﬁ'.e:A ./.5000909 .1179055 4.24 0.002 .2333701 .7668117
% cons 3. 000091 1.124747 2.67 0.026 .4557369 5. 544445

Figure 6.6: Simple regression analysis using the Almaden data.
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The regression indicates that monthly sales of Almaden increase, on average, by 50 cents for each
extra dollar (equivalently, by $500 for each extra $1,000) in average monthly household income

of the neighborhood where the wine shop is located.

The coefficient on Income A (0.50) is statistically significant at our standara 5% iavel of

significance. The t-ratio is 4.24 with a p-value of 0.002.

The regression estimate and 95% confidence and prediction inceryals for AImcden sales when
Income A is 15 are 10.501, (8.692, 12.310) and (7.170, 13.833j; respecti\'elly fas you may
calculate by entering 15 for Income A in an empty rcw and clicking, the User>Core
Statistics>Prediction, using most recent regressiori (confin_t) rienu option®). Thus, in any
single neighborhood with $15,000 monthly.average income, our estimated monthly average sales
of Almaden are $10,501, and, with 95% coafidence, monthly average sales of Almaden will be
between $7,170 and $13,833. Similasiy;-the average, over the whole population of neighborhoods
with $15,000 monthly income, of the morithly average sales of Almaden is between $8,692 and

$12,310 with 95% confidsice.

Plot Almaden sales ard averdye-incoine (see Figure 6.7). That is, plot Sales A versus Income A.
There does not seem to be aiw/thing unusual or troubling about this plot. The data seem to fit a
generally liriear-pattern with some variance about the line.

Next. Roizari-analyzes the effects of average income on Bianco sales. In the next regression (see

Figure 6.t), Hales B is the dependent variable and Income B is the independent variable.

% You may also type db confint instead.
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Figure 6.7: Pl of Alnieden Sales vs. Income.
. regress Sales B Incom;:_B ™,
source SS s, df MS Number of obs = 11
T et FC 1, 9) = 17.97
Mode]l 2755 1 27.5 Prob > F = 0.0022
Residual 13.7762909~. 9 1.53069899 R-squared = 0.6662
e Adj R-squared = 0.6292
Total ~.41.2762909 X0 4.12762909 ROOT MSE = 1.2372
sales_B Cwaf std. Err. t P>|t] [95% conf. Interval]
Incoiie_B [ -5 .1179637 4.24 0.002 .2331475 .7668525
J_cans 3.000909 1.125302 2.67 0.026 -4552982 5. 54652

%,
\ s Figure 6.8: Simple regression analysis using the Bianco data.

[ [ina regrassiciToutput when using the Bianco data is almost exactly the same as the regression
. output when lusing the Almaden data. Thus, the conclusions we would obtain from this regression

aré‘:hp saine as the conclusions we obtained from the regression using the Almaden data. In

particular, this regression indicates that Bianco monthly average sales increase, on average, by 50

235



cents for each extra dollar of average monthly household income. The confidence and prediction

intervals for Bianco sales are virtually identical to the ones for Almaden.

The data on Bianco sales are different from the data on Almaden, but the regressiors-sging.the
Bianco and the Almaden data are essentially the same. This seems odd. Rokert 1sspuzzled. #fter
all, Almaden is a high-quality wine and Bianco is merely ordinary. Maily times; a background
graphical analysis can help us understand a regression analysis bettsi-Fiaf Biancc-sales and

average income (see Figure 6.9). That is, plot Sales B versus Incame B.

Bianco
o
° o °
[ J [ J
© - * °
e
© - * |
[ J
q- —
[ J
N F
T T T T T T
4 6 8 10 12 14
Income B

Figure 6.9: Plot of Bianco Sales vs. Income.

The.nlot ciearly indicates that the relationship between Bianco sales and average income is not
linear. Thus, one of the most fundamental assumptions of regression (linearity) has been violated.

The conclusions we obtained concerning Bianco must be revisited.
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The regression using the Bianco sales seems, at first glance, to confirm the conclusion obtained
from the regression analysis using the Almaden sales. However, this is incorrect. The, efiacts of
average income on Almaden sales are not the same as on Bianco sales. The plots Triuicete that the
Almaden sales are higher if the shops are located in richer neighborhoods. Fne Bianco sales
increase if the wine shops are located in richer neighborhoods but only up 0 a eertain point. After
this point, the Bianco sales decrease if the wine shops are located irvicier ricightiarhoods. This
probably happens because the quality of the Bianco wine is worsg than the.quelity of the
Almaden wine. The crucial point, however, is that the relationsnip bctweenlBEanco sales and

average income is non-linear, i.e., not a straight-line yelationship.

How can we estimate the effects of average-income on Bianco sales when this relationship is non-

linear?

It may seem that everything we: have learriad sp far only applies to the linear case, and therefore,
these techniques are uselesz.if the retationsiip between the independent and dependent variable is
non-linear. Fortunately, this’iz untiue: We can apply the techniques we have learned to the case of
a non-linear relationship Getweei-the independent and dependent variable. One useful and
important kind of non-linear-zelationship is a quadratic relationship. Below, we will learn to use
regression o estimate-such a relationship.

A nuadratic-funstion is a function of the form f(x) = a + bx + cx2.

If the coefiicient on the squared term is negative, i.e., if ¢ <0, then the plot of the function f looks
like an inverted U. For example, Figure 6.10 shows the plot of the function f(x) = 5+10x-x for

values of x between 0 and 8.
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Figure 6.10: Quadratic equatioi-with negaiiv¢ coefficient on the squared term.

On the other hand, if the oefficiant Gathe sauared term is positive, i.e., if ¢ > 0, then the plot of
the function f looks ke a U. Far example, Figure 6.11 shows the plot of the function f(x) = 5-

10x+x? for values of x h(_etW?en Oarnu 8.
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10
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Figure 6.1%: Quadratic-2quatior: witn positive coefficient on the squared term.

Looking at these prets, wa.can reasonzply conjecture that Bianco sales are a quadratic function
(with negative coefficient tn the,squared term) of the average household income of the
neighbornocds-in witich the wine shops are located. That is, we can reasonably conjecture that

Biancc saies and avi:ragje income are related in the following way:

Bianco sales = a+b(Average Income)+c(Average Income)®+error

[E—
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We can estimate the coefficients a, b, and ¢ by running a multiple regression. The dependent
variable is Sales B. The independent variables are Income B and Income Bsqr, where Income

Bsqr is the square of Income B:*

Income Bsgr = (Income B)? 4‘

The relevant data for this regression are in Figure 6.12:

Bianco - |
Income B [Income Fssci{Sales B!
10 100 [~9.14 ;
8 64 8.4
12 169 8.74
9 21 8.77
17~ [N 121 | 926
| 14 196 8.1
| A 36 6.13
4 16 3.1
12 144 9.13
7 49 7.26
5 25 4.74

Figure 6.12 Bianco data with squared term.

* To Gane:ate Income_Bsqr in Stata, you can click User>Manipulate Variables and Obs>Generate New
Variable (generate) or type db generate. Type Income_Bsqr in the “New variable name” field, and type
Income_B”2 in the “Contents of new variable” field. Alternatively, you can directly type the command
generate Income_Bsqr = Income_B”2. See the Appendix for detailed explanation on generating new
variables in Stata.
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. regress Sales B Income_B Income_Bsqr
Source SS df MS Number of obs = 11
EC:..25 8) = .
Model 41.2762685 2 20.6381343 Prob > F =, 0.0000
Residual . 000022378 8 2.7972e-06 R-squared = 1.0000
Adj R-squared '= '1.0000
Total 41.2762909 10 4.12762909 RoOt MSE < 00167
sales_B Coef. std. Err. t pP>|t] [95%—<Tenf. Intervail
Income_B 2.780839 .0010401 2673.74 0.000 2.778441 | 2.783238
Income_Bsqr -.1267133 -.0000571 -2219.24 0.000 —.: 126845 -.1265816
_cons -5.995734 -0043299 -1384.71 0.000 6. 0U571Y -5.985749

Figure 6.13: Regression analysis of the Bianco data with a-quadratic té'rm. '

The regression (see Figure 6.13) appears extremely surceé§fu, in caoturi_rig the relationship. In
fact, the R-squared is 1 (100%), indicating a perfect fit. The coelf_icix;nt on the linear term is
positive (2.7808) and is significantly greater than zero,and trie"coeificient on the squared term is
negative (-0.1267) and is significantly belaw ;e.ro. This mak(.es sense. The estimated coefficient
on the linear term in a quadratic regressicn ishe estimated slope of the relationship when x = 0.
Here, this tells us that if average moﬁ'rh.ly il.apme.is ciose to zero, increasing it by a dollar yields

an average of $2.78 in extra sales. Thus, foil low levels of income the slope relating income to

sales is positive and steep

The estimated coefficieiit.on“the squared term in a quadratic regression tells us how quickly the
slope of thereratienship changes as x increases. The fact that this coefficient is negative in the
examp;'e talls us thet increases in income provide less of a boost in Bianco sales for higher
income .~eiér.b0rhoods than for lower income neighborhoods. We expected these signs for the
coefficients:because we observed (in Figure 6.9) at low levels of income Bianco sales increase as
- tHe average income of the wine shops’ neighborhoods increases, but gradually this effect lessens,
until, avéntually, Bianco sales start decreasing as the average income of the wine shops’

neighborhoods increases.
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What is the meaning of the constant term? It is our estimate of average sales of Bianco when
average monthly household income is zero. The estimated constant (-6) is significantly riagative.
This does not make sense as a prediction. After all, we should not expect sales 0 beTicgative for
the wine shops located in extremely poor neighborhoods. However, an exariinatien of the data
indicates no such neighborhoods were in our sample for Bianco. Thus,althaugh 'the quadratic
regression appears be an excellent model for incomes closer to the-ramge-of cur data, we should

exercise caution in using our regression equation to forecast B.anco sales in ptor neighborhoods.

Robert wants to predict Bianco sales in wine shops Igcated in neigizhorhoods with $15,000
monthly average income. Using the quadratic regression, the estiznated sales when Income B is
15 (and therefore Income Bsqr is 152 = 225) are' $7,206 per month. The corresponding 95%

confidence and prediction intervals for.3ianco Sales are shown in Figure 6.14.

Cllow Clhigh | Pllow Plhigh

7.202128 7.210599 7.200635 7.212092

Figure 6.14: 95%-confidence and prediction intervals for Bianco sales.

The confidence and predictian iritervals are narrow, indicating little error in our sales estimate.
The nor-lincai-regression predicts that the average sales will be $7,206 per month. The linear
regressionnredicted avierage monthly sales of $10,501. The difference is large (almost 50%). It

would fiae/c-heen a 1g mistake to ignore the non-linearity present in the data.

Hew do we know if a non-linear model should be used? One way is to plot the dependent against
the independent variable and look for distinct curvature. We used this method in the Bianco

example. Another method (explained below) involves plotting residuals versus predicted or fitted
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values and examining this plot for distinct curvature. This method is extremely useful, especially
if there is more than one independent variable. The reason is simple. Since a plot can have no
more than three dimensions, plotting the dependent versus the independent variables ‘is
impossible if more than two independent variables are used. Plotting residuals \iersusvedicted
values is always possible because the plot remains two-dimensional no matter how many
independent variables are used. Examining such plots to detect non-lingariites stiovid become a
regular supplement to your basic regression analysis.

According to the simple regression model, every observation, y;, corizists ofl a/part that is linear in

X, plus an error term:

Y, =B+ Bx e

In the case of m independent variables, every observaiion, y;, consists of a part which is linear in

X1, X2, .... Xm, PlUS @n error term:

¥i = Pe,HB1XeitBoXoit....Bn XmitEi

We use regressiori+o estimate the linear part via the fitted (or predicted) value y :

j}i =b,+bx,

Ir-the tase-of multiple regression, the fitted value y is given by the following:

Vi = botbiXyi+hy Xo ... +0Xm;i
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The fitted value (or predicted value), y, is the value of the dependent variable predicted by the

regression model.

The residual is the difference between the observed value and the fitted vatue. Tiiat is, the

residual for the i observation in our sample, e;, is given by the following eauation:

€ =YY=

Since the residuals depend on our estimates (via the fitted values), itimakes sense to talk about
their sampling distribution. If the standard assumptions.of trie-r&gression model are correct, the
residuals will be normally distributed with-a mean equal to zero, a constant variance, and

independent of each other.

For the Almaden and Bianco wings, we cari us a plot of the residuals to check our linearity
assumption. Consider th# Almadan data: T'o wlot residuals against the fitted values, we first have
to run the regression Tor-Saies-2A. against Income A again since Stata uses only the most recent
regression in calculatirig.the*zesiduals and fitted values. Then, click User>Core Statistics>Model
Analysis, usirig-most recent regression>Plot residuals vs predicted values (rvfplot) or type db

rvfplot.® Click OK, arid Stata will plot residuals against the fitted values (see Figure 6.15).

® Alternatively, you can type rvfplot into the Command box and generate the graph without using the
dialog box.
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Residual Plot

5 6 7 8 - 9 10
Fittad values

Figure 6.25: Fesidual ot for Almaden sales.

In this plot, the residuals seemto be displayedat random. No distinct curved pattern can be
detected as we move frori iaft ta rigist.acress tne plot. This is a good sign, because it indicates

that our linearity assumbtion‘appears satisfied.

Consider the Bianco data. A'plot of the residuals against the fitted values for the regression

without'the-squarad iricome term reveals distinct curvature (see Figure 6.16).
|
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Residual Plot

5 6 7 8 - 9 10
Fittad values

Figure 6.16: Resigual-piet of Bianco sales with linear model.

All the residuals are negative when the finod%values are low or high. On the other hand, all the
residuals are positive for sriiddle. fitted values./ This inverted-U pattern indicates a non-linear
relationship (in fact, a quad_ratic_re:ationship in this case) between the dependent and independent
variables. In general,distiiict cuivature in the plot of residuals against fitted values suggests a

non-linear relationship betwean.ine dependent (y) and independent (x) variables.

Try rurining.the quadratic regression using the Bianco data and plotting the residuals versus
predicted vaiues+iom that regression. If the quadratic form is successful in capturing the
~ Curvature in the relationship, there should no longer be a distinct curved pattern across the

residual piot. You will see that is the case. If distinct curvature had remained, that would have

suggested that a model other than the quadratic was needed.
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It is important to check the linearity assumption whenever you try a regression model. If distinct
curvature is ignored, the regression estimates and standard errors will be biased and may be quite
misleading. In addition to checking the linearity assumption, residual plots have another‘use that

we will see in Chapter 7 when we learn how to check the assumption of constari Variarice.

Now, we will move on and analyze the effects of average income on Casarasa sales. As you can
see in Figure 6.17, the regression using the Casarosa data is almost-iueiiticai *r) the-regressions
using the Almaden and Bianco (the linear case) data. Thus, a diregt mterprﬂtat on of the
regression would indicate that average monthly sales of Casaroza increase; o average, by 50

cents for each extra dollar of average monthly houseliola income fcr the neighborhood in which

the wine shop is located.

. regress Sales C Income C
source 55 df s Number of obs = 11
= ELZ A, ay = 17.97
Mode 27 . 4700082 1. 27, A700082 Prob > F = 0.0022
rResidual 13.75619.8 9 “1.52846576 R-squared = 0.6663
| — Adj R-squared = 0.6292
Total 41. 2262 10 #.12262 RoOT MSE = 1.2363
Sales_C Coef. Std. Err. T P=|T| [95% Conf. Interval]
Income_C .4997273 1178777 4.24 0. 002 . 2330695 . 7663851
_cons 2. 061455 1:124481 2.67 0.026 4587013 5. 546208

Figure 6.17: Simple regression analysis using the Casarosa data.

The coefficiant on income (0.4997) is statistically significant as the t-ratio is 4.24, with a p-value
0f0:802. The Y5% confidence and prediction intervals evaluated at income of 15 are (8.6898022,
. 12:30692) ard (7.167809, 13.82892), respectively, which are almost identical to the intervals we

first-abtained with the other two wines.
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Plot Casarosa sales against average income (see Figure 6.18). That is, plot Sales C and Income

C.

Casarosa
S _
[}
x .
‘C_> _
[ J
0 - o .
[ J
[ J
[}
[ J
© - [ }
[ J
[ J
T T T ) T T T
4 6 8 10™, 12 14 16
income C

Figure 6.18:+7i0t of Casarosa Sales vs. Income.

The plot indicates a lingar velatiurisiip between Casarosa sales and average income, except for

one point. In this case, this urusdal observation is called an outlier.

An outlier‘is an obgervation with an unusually large residual. Stata can identify outliers for you.
Thi; is especiatty-useful in multiple regressions or large datasets where they may not be

~ visualizec asjreadily. To have Stata do this, run the regression (here Sales C vs. Income C) and
clicle User>Core Statistics>Model Analysis, using most recent regression>Residuals, outliers

and influential observations (inflobs). (You can also type db inflobs.) Click OK and examine

the data browser. The stdized column contains the studentized residuals. The studentized residual
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tells you the number of standard deviations that this residual is from zero, which is the expected
value of residuals. The studentized residuals for any outliers will have a value of 1 in the
Ystdized column. The cutoff for determining if an observation is an outlier can be se?n in Stata’s
Results window, where it is listed under Flag values next to Studentized residuai. irthis
example, the cutoff is 2.2621572, so any studentized residual with an absolite valie above this
value generates a 1 in the Ystdized column. The formula used to deterynine.the cutoff value is
invttail(df, .025), where df is the residual degrees of freedom of yeuiregression. i other words,
this cutoff is determined so that if the residuals are normally d;striouted, apprcximately 5% of the

observations would typically be classified as outliers.

When you encounter outliers (especially if they are lazge,"2s ir_1 Figure 6.18), you should initially
check whether they are due to a mistake suci a$ a data entry error or a measurement error. If that
is not the case, it may be worthwhile tostry to fiiid out what led to the unusually high or low
value: for example, if these are financial-data, an cutlier might be linked to a stock market crash.
In this example, the outlier could be related to'a single buyer who is particularly fond of Casarosa

wine.

You should not remGwe otiliersfemyour dataset unless they are due to a mistake: Weird things

happen, and it is foolish to praterid otherwise.

On the'ather hand, it you have a data entry error or a measurement error, then the data should be
correctea-oriemeyed. In the case of an error, we would have to run a new regression with the
carrected data. The results would probably indicate that average Casarosa sales increase by less

than 50 cents for each extra dollar on the average income of the wine shops’ neighborhood. We

can see this in the slope of the line formed by the remaining points being smaller than 0.5.
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Finally, we will analyze the effects of average income on Delacroix sales (see Figure 6.19). In

this regression, Sales D is the dependent variable and Income D is the independent variable.

. regress Sales D Income_D -

Source SS df MS Number.-cF.obs = ™ -3 |

F( ¥, ) = 1200

Model 27 . 4900009 1 27.4900009 Prod >F = 0.0022
Residual 13.74249 9 1.52694333 R-5quared = 0.6667

Adi. R-Sgquared = 0.6297

Total 41.2324909 10 4.12324909 ROOT™MSE = 1.2357
sales_D Coef. std. Err. t P>t! [95% Coriv. Interval]
Income_D .4999091 .1178189 4.24 0.00z .2337841 .7664341
_cons 3.001727 1.123921 2.67 _ 0.026 4592412 5.544213

Figure 6.19: Simple regression analysis on the Delacrcix data.

The regression using the Delacroix data is esse.itially identical to the regression using the
Almaden data, the Bianco data (the linear.case), and the Casarosa data. A direct interpretation of
this regression would lead to the sdme coi ;?I_usiohs as vefore. However, we have seen that before

deriving conclusions from the regression analysis, it is useful to look further.

Again, click User>Cere-Statiztics> .'\/Io-del Analysis, using most recent regression>Residuals,
outliers and influe.ntnoJ.obeqrvatlons (inflobs) or type db inflobs and examine the Data
Browser. One-of the values iri#fie Yleverage column has a value of 1. This indicates an
observatien has high leverage. The corresponding entry in the YCook column is also 1. This

indicates an~abservaticn has a disproportionately large influence on the regression results. Cook’s

disiaice (Gt Cook’s D) is a measure of this influence.

Plot-Delacroix sales against average income (see Figure 6.20). That is, plot Sales D and Income

D.
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Figurz's.20: Piet of Delacizix-sales vs. Income.

The plot clearly indicates-trat trie regrassion is entirely driven by a single observation. The
estimated regression coefficients would be drastically different if the sales number for just the one

influential observatiGin.wer2, craingea.

An inflierial oeservation is a data point that has a disproportionately large effect on the
regression issults.

AN influehtial observation can be an outlier. In this example, however, the influential observation
is irat an sutlier. In fact, the residual associated with the influential observation is zero, i.e., the

estimated regression line goes through this point. An influential observation can happen because
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the point has an unusual x value, i.e., one far above or below the average of the x values (these are

called high leverage points). This is the case here.

As with outliers, you should check that the influential observation is not due to sofiie-aata error. If

it is not due to error, then you should keep it.

It is often a good idea to run the regression with and without an influeritial oieservation, and report
both. This is a way to explicitly see the influence on the regressicn estimatss. in this example,

however, it makes no sense to run a regression without the infltientiz!.obsgrvaiion. (Can you

explain why not?)

Robert should be hesitant to rely on the resi:its from the Delacroix regression. The results are all
driven by a single observation. More data are nécessary for a reliable analysis. In particular, data

from more income levels are needed-

We have shown four differant datasets gererating the same regression output. These examples
demonstrate we have to be carefui+wvhen analyzing data to guarantee we do not mistakenly miss
any of these probleriz. In"gaditon;-hce these problems do occur with some regularity in real

applications, we must have &-tcdlbox” of fixes at our disposal.

Our coaclusions are' as follows:

1. The |nitial regression output for the Almaden, Bianco, Casarosa, and Delacroix data is the

saine.
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2. The regression using the Almaden data seems to work fine. The analysis predicts average
Almaden sales of $10,501 in a neighborhood with average household income of $15,000
a month.

3. The simple regression using the Bianco data is unreliable because the reiatiorisitip
between Bianco sales and average income is curved. Curvature may be Getected by
examining the plot of residuals versus predicted values. Once @' quedratic term is
introduced, the regression analysis predicts that Bianco sa'ssiveula-he or-average $7,200
in a neighborhood with the average income of $15,000 a month. A further residual plot
confirms that the quadratic regression has captured the ‘curvéture Enl the relationship.

4. The regression using the Casarosa data contains-an outlier:!f there is no error associated
with this observation, the regression analysis'is idcntigal {0 tne analysis of the regression
on the Almaden data.

5. The regression using the Delac:oix-data-is driven entirely by one influential observation.

More data on Delacroix sales-ar2.necessai/ forreliable conclusions.

SUMMARY

Spurious correlation tecurswnerr tiie data indicate a linear relationship that is a statistical artifact

(i.e., is due to luck of the draiw.)‘Examples of spurious correlation can be constructed deliberately

by generating daie,at random or (sometimes accidentally) by looking at many different

indepertderit.variables. This highlights the importance of judgment in constructing and

intaroretifig regressions.

A reqression must not be interpreted mechanically. Checking if the underlying assumptions are

satisfied is important. If the relationship between dependent and independent variables is non-

linear, then we must introduce non-linear terms in our regression. We should also check if



outliers and influential observations are associated with some error. These observations should
not be modified or deleted unless we find a measurement error or data entry error. Results driven

primarily by a few influential observations should be used with care.

NEW TERMS

Spurious correlation  The appearance of a significant relationship betwesn un:elated variables

Quadratic function A function of the form f(x) = a + bx +{x?

Fitted value The value of the dependent variable piedicted by te regression model
Residual The difference between the oserven value and-tie fitted value
Outlier A data point that is atypically distant frcm the regression line. Identified by an

unusually large residual

Leverage A measure of how different fram the norm the values of the independent
variables are for a particular observatiori

High leverage point ~ An observatiornwhose Ieverége is more than twice the average for the

dataset

Influential observation A-data“poiritwhisii has a disproportionately large effect on the regression

results
Cook’s D A measuie.of the influence a data point has on the regression results

NEW STATA FIUNCTIONS

[3H]User>Core Statistics>Model Analysis, using most recent regression>Plot residuals vs

predicted values (rvfplot)
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Equivalently, you may type db rvfplot. This command generates a dialog box allowing you to

plot the residuals against fitted values following the most recent regression.
Alternatively, you can bypass the dialog box and directly type the command rv#piot.

User>Core Statistics>Model Analysis, using most recent regressiori>Rasidiials, outliers and
influential observations (inflobs)

Equivalently, you may type db inflobs. This command creates new variattes (default variable
names are in parentheses — these can be changed in the dialog Eox) contai:uilng residuals
(residuals), Studentized residuals (stdized), leverage' (leverage) 2iid Cook's distance (Cook_D).
It also creates flag (dummy) variables Ystdized, Yleverage. a_nd Y Cook (again, these are the
default names and may be changed). The Ystdized column alerts you to outliers by assigning
them the value of 1. Observations that are not octliers have the value 0. The Yleverage column

alerts you to high leverage points by-assianing them the value of 1. The YCook column alerts you

to influential observations by essigning them tae value of 1.

An alternate way to generate*he residuals, studentized residuals, leverage or Cook’s distance
individually followirig.a regressian;-+s to click Statistics>Postestimation>Predictions,
residuals, etc. and select thé-quantities of interest. The analogous commands are:

a. /predictewvarl, residuals

b. ' predict newwvar2, rstudent

c. preuistnewvard, leverage

d. pledict newvar4, cooksd

wriare newwvarl-newvar4 are the names that you want to apply to your respective variables.
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CASE EXERCISES

1. The Denny Motors Case

A group of consultants has suggested to Denny Motors that it can predict sales usiirg a forecacting
model based on the S&P500. Specifically, as many people view a “Deany’as 4 lunury good,
surges in the stock market may result in subsequent purchases froiit Denfiy.NViators:-After
evaluating numerous potential lag times (how long before sonjeoie cashes ?heL.r windfalls into
luxury goods is unknown), the consultants have determined-that'a 30-iiwcith tag yields an
accurate forecasting model. Specifically, they tried every possib!s leg time from 0 to 40 months

and the highest R-Squared value was found when usiria a 38-mcith/delay.

Access the data in the dennymotors fiie aiié.run“the regression of Denny Motors Quarterly Sales
vs. S&P 500 Lagged 30 Months. Knowirig-that the average value of the S&P during the quarter
ending 30 months ago was 1337, -onstruct'a 95% prediction interval for next quarter’s sales and

evaluate its precision. Is it a»vide intervaior toes it seem pretty tight?

Do you agree with thezonseltants” conclusions?

2. Baseball

A professiofial bas¢bali team wants to estimate attendance at their ballpark to help make decisions
regarding cancessions and turnstile revenues. One factor they suspect has an impact on the
attendance i weather. The baseball data file has attendance data for the first half of the season

incltding both temperature and attendance figures.
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Estimate the effect of temperature on attendance. Explore the residuals using the model analysis
feature. Are there any obvious explanations for the influential observations? Would removing any
outliers improve your model? Can you suggest a way to improve the model without 'amoving any

outliers?

3. Television for life

The World Almanac and Book of Facts, 1993, reports the followirg Gata-en te'evisions and life
expectancy in 38 countries. Access the tvforlife file, and conduct|a regression‘predicting life
expectancy using TVs per person. Are you surprised by the-outit? Suggest 7 possible

explanation for these results.

4. Show me the money

Running an agency that represents mary prafessianal athletes, you are often forced into serious
contract negotiations. One of the basebait-nlayers Lha.t you represent has had a decent career but
has been known to strike out a/lot! The teaim is\not offering him a significant contract based on his
propensity to strike out moi2 than the-athet players. To improve your negotiating leverage and to
add force to your arcuments, “y0u ave gathered data to conduct a preliminary analysis of
ballplayers’ salaries aad the.number-of times they strike out. Your assistant, who has analyzed the
data, tells you that every strikecut adds about $14,800 to a player’s salary; thus, the assistant

suggests ercouraging your top players to strike out as often as possible.

I3

The-strikequi-fite™ contains the data on 337 professional baseball players. Use these data to
coaduct a regression of salary vs. number of strikeouts to replicate the assistant’s results. Should

you-go along with the assistant’s suggestion?

® «pay for Play: Are Baseball Salaries Based on Performance?” by Mitchell R. Watnik, The Journal of
Statistics Education, VVolume 6, Number 2 (July 1998).
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PROBLEMS

1. Take the dataset from Case Exercise 4 called strikeout and run the regression of salary vs.
number of strikeouts. Construct a listing of the studentized residuals.
a. What do the 1’s in the Ystdized column tell you about the-<orresporiding ehservations?
b. How many studentized residuals large enough to be flagged as 1’s'shculd you expect for

a dataset of this size?

2. Access the data in the burglary file’, which contaiins infarmation about burglary arrests and
employment levels in 90 counties in the Unitec States. Conduct a regression of Burglary Arrests
vs. Employed (which contains the numijer.af eminloyed people in the civilian workforce in that
county.)

a. What do these results suggest?

b. Are these results surorizing t.vor:?

c. ldentify any counties+#hatare outliers or highly leveraged or influential observations

d. What is the probacility tiat-a normal random variable will be over 6.953 standard

deviations from the imean (as the LA County residual is)?

3. Accéss tire beerdate dataset®, which contains data on beer consumption and income levels per

canita for-19£urgpean countries. Conduct a regression of beer consumption vs. income levels per

capita.

" US Department of Justice, Bureau of Justice Satistics at http://www.ojp.usdoj.gov/bjs/dtdata.htm#crime.
& See http://www.brewersofeurope.org.
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On average, as income increases by $1,000 per capita, how much does beer consumption
increase?

Does this relationship make sense?

Identify any outliers in this dataset.

How would your answer to part a change if the outliers were remoyed frem the date?
(This is generally not a good idea, but we are using the removai ofqutlizrs,to see how

strongly they impact some of our results.)

4. A Midwestern hotel chain has noticed much variation in its electrieity costs and would like to

be able to explain these changes for planning and buqgeting reaseriz, It has collected samples

from random hotels during random months during the.past.vear. The variables include the hotels’

electricity costs per room and the average teinp2rature that month. These data are available in the

electricitycosts file. Conduct a regression af eléctricity costs per room vs. average temperature.

a.

b.

Plot residuals versus predicted vailes for this regression. Does this graph give you any
thoughts on imprewing the randel?

Use the tools discussed in+this chapter to build an improved model.
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CHAPTER 7

THE HOT DOG CASE: MULTIPLE REGRESE!ION,
MULTICOLLINEARITY AND THE GENERALIZED

F-TEST

In this chapter, we will further our understanding of multiple regression anilyr,.is. One new topic
is multicollinearity, i.e., strong linear relationships betwecirindependentvariables in a regression.
Specifically, we will learn to use variance inflation fcctois to dete'ct tnulticollinearity and use F-
tests to test joint significance of regression coetficients. OL:*.er.tcpics emphasized include omitted
variable bias, hidden extrapolation, and ,condugting hypothesis tests concerning linear
combinations of regression coefficients. Most or-this iz,done in the context of a case involving the

analysis of supermarket price data.ior s€weral*varieties of hot dogs.
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7.1 The Hot Dog Case

You have just been hired by Dubuque’, a hot dog manufacturer that produces D3dbugueorand hot
dogs for the retail market. On your first day at work, you receive a disturbing mernpo indicating
that Ball Park?, a competing brand, may substantially reduce the price f its h(?t dog. Dubugue is
concerned about the negative impact this might have on its market-share:

At the last staff meeting, some of your colleagues argued that Gacar #4ayet? js .Dubuque’s leading
competitor and that Ball Park’s new campaign will not substantialiy; reduce Dubuque’s market
share. Others, however, disagreed and no consensus v:as Getaine on. the strategy that Dubuque

should take to protect its market share.

Ball Park produces two kinds of hetdugz. One is &regalar hot dog, and the other is a special, all-
beef hot dog. The current prices are $1.79"and"$1.89 per package, respectively. Dubuque’s

current price is $1.49 and-CscarMayer’s surrent price is $1.69.

According to the meig, Ball Park-iniends to reduce the price of the regular hot dog to $1.45.
Two rumors concern the price, oi Ball Park’s special hot dog. One is that Ball Park will slightly
increass: the price-of tive special hot dog to $1.95, and the other is that Ball Park will set the price
of the special hot deg to $1.55.

~ Yau wanf to predict Dubuque’s market share under these different scenarios. Some data are

available from a scanner study conducted at grocery stores located in the western suburbs of

! Dubugue is a trademark of Hormel Foods Corporation.
2 Ball Park is a brand of Sara Lee Corporation.
® Oscar Mayer is a trademark of Kraft Foods Corporation.
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Chicago (see the hotdog file). The data were compiled at a weekly level and consist of
information on Dubuque’s market share (MKTDUB) along with its price (pdub), as well as Oscar
Mayer’s prices (poscar) and Ball Park’s prices (pbpreg and pbpbeef) where pbpreg stands for the
price of Ball Park’s regular hot dog, and pbpbeef stands for Ball Park’s special 'iot aog! Prices are
given in cents (i.e., 135 = $1.35) and market share is given in decimal form-i.e., 2,04 = 4%,

There are 113 weeks of data.

Questions:

1. How does Dubuque’s price affect its market share?

2. Does Oscar Mayer’s price affect Dubuque’s market share?!f so, how?

3. Does Ball Park’s price affect Dubuque’s marizet sl:are_? I¢'sc, how?

4. Is Ball Park or Oscar Mayer Dubuciie’s leading competitor? Why?

5. Assume that Dubuque does not'respond+n Ball Park’s new campaign. How much market
share is Dubuque expected-ts-ieze? In whit rarige is Dubuque’s market share expected to
be?

6. How much shoulg-Dubuque-charge for its hot dog to maintain its current market share?

7.2 Hot Dog Case: Salutions, Multicollinearity, Hidden

Extrapolation and Tests of Joint Significance

YWe begin by: pointing out an interesting issue present in this data. Examine the correlation
hetweenDubuque’s market share and the various prices (see Figure 7.1). Calculating the
correlation between two variables is a quick-and-dirty way of estimating the extent of the linear

relationship between them. The correlation between Y and X may be found by regressing Y on X,
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taking the square root of the R-squared (expressed as a decimal), and making it positive or

negative depending on the sign of the estimated coefficient multiplying X. Thus, correlations lie

between -1 and 1 with correlations further from 0 corresponding to higher R-squared'of ihe

regression relating the two variables. The Stata menu option User>Core Statistics>Bivariate

Statistics>Correlations (correlate) (also accessible by typing db correlatz) calculates the

correlations between each pair of variables in your data and reports thein ir.a table *

Correlations (correlate)

MKTDUB pdub poscar abpreg pbpbeef
MKTDUB 1.0000
pdub -0.4329 1.0000 \
poscar 0.1695 0.4844 1.0000
pbpreg 0.3517 0.3593 0.5488 1.0000
pbpbeef 0.3695 0.2224 0.5537 0.9794 1.0000

Figure 741: Correlations.

What signs would we expeet the-zorietations between MKTDUB and the various prices to have?

Do we see what we-axpect?

Note the‘nigh-carrelation between pbpreg and pbpbeef (0.979). In this situation, estimating the
separate eifects from these two variables is likely to be difficult. When one goes up or down, so
sioes thie-0ier: hence, it is difficult to tell if the resulting change in market share is due to pbpbeef

ar pbpreg, This will play a role in our analysis below.

* Alternatively, you can directly type in the command correlate. See the list of new Stata functions at the
end of the chapter for more details.
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Multicollinearity is the term used to describe the presence of linear relationships among the
independent variables. A multicollinearity problem occurs when these relationships are strong.
We describe it as a problem because it can make it difficult to accurately assess the sepaiate
contributions of the strongly related variables to a regression analysis. Specificzaily,
multicollinearity increases the size of the standard errors of the estimated csetficients multiglyirng
the related independent variables. However, we want to emphasize that' muiticallincarity does not
cause any of the basic regression assumptions to be violated. In this-seiize. Ii<is lesz serious a
problem than the curvature issue discussed in Chapter 6. Multicokiinearity'simnly decreases the

precision with which we can estimate some of the regression ccafficients

In this example, we do have a problem of multicollinearity.becai:se bbpreg and pbpbeef are
highly correlated. In the case of these two varianles, the correiation is so strong that it can be seen

by looking at the plot between them (seec Fiqure+.2).
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Figure 7 Z: Seatterplot-af Ball Park’s prices.

These two prices move in almgst 3 perfectone;to-one fashion, and so it will be essentially
impossible to separate the impact ot ghoreg from that of pbpbeef on Dubuque’s market share.

This is a graphical depiction cf the-multicollinearity problem we noted above.

Now begin the main analysis-hy-tunning a regression of MKTDUB on the price variables (see

Figure 7.3%
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. regress MKIDUB pdub poscar pbpreg pbpbeef
Source SS df MS Number of obs = 113
F(C 4, 108) = 30.00
Model .012013954 4 .003003488 Prob > F =, 0.0000
Residual .010811783 108 .000100109 R-squared =" 0.5263
Adj R-squared'= '0.5088
Total . 022825737 112 .000203801 Root MSE __ = 01001
MKTDUB Coef. std. Err. t P>t [95% Coqf. Intervari]
pdub —-.0007598 .0000809 -9.39 0.000 -. 0009202 | -.0005994
poscar .0002622 .0000843 3.11 0.002 . CNO0%G52 . 0004293
pbpreg -.0003473 . 0003316 1.05 0.297 " —. GH03Y . 0010046
pbpbeef - 0001025 . 0002938 0.35 0.728  -.TN04728 . 0006848
_cons . 0403026 .0141226 2.85 0.005" ~O123092 . 068296

Figure 7.3: Multiple regression analysis of Dubuqie’s\market share. |

The 95% confidence and prediction intervals for maikel share evaluated at Dubuque’s price of
$1.49, Oscar Mayer’s price of $1.69, Ball Park’s (reguiar) piiec'of $1.45, and Ball Park’s

(special) price of $1.95 are (0.01636, 0.06?140). and (0.009533, 0.073973), respectively.

The 95% confidence and prediction i'gtérva'gfor- }ﬁark-.et share evaluated at Dubuque’s price of
$1.49, Oscar Mayer’s price of -;51.69, Ball...It'ark’s (regular) price of $1.45, and Ball Park’s
(special) price of $1.55 aie (& 03&80'9, G:U42497) and (0.017238, 0.058069), respectively.
Consider the 95% cohfide_:n& and prediction intervals for market share evaluated at Dubuque’s
prices of $1.45;-Qscar Mayf.:f"b ;;rice of $1.69, Ball Park’s (regular) price of $1.45, and Ball
Park’s ILsp scial) price ¢f $1.95. The prediction we tried to do is far from typical. This is true,
thoggh.ah_e values wve ricked are within the range of the values we have in the data. (You can
ctieck-this ey exén'qining the univariate statistics for the data.) In particular, while pbpreg has been
“._near 145 .and pbpbeef has been near 195, they have never been near these values simultaneously.

Thisis a7 example of a problem called hidden extrapolation.
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Extrapolation occurs when the values of the independent variables used for a prediction are far
from those in the sample data. Hidden extrapolation occurs when these values, as a group, are
far from the values in the sample data, even though for each independent variable inaividually the

data seem reasonable enough.

The effect of extrapolation, hidden or not, is to increase s, the standacd error of the estimated

mean, when we predict for such values. This will make our predi;[i'on' ana-corifiderize intervals
larger. In this example, quite large. The lower bound of the confidence in.té';var_ (0.016) is four
times smaller than the upper bound of the confidence intzrvai(0:267). Prediciing that Dubuque’s
average market share is expected to be between 1.6% and 6.7% seel 1s not to be helpful. After all,

with few exceptions, Dubuque’s market share is in this.-range-thioughout the data.

Consider the 95% confidence and predictiori-intersals for market share evaluated at Dubuque’s
prices of $1.49, Oscar Mayer’s price of $1:49, Ball Rark’s (regular) price of $1.45, and Ball
Park’s (special) price of $1.55/ Inithis scenirio| the prediction and confidence intervals are much
narrower. The reason is we Ga net havea niduen extrapolation problem in this case. The values

we are using for predgictich-are-more-typical of those in our data.

The lesson te-tal«a from this dizCussion of hidden extrapolation is that predictions using values of
the ind2pendent variak!es far from those in the data will be less accurate than those for values
more typicai-of the‘data. The “hidden” part of hidden extrapolation emphasizes that values for a
oroup-of independent variables may be far from those in the data even if the value for each

.. variable iadividually is close to those in the data.
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Now turn to the estimated effects of each price on Dubuque’s market share, controlling for, or
holding fixed, the other prices. The coefficients of the independent variables have the expected
signs. They are positive for the competitors’ prices and negative for Dubuque’s price’ In
particular, the coefficient on Dubuque’s price is -0.00076. The coefficient on Oscar ividyer’s price
is 0.000262. The coefficients of Ball Park’s prices (regular and special) are<3.006247 and

0.000103, respectively.

Examining the p-values for the coefficient estimates, we see that the coeﬁ'éci;el"_t 6n the constant,
Dubuques’s price, and Oscar Mayers’ price are significantly diifererit fromi zef.o. However, the
coefficients on the Ball Park prices do not seem to be significant..5is is rather curious. The
estimated coefficient on Ball Park’s regular hot dog price*is hi_gh or t‘,.lan the estimated coefficient
on Oscar Mayer’s price. This may indicate Ball’'Park is Dubuque’s main competitor. On the other
hand, the coefficient estimates on Ball Parlz’s piizes are not significant. This may indicate the
opposite. That is, this may indicate-sui-data do ngi-show that Ball Park’s prices have any effect
on Dubuque’s market share. .

By looking at the t-ratios ar_w' assGeiated p-values for Ball Park’s prices, you might think from this
first regression that ve have Tittic-evidence that Ball Park’s prices are related to Dubuque’s
market share. This conclusita seems to support the idea of not reacting to the Ball Park campaign
though jne cstiiiated toefficient on Ball Park regular hot dog price is higher than the estimated
coefficient'on Oscar Mayer’s price.

- However, to decide this issue, we must test if both Ball Park’s price coefficients taken together,
or’jaintly -are statistically different from zero. This is particularly important in light of the strong
multicollinearity between the Ball Park prices. As observed above, the effect of this

multicollinearity is to make it hard to separate the effects of the two Ball Park prices. This
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appears as an increase in the standard errors of our Ball Park coefficient estimates. The larger
standard errors, in turn, result in larger p-values for those coefficients, making them less
statistically significant. By giving up on separating the effects of the two Ball Park piice’; and
examining their joint effect on market share, we can sidestep the multicollinearity irriive dafa and,

hopefully, arrive at a more precise estimate of the joint effect.

When we want to test whether at least one of a group of coefficientsisdifferent trem zero, we
must consider a hypothesis test called an F-test on the group of cqefficienis racher than the
individual t-tests on each coefficient. As we will see, when x variabias are sltrongly related, the F-
test (so-called because the test statistic for this test failovvs an F disiribution if the null hypothesis

is true) can give a different answer from the t-tests.

Let’s see how we can conduct such a test of joirit.significance using Stata. Specifically, we will
test whether Ball Park’s price coefficiciits taken teoether, are statistically different from zero. The

null and alternative hypotheses ar¢ as follews:

Ho: Bpbpreg = Bpbpbeer = 0

i.: Atleast one of Bpppreg OF Ppopoeer 1S NOt €qual to zero.

To perform this tegt, aiter running the regression, click User>Core Statistics>Test Hypothesis,
using n:ost vacent-regression>Joint significance (testparm) (or type db testparm). You will

ebtani-the dialog box in Figure 7.4.
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-] testparm - Test linear hypotheses after estimation @i"]ﬂd

Test coefficients of these varables: ]
pbpreg pbpbeef| =

Options _

Hypothesize that the coefficients of the vanables are: — o,

i @ Jointly equal to zero o ', )

") Equal to each other - ]

For multiple regression models: — -

[] Specify equation name or number for which the hypothesis is teste:" -, NS -

|
|
1 " ] |

Q0 E | og_“_j{__pgﬁa_“][ Submt |

. ]
" .
Figure 7.4: Testparm dialog box.

"
]

=,
-

Select pbpreg and pbpbeef in the “Te §:c (‘oe‘fﬁcike‘h‘rs of these variables” field (in this test, these

=,

two variables are also called addsd Oafi'ab!gs; pdui.and poscar are your base variables).

; "

Choose Jointly equal to zero uncer the “Hypcithesize. ..variables are” option.® When you click
Y _

OK, Stata will run an F-tést wbé:-:e_the rwail hypothesis is that coefficients of the added variables

.H"H. .

(pbpreg and pbpbeciyare erJ:l“h“_l to zero, and the alternative hypothesis is that at least one of the

=,

coefficients of the adb‘earl véfi.;{lilés is not equal to zero. Stata output for this test is shown in

Figure 7.5, ——_ -
o o
I:. / ~ 0 . testparm pbpreg pbpbeef
. /| (1) pbpreg=o0
Pt ( 2) pbpbeef =0
' R F(C 2, 108) = 17.21
" y ) Prob > F = 0. 0000
S . Figure 7.5: Testparm results.

® Alternatively, you can directly type the command testparm varlist, where varlist contains the name(s) of
the added variable(s).
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This output tells us the p-value (0.0000) associated with this test in the Prob > F row. Since the

p-value is zero, we reject the null hypothesis:

Ho: Bpbpreg = Bpopoeer = 0 4‘

Therefore, we can conclude that, holding Oscar Mayer’s and Dub ucjué’s prices. fixeéd, at least one

of the Ball Park prices has an effect on Dubuque’s market share.

To understand the example above, we need to have g technical disctission on the use of F-tests.
Consider a regression with p independent variables. Tize data-cciisist of n observations of all the

variables.

The regression equation is the following:

y ' ﬂo :-_Bl ;'1 + cee Tﬁq Xr1 fﬂq+1Xq+1+ﬂq+2Xq+2+ oo +ﬂp Xp+g

We want to test if the coefficients fy.1, ..., fpare jointly significant. The null and alternative

hypothesis-tan be-ztated as follows:

| - Ho: faer = 0,fqe2=0,... 5 =0

‘ H: One or more of the coefficients (betas) in the null hypothesis is not equal to zero.

Let SSE(Xy, ..., Xq , Xg+1, -, Xp) be the error (or residual) sum of squares of the regression equation

using all independent variables (the “extended” model).
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Let SSE(Xy, ..., xq) be the error (or residual) sum of squares of the regression equation using only

the first q independent variables (the “base” model).

The following F statistic provides the basis for testing whether the additionzi p-q-ariables are

jointly statistically significant.

F = ((SSE(Xy ..., xq)/SSE(Xs. .., Xgy Xqet, s Xp)-L*((n-p-1j((p0))

In general, p is the number of variables in the extendzd jnodel, azid @ is the number of variables in

the base model; thus, p-q is the number of variables being testeg:

We have seen that when we run an F-test.-stata gitses us the associated p-value for the test.
Sometimes, you may only have agcess to sameone tlg¢’s output where only the F statistic is
reported. In this case, you can use Stata’s Ftaii function to find the p-value corresponding to the F
statistic. In the hotdog exariple, the F-statistic was 17.21 (see the F(2, 108) row in Figure 7.5). To
find the corresponding-=2alug..yol-can directly type the command display Ftail(2, 108, 17.21)
(the numbers in the paranthieses correspond to p-q (the number of variables being tested), n-p-1
(the degreescffreedom for tric.axtended model with all the variables included), and the F
statistic, respectivaly).

Alweraatively, you can use Excel’s FDIST function to find the p-value corresponding to the F
statistic. Click Insert>Function..., and choose Statistical as the Function category and FDIST
as trie_ Fuinction name. Enter the F statistic next to X, enter p-q (i.e., the number of variables

being tested (= 2 in this example)) next to Deg_freedom1, and enter n-p-1 (i.e., the degrees of
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freedom for the extended model regression with all the variables included (= 108 in this
example)) next to Deg_freedom2. With the Formula result, Excel will give you the p-value.

You can also directly type =FDIST(X, p-q, n-p-1) into an empty cell and press Enter.

This analysis provides an excellent example of the danger of relying too hezvily¢n the
significance test of individual coefficients in a multiple regression context.-Here, individual t-tests
from the original regression would have led us to the incorrect conrziusica. triat neither Ball Park
price was significant. The test of joint significance showed that af/least one of the Ball Park price
coefficients is significant. The joint test does not try to distinquish tr:a effcclts of the two prices
while the individual tests do. The multicollinearity betwgen the twc, prices explains why the joint
test was able to succeed even though the individual tests 1‘aileq: raulticollinearity makes it harder

to separate the effects of the two prices.

To carry this discussion a little furtkei;~aatch what.would happen if we run a new regression with
only one of the Ball Park prices ircluded,as ir; Figure 7.6. This is for illustration purposes only.
Do not take this to mean tiiat tha préeer resporise to multicollinearity is to drop one of the
variables. This is not generaii/ corzect and, as in this case, may lead to regressions that will be
interpreted incorrectiy.if ti2 miaieiceliinearity present in the original set of variables is not

explicitly acknowledged.
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. regress MKTDUB pdub poscar pbpreg
source SS df MS Number of obs = 113
FC 3, 109) = 40.29
Model .012001767 3 .004000589 Prob > F =, 0.0000
Residual 01082397 109 .000099302 R-squared = | 0.5258
Adj R-squared '= '0.5127
Total . 022825737 112 .000203801 Root MSE = 400997
MKTDUB Coef. std. Err. t P>t [95%5<enf. Intemval]
pdub —-. 0007642 . 0000796 -9.60 0.000 -2 0009219 | —. 0006065
poscar . 0002633 . 0000839 3.14 0.002 .C200971 . 0004296
pbpreg . 0004597 . 0000782 5.88 0.000 . 0063047 . 0006146
_cons . 0400699 .0140499 2.85 0. 005 - C1222%=5 . 0679162

Figure 7.6 Multiple regression analysis withcut pspbeei-,.

As you can see from this output, there is almost no qqailté'givr,- difference .in the overall fit of this
regression equation. Once we have removed pbpbeet frem the regregsion equation, pbpreg
becomes highly significant (p-value = 0). As noted abova. it y\iould have been a mistake to have
concluded from the results of the first regiession that neither variable matters. It follows from the
results of the earlier F-test that at least-arie of the _tvvo Ball Park prices does matter, but because of
the multicollinearity problem descrit;cd. abowe, we cannot tell which does matter in the first
regression. The coefficient on hbpreg in thé re¢ression in Figure 7.6 is approximately the sum of
the two Ball Park coefficients in tise firs_i regression. You should not conclude from the regression
in Figure 7.6 that thie effect of b'all-Pa;k’s regular price on Dubuque’s market share is significant.
Rather, its coefficient is'an esiimate of the combined effect of pbpreg and pbpbeef, and we cannot
determine-which part belongs where.

.
You should noeconclude from this exercise that there was something special about the choice of
nbpreg:We'zould have as easily chosen pbpbeef to leave in the regression. If you do this, the
h fésuite will be quite similar. This exercise supports the results of our F-test: That the Ball Park

prices @y matter in determining Dubuque’s market share. In the regression with both Ball Park
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prices, we must remember that the t-ratios should be interpreted recognizing a high degree of

multicollinearity.

We can see, from adding together the two Ball Park coefficients in the original *egression, that
the estimated effect of changing both Ball Park prices by one cent (0.00045jis larger than tire
estimated effect of changing Oscar Mayer's price by one cent (0.000265. This suiggests that Ball
Park seems to be Dubuque’s main competitor. Of course, to know.:Fwe-shot!d bé&-confident in
this conclusion, we need to know if the difference between the twid estimé&es. I3 sltatistically

significant. Section 7.3, entitled “Analyzing sums and differences of'regressicn coefficients,”

explains how this can be done.

Our responses to the case questions are as fallows:

1. Dubuque’s market share falls-oy-an estimated 9.076% for each cent of increase in its hot
dog price, holding fixeld ttie Ball Parmk and Oscar Mayer prices.

2. Dubuque’s markevsharz falic. by 2i egtimated 0.026% for each cent of decrease in Oscar
Mayer’s price, hol(_in;g fixed the Dubuque and Ball Park prices.

3. Dubuque’s miarkeesharcfails by an estimated 0.045% for each cent of decrease in both of
Ball Park’s prices, lielding fixed the Dubuque and Oscar Mayer prices.

4. /Bali'Pars.seeins to be Dubuque’s main competitor.

5. ', Aszume that Dubuque does not react to Ball Park’s campaign. Also, assume that Ball
Fark*sregilar hot dog price goes to $1.45, and Ball Park’s special hot dog price goes to
$1.55. Dubuque’s average market share is expected to fall by 1.529%. In this case, we are

' 95% confident that Dubuque’s average weekly market share lies between 3.28% and
4.25%. We are 95% confident that its market share for any given week at these prices

will lie between 1.724% and 5.81%.
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6. If Dubuque wants to reduce its price to keep its market share, then the correct price
reduction will depend upon Oscar Mayer’s reaction to Ball Park’s campaign. For
example, suppose that Oscar Mayer does not change its price. Then, if Ball Farkprices
are at $1.45 and $1.55, Dubuque must reduce its price by approximately 20 cents (i

market share to make up/market share gained per cent decrease = 1:529%:/).076%).

We can take away two additional lessons from this case:

Ball Park’s prices are highly correlated. This creates a multicoliinearitiznioblzm. As a result, we

cannot accurately estimate separate effects for the two Ball Park ziices using these data.

Predicting Dubuque’s market share is difficalt :where Ball Park’s regular hot dog price is $1.45
and Ball Park’s special hot dog is $1.95 because af the hidden extrapolation problem. In our

sample, these two prices are almost-aiweys only 12.cerits apart.

7.3 Analyzing Sums and-Differences of Regression Coefficients

In the case, we asked: “Who iz Pubuque’s leading competitor, Ball Park or Oscar Mayer? Why?”
Since the sum ot“the estimated coefficients on Ball Park’s two prices was larger than the
estimated ceefficierit cn Oscar Mayer’s price, it appeared that Ball Park was Dubuque’s leading
compeatitor., Because these coefficients are estimates, being able to use statistics to say how
cuafident we are in our conclusion that the effect of a Ball Park price change is larger is
impartant. As usual, we will use a hypothesis test (and the resulting p-value) to evaluate the

strength of our evidence. The only twist will be that we will have to use a new test command in

Stata to calculate the standard deviation we will need for our test statistic.
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Since we would like to know if we have strong evidence that a change in Ball Park’s prices has a
larger effect on Dubuque’s market share than an identical change in Oscar Mayer’s price, we
should make that the alternative hypothesis. Therefore, using the regression withi tirefaur prices

as in Figure 7.3, our null and alternative hypotheses are the following:

Ho: Ba+P4-B2<0

Ha: 63+B4'B2 > (0.

Unfortunately, the p-value for such a test is not part of the standard iegression output on Stata or
any other regression program. However, Stata does hawe a Sepaiate.command for us to find the p-
value, which we will cover later. As usual,the‘'next step after writing the hypotheses is to
calculate the test statistic. The test statistic 15-simiiar to those for the hypothesis tests concerning

individual coefficients:

_ estirnatoi— value In thznull hypothesis _ b, +b, —b, -0
standar deviation of the estimator Spnb,

If the null kypotsssis is true, tiiis will have a t-distribution with degrees of freedom equal to the

residuel degrees oi+freedom reported by Stata (= n-# of regression coefficients). So, the only

problenis, Wizere-can we get the value of s, ,,,  ?

““To di-this, run the regression of MKTDUB on pdub, poscar, pbpreg, and pbpbeef. Click
User>Core Statistics>Test Hypotheses, using most recent regression>Linear combinations

of coefficients (klincom) or type db klincom. This will open the klincom dialog box:
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5] klincom - Linear combinations of estimators (lincom) w/ e... =2 =]
Linear expression: "-.__
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Type pbpreg+pbpbeef-poscar into the _'_‘Linear‘-agspf“égsion” field and click OK.” The Stata
output should look like Figure 77 '_"'x\ H‘k._l
[ |

~ NN S
¢ \\“‘xh —
. klincom W@pbp&af—%é’;&—"
—
( 1) - poscar.+ pbpreg + pt:;\i:eef =0
" —
s
MKTDUB bqef. . std. Err. t P>t [95% Cconf. Interval]
_{_,Cl_l . 0001875 .0001413 1.33 0.187 —. 0000925 . 0004676

If Ha: < then Pi(T < T) = .906
1 L1 | |
If Ha:.not-= then Pr(|T| > |t]) = .187

S xE &tam:mxj\:"fhefr r(r>1t) = .004
] Sl

{ Y
., H’“‘- g Figure 7.7: Stata’s klincom test output.
DY,
.

ey

® Alternatively, you can directly type the command klincom pbpreg+pbpbeef-poscar.

278



First, the value under Coef. (0.0001875) is exactly bs+b,-b, (our estimator). Second, the value

under Std. Err. (0.0001413) is exactly Sb,+b,-b, * the standard error (or estimated standard

deviation) of our estimator. Therefore, the test statistic for our hypothesis test is
0.0001875/0.0001413 = 1.327, which is precisely the test statistic that Stata rerorts after rounding
(t=1.33). We can calculate the p-value = ttail(108, 1.327) = 0.0936537 or 5.4%. The klinconi
command actually calculates this value automatically and displays it irrthe rastrovv of Figure 7.7
(If Ha: > then Pr(T >t) = 0.094). It looks as if we have fairly strong (th0ugh maylie, not as strong

as we hoped) evidence that Ball Park is our leading competitor.

The method presented here is general and will work ror/any hyp:ithéses comparing a linear
combination of regression coefficients to a number. Fcr exameie, sLppose you wanted to estimate
if the effect on our market share would be bigger from a 10-cent drop in the Oscar Mayer price or
a reduction in the Ball Park prices of 25 c¢niz.on te regular brand and 9 cents on the special hot
dog. You would want to compare~=10*, vwith -15*55:9*B,4. Therefore, if you were doing a two-

tailed test, the alternative hypdthesis would'be the following:

Hy:-10%B,+15*B4+9*B, 0.

If you warited to see,if the effect of the Ball Park changes was at least 0.001 larger than the effect

of the Dscar Mayerichanges, the alternative would be the following:

r H,: -10*B,+15*Bs+9*B, < -0.001.
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In the first case, you would type 15*pbpreg+9*pbpbeef-10*poscar in the “Linear expression”
field of the klincom dialog box.” In the second case, you would type 15*pbpreg+9*pbpheef-
10*poscar+0.001.2 The Stata output would give you the needed estimated stancard-dewiation (as

well as the estimator), test statistic, and the appropriate p-values.

7.4 Detecting Multicollinearity

In the hot dog example, the presence of a multicollinzarity probleriiwas clear from looking at the
correlation between pbpreg and pbpbeef. However, irigeric«al, it-may be not so clear if a
multicollinearity problem is present. For examrle, suppose you found the correlation between two
independent variables is 0.65 or 0.75. Is there a‘raulticollinearity problem? How can we quantify
this? More importantly, looking at.ti5e carrelation bet}nfeen pairs of variables often may miss
important interactions among taree or more variables. These can cause multicollinearity problems

as well.

Is there an indicator G£.a nmiticGitincarity problem that may overcome these shortcomings of

simple correlations? The answerto this question is the variance inflation factor.

Variarice 1aflation factors measure how much the variance of the estimated regression
coefficierits aie criiarged compared to when the independent variables are not linearly related. For
example, suppose the variance of a coefficient is 6, and the variance inflation factor is 2. In this

case, the »ariance of this coefficient should be 3 (6 divided by 2) in the absence of

" The direct command would be klincom -10*poscar+15*pbpreg+9*pbpbeef.
& The direct command would be klincom -10*poscar+15*pbpreg+9*pbpbeef+0.001.
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multicollinearity. Clearly, the larger the variance inflation factors, the more severe are the
multicollinearity problems (i.e., the more that multicollinearity is contributing to the lack of

precision in our estimates).

For example, assume the t-ratio of a coefficient estimate is 0.5. In this case.ihe ceefficient imight
appear to be insignificant. On the other hand, assume the variance inflatior-factor is 36. This
means that the standard deviation of this coefficient is six times (bscause-the-squéie root of 36 is
6) larger than the standard deviation of this coefficient would be in the absznce of

multicollinearity. The t-ratio is the estimated coefficient divided by its sta:idard deviation. Thus,

the t-ratio (0.5) is six times smaller than it would be in ttie absence9of a multicollinearity problem.

In conclusion, in the absence of a multicollinearity prablem, the -ratio of this coefficient would
be 3 (= 0.5*6) and the coefficient estimate wouid have been significant. Of course, since
multicollinearity is present in our data, wve cannet conclude we have significant evidence of an
effect. We can say, however, that muitieollinearity.wags severe enough to have led to the

insignificance in the t-test.

Consider the same example &z betare, but now assume the variance inflation factor is 4. In this

case, the t-ratio of the.coeicieniwetild be only 1 in the absence of multicollinearity.

A thresholr-ottér.used for the variance inflation factor is 10. That is, if the variance inflation
factor i5 albave 10, ther: a serious multicollinearity problem exists in the data.
i obtain|the variance inflation factors using Stata, after running a regression click User>Core

Statistics»Model Analysis, using most recent regression>Variance Inflation Factors (vif).?

° Alternatively, you can directly type the command vif or db vif.
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Click OK, and Stata will report the variance inflation factors for all independent variables. To

illustrate how to check the variance inflation factors, we will reexamine the hot dog regression.

Consider the regression with all the prices (see Figure 7.3). MKTDUB is the deyericere vaciable.
The independent variables are all four of the price variables. The variance iiiflatien factors may
be found in Figure 7.8 in the VIF column. The variance inflation facto;s of.the twa/Ball Park
prices are 25.97 and 25.15. These are well above 10. Therefore, aswe deteririnea-hefore, a

multicollinearity problem exists in this regression and the two Ba;i Park pfices_are the

multicollinear variables.

. vif )
variable | VIF 1/VIF
pbpreg [_- 25.97 0.038508
pbpbesf 25.15 0.039765
poscai | 1.66 0. 603208
SAUG *1.56 0.733979
1 u
mMear VIF ! 13.53

Figure 7.8: Variance.infledon factors for the Hot Dog case.

Consider another regressioi= MKTDUB is once more the dependent variable. The independent

variables are-aii-the price variables except the Ball Park prices. The variance inflation factors are

the following:
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. vif
variable VIF 1/VIF
pdub 1.31 0.765329
poscar 1.31 0.765329
Mean VIF 1.31

The variance inflation factors of Dubuque’s price and Oscar Mayer’s price d@wa/1.24; therefore,
both the variance inflation factors are below 10. This indicates we do not rave-a seripus

multicollinearity problem in this regression.

7.5 Omitted Variable Bias

Multicollinearity can make it difficultro sbtain prezise estimates of the coefficients of strongly
related variables in the regressionequatiori-A diﬁererut and often more serious problem can occur
if we leave out one or more related indepenilent variables from a regression. This is called an
omitted variable bias aid we’ve.seen it at work in the refrigerator case and some of the case

exercises in Chapter'o."

Examine Case E:¢arcise 4 froni-Chapter 6 called Show me the money. In that case, we were
surpriszd *o see thet the more often a baseball player strikes out, the higher his salary tends to be.
This outzome-is neither spurious nor phony but is the result of an omitted variable bias. That is,
piayerz.whg, strike out a lot actually do make more money then those who do not, but they also hit
~.a lct.of hame: runs. (For instance, Sammy Sosa is, as of this writing, third in the all-time career
strike *O.l i list behind Reggie Jackson and Andres Galarraga, and all three are in the top-40 career

home run list.) The strikeouts2 dataset extends the dataset used in the case exercise.
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The original regression using just strike outs is shown in Figure 7.9.

. regress salary strike outs

5,

3.36 _

Source sS df MS Number.-Gf-abs = " 337

FC ¥, 335 = 6592

Mode] 84949301.8 1 84949301.8 Prob >F ™ | = 0.0000
Residual 431695388 335 1288642.95 R-squared = 0.1644
Adj.R-sguared = 0.1619

Total 516644690 336 1537633.01 ROOT "MSE = 1135.2
salary Coef. std. Err. t P>it] Tas%'con¥. Interval]
Strike_outs 14.8636 1.830671 8.12 0.")00‘.M 1126254 18.46465
_cons 405. 6697 120.8324 0.0 157. %9838 643.3556

Figure 7.9: Salary vs| str ke outs.
Rt

"

Watch what happens when we add the horrie rins variable to our model. We will see a major

=,

change in the coefficient on strike outs (see Figure.7.10).

8

- “\
. regress Salary Home_riuns strike jouis
source AR N Tegf MS Number of obs = 337
~ — F( 2, 334) = 90.59
Model 18176&\,_452'-~ Z 90850225.9 Prob > F = 0.0000
Residual 5340447728 334 1002827.06 R-squared = 0.3517
; Adj R-squared = 0.3478
Total m'“‘516(‘,.‘»5}6:}\'}- —-536 1537633.01 ROOT MSE = 1001.4
salary | CoefF std. Err. t P>t [95% conf. Interval]
- |
Homa_rums | 87.15262 8. 872896 9.82 0. 000 69. 69882 104. 6064
strike_outs |™, -3, 058299 2.436642 -1.26 0.210 -7.851397 1.734799
|_ _cons 329.045 108.9923 5.77 0. 000 414.6471 843.443
. S
5 i

-,
=,

[FigCap]Figure 7.10: Salary vs. home runs and strike outs.

The -Qoéfficient on strike outs has dropped from 14.86 to -3.06. What’s happening here? Which

one is the ‘right’ coefficient? Well, they’re both right, but the proper number depends on the

guestion you ask:
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i. On average, how much does salary increase for every strike out?
ii. On average, for a player with a certain number of home runs, how much does saiary

increase for every strike out?
The answer to the first question is about $14,860, and the answer to the secand is about -$3,060.

The direct effect of one more strike out is negative; that is, holding home iins'constant, the
owners would pay players less if they had more strike outs. What’s mpnrialn‘r here is the
existence of an indirect effect. Hitting a lot of home rung will make:the owners happy enough to
pay the player a higher salary, but trying to hit a home. rur; wviI_I ofter lead to a strike out. So, more
strike outs is associated with more home ruris, vivhich is associated with a greater salary. When the
regression only includes the strike out varizhle,the coefficient has to carry the weight of the
direct effect (which is negative) and-te-indirect effect {which is overwhelmingly positive) on
salary. In other words, omittiny the home-run 'variable from the regression biases the coefficient
of the strike out variable. %We will sea.this.cffect whenever related independent variables each

have a measurable impact ori-the tapendent variable.

by

Strike outs

Home runs

Figure 7.11: Influence diagram.
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CALCULATING THE EXTENT OF THE BIAS

Compare two estimated regression equations, where we omit one of the variablzs in the second

one:

y =Dbo +by X; + by Xz

y=Dbo' +bi' X

The bias on the coefficient of x; is defined to be b,'-h,. !t turns ciit that this bias is given by the

following:

b,'-b,=(effact of . on %) *(effect of x, on y)

The effect of x, on y is given by b,, and the 2ffiect of x; on x; is given by regressing x, on x;:

X, =Cy +C X

So, the exact formuia, is the following:

bll‘bl = C1b2

Tris foimuia remains valid if we have more than two x variables, provided we drop only one of
them between the two regressions. The only thing that changes is that now the c; is the coefficient

on X, in the multiple regression of the omitted variable on all the non-omitted variables.
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As an illustration, we can determine the bias in the strike-outs case by using the previous

regressions plus the one in Figure 7.12:

. regress Home_runs Strike_outs

source sS df MS Nuiber of/obs = 337
Fés, 1,%,3235) = 427.63
Mode 16259.9439 1 16259.9439 Probi~> F = 0.0000
Residual 12737.8247 335 38.0233572 ~R=sguared = 0.5607
adj R=squarec = 0.5594
Total 28997.7685 336 86.3028826 ROOE, M5 = 6.1663

M— I_I
Home_runs Coef. std. Err. t P>it| [¢5% /conf. Interval]
strike_outs .2056381 . 0099442 20.58 _ (.000 2860771 .225199
_cons -2.563036 . 6563605 -3.9C 0. 005 -3.854144 -1.271929

Figure 7.12: Regression of homezins vsstrike suts.

This new regression tells us that every: adsitianal strike out yields an average of 0.2056 home
runs. The rule for determining the-dias on the coe.ﬁicient of strike outs from omitting home runs
tells us to multiply the effect of st-ike outs on :ome runs times the effect of home runs on salary
holding strike outs fixedathe-coefficierton home runs from the regression in Figure 7.10) or
0.2056*87.1526 = 1752 \We ran \}erif); that this is the same as the change in the value of the
strike-out coefficier.1t when Ve go from the multiple regression with both variables to the simple
regression witii-ust strike outs:#14.86 — (-3.06) = 17.92.

.
Sign oi.the'Bias
The ornitted, variable bias in this example was positive (omitting home runs caused an increase in
.. the-coefficient on strike outs) but that is not always the case. The influence diagram in Figure

7.11gives us an idea how to generalize these results. In terms of the figure, the omitted variable
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bias on the coefficient of the variable in the upper-left box from omitting the variable in the lower

box is given by the product of the two lower legs of the triangle.

If the signs of the relationships depicted by both lower legs are positive, then thz Bias-will e
positive as we saw in the strike-out example. Similarly, if both relationshipzhave-a negative.sign,
then the bias will be positive. For instance, consider a simple regressic;i ofthe value of a house in
Hawaii on its age. You might be surprised to find a positive coefficienirarecince-newer houses
are usually more valuable. However, this result is easily explaines by takirg iiito account omitted
variable bias and the local real estate market. There is not mucti.lant-in I—'avlva;i, so the earliest
houses were built in the best places like the beachfront. i'he omittzd variable of “Distance to the
beach” will have a negative relationship with the housg’s age ;_mr'. with its value. Though the

direct impact of age is negative on the valug of a house, the addition of the positive omitted

variable bias can create an overall positive coefiicient.

Distance

to the
hearh

Figure 7.13: Influence diagram of real estate value.

Virhat 1 on sign is positive, and the other one is negative? For instance, consider a regression of
the number of priests in a city on the air quality, which has a negative coefficient. What might

cause that result? Does dirty air cause people to become more religious? The omission of the
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variable population size would explain it. A city with dirty air is usually big (a negative
relationship), and a city with many people living in it will usually need more clergy (a positive
relationship). The product of these two effects creates a negative omitted variable bias or: the
coefficient of air quality. If this indirect effect is stronger than the direct effect ciairguality on
the number of priests, which in this case is probably near zero, then the coefiicieri, in the siinple

regression will be negative.

SUMMARY

It is often useful to conduct hypothesis tests concerning zums and ditferences or general linear
combinations of regression coefficients. The izinear combina.tinrns of coefficients (klincom)
command in Stata can be used to carry q:it such tests. In the context of the Hot Dog case we used
such a test to compare the combined effect of Ball Pazk’s prices to the effect of Oscar Mayer’s

price on Dubuque’s market share.

A multicollinearity problein arisas vien ty0 or more independent variables are strongly related.
In the Hot Dog case. the relationship vsas between two highly correlated price variables; however,
correlation is a limited paiz-wisa,concept, and the problem of multicollinearity is more general
than this~Observing-a lack of high correlation coefficients does not ensure a freedom from
multicollihearity problems; therefore, variance inflation factors need to be used to detect

riartice!lirearity preblems accurately.
i£.a mivMiceilinearity problem exists, then significant variables may have low t-ratios and high p-

values. An F-test for joint significance must be conducted on the group of multicollinear variables

to properly evaluate their significance if one or more independent variables appear insignificant
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according to the tests on the individual coefficients and some of these seemingly insignificant
variables are involved in the multicollinearity. Nothing can be done to get rid of multicollinearity
short of gathering new data where the strong linear relationships among independent variables are

lacking.

The estimated regression coefficient on an independent variable may hg bizsed by tne omission of
another independent variable that is related both to it and to the dezeiuent vasiabie. In many
practical situations, you may suspect that such a variable may nave been omittzd from the
analysis, but no data is available to allow you to include it. In stich cases, béing able to reason
about the likely sign of the bias using the influence diagram can bz-helpful in understanding the

potential impact and importance of the omission.

NEW TERMS

Multicollinearity The térm used to dzsctibe the presence of linear relationships among the
irideperderita/ariaijles

Hidden extrapolatian ~ Making a pregiction using values of the independent variables that are
cellectively far from the sample data though each x variable is
individually within the sample data’s range

Base varichbles The variables in your regression you are not testing for joint significance

Audeuariables The variables in your regression you wish to test for joint significance

Variancé.infiation factor (VIF) A measure of how much the variance of the estimated regression
coefficients are enlarged as compared to when the independent variables

are not linearly related. Used to detect multicollinearity. A common rule
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is a VIF above 10 indicates strong multicollinearity involving that

variable

Omitted variable bias  The effect on a regression coefficient caused by omitting an imgortant

correlated variable from the model

NEW FORMULAS

F statistic, F = ((SSE(Xy, ..., xq)/SSE(Xy, ..., Xq, Xg+1, -4, xp))-l)*((ill-p :1)/(p—q))

p is the number of variables in the extended model, q:is tise number of variables in the base

model, and p-q is the number of variables bging tested.

The omitted variable bias on the coefficient of x;<froni-amitting x, is

bll‘b)l = C1b2

where each of these values cume Tiom the following estimated regression equations:
oy =DbothiXa+iaXe
e y=Dho'thi'x;

® Xg=CotCriy
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NEW STATA AND EXCEL FUNCTIONS

STATA

User>Core Statistics>Bivariate Statistics>Correlations (correlate)

Equivalently, you may type db correlate. This command displays a cprreic_tidn inatrix with the
estimated correlations between each pair of variables in the dataset. If arw/ of the variables are
non-numeric, Stata will report an error. To avoid this, you can 'specify the (. .Hurﬁeric) variables for
which you want Stata to calculate pairwise correlations ir-ti< “Variavies™ field of the correlate

dialog box.

Alternatively, you can directly type the comniand correlate varlist, where varlist corresponds to
the names of the variables for which you want te.calculate the correlations. Omitting varlist will
generate a correlation matrix for alt'varighles'in the current Stata dataset (provided that all

variables are numeric).

User>Core Statistics>Tast Hvpothesis, using most recent regression>Joint significance
(testparm)

Equivaleiitlv, ou nizy type db testparm. This command opens a dialog box that asks the user to
select the added variables in the “Test coefficients of these variables” field. Choosing the
“Jointly-=(mal to zero” option will tell Stata to conduct an F-test, which we used to determine
1oint sigriificance of the added variables in a regression with the base and added variables as the
radependent variables. Note that you need to have run a regression on your extended model
before using this command. The Stata output will display the F statistic and p-value of a given F-

test.
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Alternatively, you can directly type the command testparm varlist, where varlist contains the
name(s) of the added variables. The native menu path in Stata is

Statistics>Postestimation>Tests>Test parameters.

Ftail(nl, n2, f)
Typing display Ftail(n1, n2, f) into the Stata Command box will gerierate tria p-value associated
with a given F statistic, f. nl is the number of variables being fested (p-g),anain2 1s the degrees

of freedom for the extended model with all the variables included (ri-a-1).

User>Core Statistics>Test Hypotheses, using most.recent reqression>Linear combinations
of coefficients (klincom)

Equivalently, you may type db klincori. This cemmand opens a dialog box that asks the user to
enter a linear expression of regressici-ceafficients..Do:s50 and then click OK, and Stata will
conduct a hypothesis test with the null hypothgsis “expression=0.” Stata reports the test statistic
and p-values correspondirig.to «ll thiee tyres of alternative hypothesis (i.e., “expression” <, #, >

0).
Alternatively, you can direcily type the command Klincom expression.

Note thiat 1f.you typ: lincom expression™® instead, Stata will execute its built-in linear
combinatiari-ef ceerficients test rather than the customized klincom modification of lincom. The
Galy difference is that the klincom command will display p-values corresponding to both one-

and.two-sided tests, while the lincom command only displays the p-value for the two-sided test.

1% The corresponding menu path for this command is Statistics>Postestimation>Linear combinations of
estimates. Equivalently, you may type db lincom.
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User>Core Statistics>Model Analysis, using most recent regression>Variance Ir:flaiion
Factors (vif)

Equivalently, you may type db vif. This command reports the variance inflztion factors for-zach
independent variable in the most recent regression. We can use this cornmand te detect

multicollinearity.

Alternatively, you can directly type the command vif.

EXCEL

FDIST
Typing =FDIST(X, p-q, n-p-1) ir0 an emnty cellvaturns the p-value associated with a given F
statistic, X. p is the number of|variables in*he axtended model, g is the number in the base model,

and n is the sample size.
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CASE EXERCISES

1. Show me even more money.

Running an agency that represents many professional athletes, you are Grter: fori.ed linto serious
contract negotiations. Having recently fired your assistant, you have decideq t;) evaluate the data
collected to support your argument that the player whose contract you are né'goti'ating is currently
underpaid. The data in the strikeouts3" file extends the previcus Gataset tr,' inrilude much more
information.

Start by conducting a regression using all of ifig data provided-ts predict salary. Do the signs of

all of the coefficients make sense?

Next, remove each of the variables that aze iflsigniﬁcant based on a = 0.05. Are the variables that

you removed jointly significan:? kaw can you/tell?
2. Video sales

Your coinpany-nas tri2 rights to distribute home video of previously released movies. Your goal is
to estirpate.the voluine of DVDs you can expect to sell based on box office totals of the original
imovies. Data are available for 30 movies that indicate the box office gross (Gross, in millions of

dollars) and he number of DVDs sold (Videos, in thousands).

! From “Pay for Play: Are Baseball Salaries Based on Performance?” by Mitchell R. Watnik. The Journal
of Statistics Education, Volume 6, Number 2 (July 1998)
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regress Videos Gross
Number of obs = 30
R-squared = 0.7278
Adj R-squared = 0.7180
RoOt MSE = 47.8668
videos | coef std. Err t P>t [95% Corf—Tatervall
- - —————— +____________-_-_-_-_-_-_-_-_--_-_--_-____-_______- —————— e i —
Gross | 8.083109 . 5008435 16.14 0.000 7.057178 $..10594
cons | 26.53514 11.83184 2.24 0.033 2.25871%., 50. AL157

You are planning for the video release of Matchstick Men that ¢rossed $36 miliion. in the Stata

Data Editor, you enter 36 for Gross in a blank row, execute the command c/b éonfint, and get the

following:
predicted se_est_ mean | se_ind_pred i
317.53 13.89164 49.84152

a. Predict the DVD sales far I\/l.:'..h"..hstlck Men.

b. Construct a 95% predicticn intervél foi the video sales of Matchstick Men.

c. Your firm has a izucKiead-of fil_rhs that were huge flops and grossed $0 each. What would
you expect.ave'rage' Viaeo s-al:wq to be for these films known as the “flops™?

d. Based on your fegrés:;?on, can you prove at a 5% significance level that the average video
saies of tiie.flops will be greater than 10,000 copies per film?

3._B-csctinol cosis

“The L:Q(_:hoo:sZOOZ12 dataset contains information on the top business schools according to a 2002

Business Week magazine survey. Use all four numerical variables to develop a model that

12 Merritt, Jennifer. Business Week, 10/21/2002 Issue 3804, p84
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explains the “estimated total costs” of attending the program. Does the coefficient of “base salary:

median” make sense? What might be causing this unusual result?

4. Video libraries

A group of independently owned video stores in the south has formed 4 trace grour to help
support their survival in the face of competition from dominant nationaichains. Tre group of 29
store owners have collected data in the videostores file, which ccntains the average monthly
sales, neighborhood population (in thousands), annual advettisiing exigenses, and the number of
DVD and VHS films in the libraries (films that have peen availakie for over one year) of each
store. A big problem facing these small stores is if they shculd updale their collections of older
films by adding DVD versions to their currént fibrary. Though they usually buy the new movies
in both formats, the lower sales volumes atthese-small stores make the expense of an older DVD
hard to justify. The typical store caiiDrealeven if :he_ DVD brings in more than 1 dollar per

month.

Using all of the variahles provided+o you by the trade group:
a.  Which of thefgur vananies given seem to be significant predictors of sales?

b. On average, how mtgh does one DVD add to the monthly sales of one of the stores?

o

Provide &95%, confidence interval for your estimate.

B

Sheuld the stores upgrade their DVD libraries?
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CASE INSERT 2

COLONIAL BROADCASTING

In this case, we will use our regression skills to help run a broadcasting compary. Tihe Colonial
Broadcasting Company case describes the problem of Barbara Warringtca, vice sresident of
Programming at Colonial Broadcasting Company, who has to dzcidz-which elevisicn movies to

broadcast and when to schedule them.

The assignment is to answer all questions in part A of th'e case except question 7a and all

guestions in part B except question 12.

In the regression output in the case, soi?% nuniaers aapear within parentheses indicating a
negative number. That is, (8) mgans-2.All uestions can be answered without running any
additional regressions. Howevr, you are free th do any supplementary analysis using the data

contained in the colonial*ile.

In answering question 1i;.you-will think you need to know the standard error of prediction, and
you will he&'right. i-owever, the regression output in the case only provides the standard error of
regresgion. So, for convenience only, you may use the standard error of regression to approximate

thestanagard errarof wrediction in your answer.

The'€olonial Broadcasting Company case (parts A and B)* is located in the packet of cases

bundleg to the back of this text.

! Colonial Broadcasting Co., Harvard Business School Case, Product #9-894-011.
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CHAPTER 8

THE ADVERTISING CASE:

HETEROSKEDASTICITY AND LOGARITHMS

This chapter presents a brief overview of natural logarithms and (emonstrafes their use as a
technique to model curvature in regression and as a methsd-for kamoving hetéroskedasticity or
non-constant variance. Special concerns when making predictions using regressions with
logarithmic dependent variables are discussed. An example-relating-advertising expenditures to
sales is explored. The detection and implicztioris of heteroskedasticity are explained. Case

Exercise 1 reexamines the hot dog casz frain.Chapter 7 with these new tools and issues in mind.
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8.1 A Primer on Logarithms in Regression

Logarithms are used extensively in statistics. In particular, log-linear regressior‘moueis are.a
useful alternative to the standard linear form. They work well in various applicatiens where'sorie
of the assumptions of the standard linear regression are not satisfied. Morecve_r, the coefficients
of the independent variables in a logarithmic regression are easy te-nteigret;-and e whole

equation is easy to use for prediction.

Log forms of regression are used at least as much, if not‘more oft<iy, than the linear form. So, we
need to have a good understanding of what they mear:ana-how ttiey;work. To achieve this goal,
we describe the main properties of the logarittim function (the so-called natural logarithm, In in
Stata or LN in Excel), and show how tie lcgaritizmic transformation of variables can be used in
regressions. We will talk about diffeient!ng regreseiqn forms (log-log and semi-log), and the
interpretation of coefficients in tnese regressions. Then we will highlight the differences
between linear and logaritiimic vegrezsians as.far as prediction with these regressions is
concerned. Finally, we will 1r#roduce an important practical motivation for using log-regressions:
logs often “cure” hetezoskedasticity:<A more in-depth analysis of heteroskedasticity including

detection, effects, and fixes iz.th2 final subject of the chapter.
PROFERTIES CGF THE NATURAL LOGARITHM FUNCTION (In)

Iri{X) is a yunction that can be evaluated for any positive x value. We show the graph of the

funition below (Figure 8.1, generated in Excel). To get the graph, we created a column of
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different x-values (ranging from .0018 to 20), generated their logs (by typing = LN(A2) in cell

B2, etc.), and generated the graph with the chart-wizard.

LN(x)

Figura.8.1: Graph of in(x) vs. X.

The function is increasing-averywiiare, In(1) = 0, and, as x approaches 0, In(x) tends to negative
infinity." The logarithm is a concave fiznction in that it increases more slowly as x increases (i.e.,

the slope decreases as X iacreazss).

An interesting property, of the logarithm function is that if you keep multiplying x by a constant
(fsr-cxamnle, 1Tyou couble it starting from one, i.e., 1, 2, 4, 8, 16), then the logarithm will
increase-by ¢ constant increment. In the example, In(1) = 0, In(2) = 0.693, In(4) = 1.386, In(8) =

2,078, In{1€) = 2.773; the increment is about 0.693 or the log of the multiplier, 0.693 = In(2).

! We will use Stata’s In(x) function to do logarithmic calculations. To calculate In(1), for example, you can
type display In(1) in the Stata Command box.
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In general, if you increase a number by a fixed proportion (say, by 15 percent, i.e., you multiply it
by 1.15), then the logarithm of the number will increase by the logarithm of the multiplier (in the

example, by 0.1398 = In(1.15)).

The logarithm function transforms the proportional increments (“doubling” or “increasing-by
15%”) into additive increments (“adding In(2) = 0.693” or “adding In1.15) = 9.1398”). In other

words, the logarithm function transforms growth rates into (additive) growih.

Perhaps more interesting, the following rule of thumb can be usad ¢ translating small

percentage changes in x into absolute changes in In(x).

Every 1% change in x corresponds‘to (approximately) a 0.01 change in In(x).

That is, a k% change in x corresperids t0°a0.01*k change in In(x), for any k not too large. For
example, a 5% increase from Z0 rasults in 21; :f you take logs, the difference between In(21) and

In(20) is equal to In(21)-k1(29) ~.3.05-2.89 =9.05.

The In function has miany Gther interesting and related properties. For example, the logarithm of a
product, In(2*?), is equal to tiza-sum of the logarithms of the two factors, In(2)+In(3). Also, In(x%)
= a*In(x), and In(2/x) = -In(x).

sivyexaimpiessnow where logarithms play an important role in the world. In music, the
puozition ¢f akey on the keyboard is a logarithmic function of its pitch’s frequency. Our senses, in
general, mieasure things in logs (this is called Fechner’s law): “As stimuli are increased by

multiplication, sensation increases by addition.” Logs come up in financial computations, too.
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Suppose that you put $1 in the bank, and a year later receive $1.20 (quite a good deal). What
interest rate does this gain correspond to if interest is compounded continuously? The answer is r

=1In(1.2) = 0.1823, or 18.23%.
The inverse of the natural logarithm function is the exponential function, exp (ii-Stata). I1*/ou

have the value for the logarithm of a variable, then, to get the variable’s vaiue, you

“exponentiate” it. That is, exp(In(x)) = x for any positive number x.

8.2 Logarithmic Regressions: Forms and Iriterpretation of the

Coefficients

Recall that in the standard linear regression seiting e assume the following:

(&) Y =_BO+B1X+error term.

Here, we are saying.that a.one-unit increase in X causes Y to increase by ; units, on average. For
example, if X is price in dGtlars-and Y is sales of wheat in thousands of tons, 3, is the number of

thousands oftans thét, average wheat sales change by when the price is increased by one dollar.

We exdiniiie two legarithmic regression forms when you have a single independent variable. One
is called the semi-log specification, and the other the log-log specification. In the semi-log
spacification, you create a new variable, InY = In(Y), and regress it against X. In the log-log

specification, you regress InY against InX = In(X).
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That is, the semi-log regression model can be written as follows:

(SL) InY = B,+pX+error term.

Here, the interpretation of the coefficient 8, is that when X increases by 1.dnit. InY, changes &y 1
units, on average. Because of the interpretation of logs given above, we-can 3ay that a one-unit

increase in X is associated with approximately a ($;*100)% charge in Y.
For example, let the equation be InY = 1-0.03*X. Each.unit iricrease in X lesds to a 0.03 decrease
in InY, which corresponds to a 3% decrease in Y. (We had to multigly 0.03 by one hundred to get

3, and then we added “percent”.)

The log-log regression model with a sing'e X-yariehle is as follows:

'(_LL) InY = B,+B1InX+error term.

Some X variables zannot appear in a i@g-log regression because they take non-positive values. A
good example is when X-is a t:immy: You cannot take the log of a dummy because it sometimes

equals 0.

The-interpretation of the coefficient in (LL) is interesting: A 1% increase in X will imply a $:%
changein Y3 Why? A 1% increase in X corresponds to (approximately) a 0.01 increase in InX =
1 (X)=Aiccerding to (LL), a 0.01 increase in InX will lead to a $,*0.01 change in InY. This

change, in turn, corresponds to (approximately) a ;% change in Y.
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For example, let the equation be InY = 1-3*InX. Then a 1% increase in X leads to a 0.01 increase
in InX, which implies a 0.03 decrease in InY. This corresponds to a 3% decrease in Y. Therefore,
a 1% increase in X leads to a 3% decrease in Y. Here, we do not multiply the coefficient,by 100

in contrast to what we had to do in the semi-log case.

The natural interpretation of the coefficient of X in the (LL) regression‘is tixat it-relates a
percentage increase in X to a percentage change in Y. Contrast this-witii-theinterpretation of the

coefficient in a linear regression (L), which relates a unit increase'in X to ¢ unit change in Y.

You might recall from microeconomics that the percentage respors? in a quantity to a percentage
change in another quantity is called the elasticity. Thus, Ii: eqL_JatEon {LL), we are assuming the
elasticity of Y with respect to X is B;. Examples include where Y is sales, X is price, and B, is the
price elasticity of demand; where Y is sales;.andX is income, and 3, is the income elasticity of
demand; and where Y is cost, and-X1s otinut, and R, s the output elasticity of cost. For this

reason, the form (LL) is widely used and o prectical importance.

In a multiple regressien;-ynu riay Fiave some X variables in logs and some others in their original

linear “measurement u2its: ™

INY = Bo+P1InX +BoX,+. . . Ferror term.

Such amixed semi-log/log-log regression form may be necessary to accommodate dummy
variahles‘in a log-log regression, for example. Remember, you cannot take In of a dummy or
othera:iable that sometimes has zero or negative values. The interpretation of the coefficients

follows just as above. Holding the other included variables fixed, a 1% increase in X; will change
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Y by B1%. Holding the other included variables fixed, a unit increase in X, will change Y by

approximately (B,*100)%.

8.3 Prediction With Logarithmic Regressions

When you transform some variables using logs and run a logarith:iiic regressian, rémember you
are no longer working with the original X,Y data. This affects/ho'w you do*forgcasting in two

ways.

First, when you are using a log-log model, InX is the radependerit variable. This means that if you
want to predict when X = 100, you do not ente: 100 in Stata’s Data Editor. Rather, the X in the
regression is In(X). Thus, you must reremisar to"&/pe in the value 4.6051702 (=In(100)) in the
appropriate cell in the data editor .{Note tzat when‘egriputing logarithmic values it is a good idea
to keep more decimal places than usual as they can make a difference when converting back to

the original units. For examigle, ‘axp(4:6851702)=100, but exp(4.605)~99.98.)

The second importantthing-is that 1T you are using InY as the dependent variable (e.g., in the SL
model or the.L.L._model), whaithe Prediction, using most recent regression (confint) command
will give vou is a‘greaiction, a confidence interval, and a prediction interval for InY and not for
Y. Sinca thiz.is not:typically what you want, you must reconstruct the prediction for Y, the Cl,
andiae PIxTo do this, you must exponentiate Stata’s prediction output so you are getting Y and
nat.InY. Thig must be done for the fitted value (i.e., the prediction) and the ends of the confidence
and-prediction intervals. In addition to this, it turns out that exponentiating introduces a

downward bias in the Cl and in the estimate for the average value of Y (but not for the estimate
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of an individual value of Y). Typically, this bias is small in practice, but it can be large and you
should get in the habit of correcting for it. The way you do this is to multiply through by exp(s*/2)
after exponentiating, where s is the standard error of the regression which is foundin the Root
MSE row in the Stata regression output. The expression exp(s¥/2) is called the cofrectien tactor.
This bias is absent from the PI or when estimating an individual value of Y.“Therafore, youmust

not use the correction factor in calculating the PI or your estimated individeal value of Y.

8.4 Ad Sales: Using Logarithmic Regressions

We will study an interesting application of logs in the-Ad Sales case'that uses the data in the file
adsales. This dataset contains observations.ior.ihe sales of a product (variable sales) and
advertising expenditures for the same nioduct (veriable expend). Each are measured in thousands
of dollars. Should we anticipate a lixiear-+elationstiin petween sales and advertising or do
diminishing returns exist? In ¢ther words,:it is likely that each additional dollar spent advertising
may not have as much of.dir.impact ‘as.the-previous dollar? The scatterplot in Figure 8.2 suggests

diminishing returns from advertising.
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Figure 8.2 Scattérplot of sales vs. expend.

A log-log model might be appropriate. To cee thié, you may use the residual plot techniques
introduced in Chapter 6 to diagnose curvattre problems. If you regress sales against expend and
then plot the residuals versus-the-nredicied vaiues, you will see distinct curvature in that plot. This
means that the linear meastis i_qad'equa-te. We have seen three types of non-linear models thus
far: quadratic, semi.-log,- and-log-log. In order to implement them, create three new columns that
contain the.rateral logarithms-cr variables expend and sales and the square of expend
respec'rlive'.y. Labéi.theém as Inexpend, Insales and expendsquared.? By trying each of the three
non-linear nadels.and examining the plots of residuals versus predicted values, you may verify

that the log:log model appears to be the one that best captures the curvature in the relationship

~.._(ad so remcves the curvature from the residual plot).

2 You can generate these variables in Stata by typing the following commands: 1) generate
Inexpend=In(expend); 2) generate Insales=In(sales); and 3) generate expendsquared=expend”2.
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Run the regression for Insales against Inexpend. Suppose we want to obtain the predicted
individual and average values of sales and confidence and prediction intervals using a 95%
confidence level when spending $2,000 on advertising (expend = 2). First, calculate in(2)
(=.69314718), then open Stata’s Data Editor and type or paste this value, .69314718;- ceil
Inexpend[174] (i.e., row 174 and column Inexpend). Minimize or close the Data ditor. Then,
click User>Core Statistics>Prediction, using most recent regressioti (cenfini) or type db
confint. Click OK, and Stata will give you, in row 174, the predicteavalie and cenfidence and
prediction intervals with 95% confidence level for Insales when Iriexpend = Ini2 = 0.69314718.
To get the predicted average value for sales when expend = 2, yu c¢an typel gznerate
pred_avg_sales=exp(predicted)*exp((e(rmse)"2)/2) it the Stata-Command box (i.e.,
exponentiate the prediction for Insales and then multiply L th_e correction factor; e(rmse) is
where Stata stores s, the value of the standard e:ror of the regression (or Root MSE)). Open the
Data Browser, and you will find the predicted avarage sales when ad spending (expend) = 2 in
cell pred_avg_sales[174]. The resuting-number sioulcbe 16.71939 or $16,719.39. To get the
predicted individual value for sales when'axpend = 2, you can type the command generate
pred_indiv_sales=exp(predictad)."@pen.the data browser and look at the cell

pred_indiv_sales[174]. The resulting number should be 16.71864 or $16,718.64.

To obtain the corrected convidenrce interval, you can type the following commands: 1) generate
Cllow_coriected=exp(Cllow)*exp((e(rmse)”2)/2) and 2) generate
Cllhiga_cerrected=exp(Clhigh)*exp((e(rmse)”2)/2). You will obtain the 95% confidence

Interval Ter average sales when expend = 2 as (16.69529, 16.74352) or ($16,695.29, $16,743.52)

(in cells Cllow_corrected[174] and Cllhigh_corrected[174], respectively).

To obtain the correct prediction interval, you can type the following commands: 1) generate

Pllow_corrected=exp(Pllow) and 2) generate Plhigh_corrected=exp(Plhigh). You will obtain
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the 95% prediction interval for sales when expend = 2 as (16.40878, 17.03435) or ($16,408.78,
$17,034.35) (in cells Pllow_corrected[174] and Plhigh_corrected[174], respectively). Notice that

we did not use the correction factor in calculating the prediction interval.

When you are done, rows 172 to 174 of your data sheet will look like Figure 8.3:-4f you waiit te
calculate the confidence and prediction intervals for any other confiderice level sopen the
Prediction, using most recent regression (confint) dialog box acziimand type the.confidence
level that you want in the “Confidence level in %” field. Values iji the pred_ai/g_sales and
pred_indiv_sales columns will remain unchanged. However, te, getithe corlrect Cland PI, you
will have to regenerate the variables Cllow_corrected, Clhigh_cgrrected, Pllow_corrected,
and PI_high_corrected. To do so, for example, you ¢an t5he _the conmand replace
Cllow_corrected=exp(Cllow)*exp(e(rmse)?2/2} after you have rerun the confint prediction

command with the newly specified confidence ievel.?

You may also type in other values of InexXjpend in the data editor. To get the appropriately
transformed prediction, Ci;-ana'Pl li-this case, use the Prediction, using most recent regression
(confint) command again afier yoe.have entered new values of Inexpend. Then, regenerate the
variables pred_avg “zales;hreu-indiv_sales, corrected_Cllow, corrected_Clhigh,
corrected_Pllow, and correcteciPl_high by typing replace... instead of generate... in the
respective comrizandsthat you used to generate these variables originally. For example, to
regenerate the variavle/pred_indiv_sales, you can type replace

pred_indGiy -sales=exp(predicted).

® Similarly, you can type the following commands to regenerate Clhigh_corrected, Pllow_corrected, and
P1_high_corrected: 1)replace Clhigh_corrected=exp(Clhigh)*exp(e(rmse)”2/2), 2)replace
Pllow_corrected=exp(Pllow), and 3) replace P1_high_corrected=exp(Plhigh).
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expend sales Tnexpend Insales expendsqua~d predicted se_est_mean se_ind_pred CIlow CIhigh PITow PIhigh

172 2.5074012 17.340694 .9192469 2.853056 6.287061 2.845768 . 0007753 . 0094806 2.844237 2.847298 2.827053 2.864483

174 . . .6931472 . . 2.816524 . 0007306 . 009477 2.815082 2.817966 2.797817 2.835232

pred_avg_s~s pred_indiv~s CIlow_corr~d CIhigh_cor~d PIlow_corr~d PIhigh_cor~d

172 17.21554 17.21477 17.18921 17.24191 16.89559 17.53998

174 16.71939 16.71864 16.69529 16.74352 16.40878 17.03435

Figure 8.3: Prediction for sales with expend = 2.

8.5 Introduction to Heteroskedasticity

Finally, we should talk about an important reason why lsg=regre:sionsare useful that is separate
from their use in modeling curvature as in the Ad Sajes application.'A key reason for using
logarithmic regressions is simple: by taking the logarithm oi¥-and.regressing it on the X
variables, which may be in linear units or in lcgs, we are often able to reduce heteroskedasticity
(non-constant error variance).

Why? Suppose the relationshiji between Y ‘and X is such that average Y = B,+p1X; however, an
individual observation’s deviation. from the average (the “error term”) is proportional to Y. For
simplicity, imagine.ihemurvidsal Yi<at any given level of X;) is within +2% of the average Y at
Xi. This structure is heteroskedastic. The standard error of the regression is not constant but

instead incrgases-groportionally with Y.

Now se¢.whai-haspens when we create InY = In(Y), and regress this variable against X or InX.
That 15;-we tan use a semi-log or a log-log specification. A +2% error in Y will become a +0.02

“erroi-in 1Y/ The new error term is not increasing with Y anymore; the error has become

homoskzdastic.
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This example exhibits what often happens in practice: a heteroskedastic regression, where the

error term is approximately proportional to Y, can be transformed into a homoskedastic

against InX.

Figure 8.4: Y vs. X.

against X appears to be linear but heteroskedastic. The errors are getting larger as

ote the “cone-shaped” cloud of data points.
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InY

In the second scatterplot (see Ficure 8.5), e

surprising: If Y is indee

transformation of Y.
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Figure 8.6: InY s. IhX.

The third plot (see Figure 8.6) shows that the hzteroskedasticity is gone, and the curvature

introduced by the semi-log model is gene. @9, ifithis log-log model. This is beautiful.

The situation illustrated in thege tliree scatizrpints is not always the case when we find
heteroskedasticity in the tiriear $pecificatian, but it is fairly typical. A log-transformation of the
dependent variable ¢ften resoies riateroskedasticity, and at least one of the possible log-
regressions (LL or SL}.often works i terms of linearity. In the scatterplots, the SL specification
exhibited curvature, and the iz!_specification did not. However, there are many examples in
which the reverse-is trie and LL exhibits curvature. In other examples, both models effectively
capturethe*curvature iri the data.

Ir-Sectior; 8.7, we will explore heteroskedasticity, its detection, effects, and possible fixes, in

moia_depin.
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Summary for logarithms in regression

As we stated earlier, a k % change in (any variable) X corresponds to approximately ¢ k*0.01
change in its logarithm, InX, for any k not too large. This property of the logarithm isuseft! in
guiding the interpretation of coefficients in a log regression. It also allows s to eiiminate
heteroskedasticity when the error term is approximately proportional t« the de_pendent variable:

we take the logarithm of Y and regress it against X or InX.

The two forms of logarithmic regression we examined are-semi=!og (inY-dgainst X) and log-log
(InY against InX). In the semi-log case, we multiply the coefficierit'on X by 100 to get the
percentage change in Y as a result of a unit increase ii: X, alding ali other included variables
constant. In the log-log case, the coefficient'is tne elasticity of Y with respect to X (the
percentage change in Y for a 1% increzse '=.X), rolding all other included variables constant. If a

variable takes on zero or negative yaites;-then we canrot take its logarithm.

When using a logarithmigs reqrezsiori-far siediction, we must exponentiate the fitted InY to get the
prediction for an individual Y-(anG-the same applies to the prediction interval). For the estimated
mean of Y (predicting-an dverage v, we have to exponentiate the predicted InY and multiply it
by the correction factor, exjs{s%2), where s is the standard error of regression. The same applies
to the calculatiori-af a'zonfidence interval for average Y: exponentiate the two limits and multiply

them by the-correction factor.
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8.6 An Optional Mathematical Digression

Two comments for the more mathematically inclined:
1. Another look at the change in InX for a change in X using derivatives:

Those of you who took calculus may remember that the derivstive of the matuiial logarithm

function is dIn(x)/dx = 1/x. In other words, the slope of the (naturalj-4ngaritnm'curve is 1/x at x.

What does this mean? The slope tells us that for a small Az increase in X, the function In(x) will
increase by Aln(x) ~ (1/x)*Ax = Ax/X. In other vwords, the absolute change in the logarithm of x is

approximately the percentage change it x £the approximation works best for small Ax changes).
2. Another look at the logarithnic form.

The inverse of the In-functiori:-the exp function, can be written as exp(x) = €*, where e =

2.7183.... This famotiz.coriztant 18 Known as the basis of the natural logarithm, or Euler’s number.

Exponentiating both sides ofthe’equations SL and LL, we get the following equations:

‘ (SL) Y = ehorfix

L (LL) Y =ebox™

We hiave omitted the error term from these expressions for simplicity. (The error term would be

error

multiplicative: There would be a factor e multiplying the right hand sides of SL"and LL".) You
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can see the relationship between Y and X is non-linear in either model. Moreover, these
regression forms make precise the meaning of the coefficient on the X variable in the SL and LL

specifications.

Consider the SL specification and increase X by one. For concreteness, supjose 74, increases-froin
0to 1. As a result, Y will change by a factor of e*; in the example, it goes irom-e 1o e?*P1, So,
the percentage change in Y is 100%(e™ * P-ePo)/efo = ((eP1-1)*100),whicri;-for-emaii-B,,

approximately equals a (8,*100)% change. (You can check: e ~(1+p; for sméll B,.)

The interpretation given earlier for the coefficient in the/ LL specitication is exact: In the LL

regression, B is the elasticity of Y with respect to X.

8.7 Heteroskedasticity: Detectirig, Effect on Results, Possible

Fixes

Four basic assumptions are needed for'the regression model to give us the best estimates:
linearity, constant error variance, independent errors, and normal errors. The second of these

assumptions.is.the assumption that the error term has the same variance for all observations:
Regressior-Assumstion (homoskedasticity): Var(g;) = o for all i.

‘I'he puipose of this section is to show you two methods for checking whether this assumption is
satisfied in any particular application, to tell you what goes wrong when this assumption is

violated, and to suggest possible ways of fixing violations.
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Detecting a Violation: There are at least two useful ways to detect variations (heteroskedasticity)
in the error variances. The first technique is to run the regression and examine a plot of tae
residuals versus the predicted values. What should we expect to see on this grarii? ii-cor
regression assumptions are satisfied and the error term for each observatior-nas tize same
variance, then the predicted value we look at should not affect the vertical cnread (7 way of
visualizing variance) of the residuals. Thus, the vertical spread in rsifiis-on tre granh should

remain approximately the same all the way across.

In contrast, if the graph of residuals versus predicted valies is congsshaped or otherwise varies in
a systematic way in the vertical spread of the residuais, this in_dimtes a violation of our constant
variance assumption. Below is an example @f a’plot of residuals versus predicted values that
displays a spread in the residuals that increases &s the predicted value increases (see Figure 8.7).

This pattern is often seen when analyzing data on“incorne levels, prices, or asset values.
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Figure 8.7: Resiutel plot-yith heteroskedasticity.

Though examining the graph gf the residucI;»ersus the predicted values can be useful, it can be
difficult to see if clear eviaencenf nen-corstant variance exists through graphical methods. To
avoid some of these nroblems; more guantitative techniques are available for detecting non-
constant error varianca. O T tite-casiest to implement is a version of the Breusch-Pagan Test
(named after its inventors). iFais‘consists of a hypothesis test where the null hypothesis is that
Var(g;) is constarit.(homoskedastic) and the alternative hypothesis is that Var(e;) varies with the
predicted values (y-nat's) in a linear way. Stata performs this test and produces the p-value for us.
Te-ao thisfirstiun a regression. Then, click User>Core Statistics>Model Analysis, using most
_ resent reyression>Breusch-Pagan heteroskedasticity test (hettest) or type db hettest.” The p-

vaita for this test will be the value corresponding to Prob > chi2. A low p-value suggests

* The corresponding typed command is hettest.
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rejecting the null and a high p-value suggests not rejecting it. Therefore, a small p-value (usually

below .1 or .05) is strong evidence of heteroskedasticity.

Effect of a Violation: Suppose we discover the constant error variance assumptior iastheen
violated. What are the consequences? The estimates of our regression coeffiCients.remain
unbiased, but the calculated standard deviations and interval estimates are #0 lenger good
estimates. Thus, we will no longer have a good measure of the accuiacy-of Gur esiimates and
predictions. Without a good measure of accuracy, we will not kngw how raucl; to rely on our
estimates in making decisions, we will not be able to judge if we need.to galther more data, and
we will not be able to conduct correct hypothesis tests t¢' measure-tie strength of our findings.

What can be done to remedy this?

Possible Fixes: Transforming the variables.usirig. logarithms (in semi-log or log-log form) if
variance increases in the fitted values-cften helps:~To sze if it does, transform the variables, run
the transformed regression, eximie the residuals versus predicted values, and run the Breusch-
Pagan Test again. Transfermatian using legarithms has worked if a serious indication of non-
constant variance no_longer t=curs. More advanced techniques than we will cover, such as
Weighted Least Squazes, iRay rieip-i situations where data transformations do not. (An advanced
reference describing this proeedere is Chapter 10.1 in Applied Linear Regression Models, 4th ed.
by Neter, Kiatner;. Nathtsheim, and Wasserman.) Other advanced methods include procedures for
calculatingsstandarc’ errors (and the associated interval estimates and hypothesis tests) that are
robl-lst toeieroskeuasticity. In Stata, robust standard errors can be calculated instead of the usual

standard €rrars when running a regression by using the options on the SE/Robust tab of the

regress dialog box.
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NEW TERMS

Elasticity

Semi-Log (SL) Model

Log-Log (LL) Model

Correction factor

Heteroskedasticity

Breusch-Pagan Test

The percentage response in one quantity to a percentage ch_angfa in
another

A regression model in which the dependent variabls is transformed using
the natural logarithm function In and the inde_pendqntfveriable(s) are not
A regression model in which the deperideri ant ir]dénerido.: it variables
are transformed using the natural logarithim functicn I:1

The value, exp(s°/2), used to ;orr.ecf for a deamviard bias in regression
estimates of average Y (includirg confidancz intervals for average Y)
induced by using In(*) as the dependént variable

Non-constant varianca, This violates the assumptions of the regression
model

A statisticai Test.uset, to detect heteroskedasticity in a regression. Low p-

values, of this test indicate heteroskedasticity is present

NEW FORMULAS-.

Properies'of Loga¥ithras

In(x*y) = In(x) + In(y)
In(x*) = a*In(x)

In(L/x) = -In(x)
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Correction Factor = exp(s®/2) where s is the standard error of regression

NEW STATA AND EXCEL FUNCTIONS

STATA

User>Core Statistics>Model Analysis, using most recent regression>Breusch-Pagan
heteroskedasticity test (hettest)
Equivalently, you may type db hettest. This command compute the: Breusch-Pagan Test p-value

that may be used to detect heteroskedasticity in the mozt receii regression model.

Alternatively, you can bypass the dialag box*hy directly typing the command hettest.

In
Typing display In(X) inte the-Stata Commarid box returns the natural logarithm of the number X

as long as Xisositive.

exp
Typing diplay expfX) into the Stata Command box exponentiates the number X and displays the
- resuli. Exponentiating is the mathematical opposite or inverse of the natural log
function. exp(X) = e* where e is a special mathematical constant having the

property that In(e) = 1.
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EXCEL

LN
Typing =LN(X) into an empty cell returns the natural logarithm of the number:X as Iorig asX is
positive. Typing =LN(A2) into an empty cell returns the riatural IGgarithm orine

number contained in cell A2.
EXP

Typing =EXP(X) into an empty cell exponentiates the rambe! X:=Typing =EXP(A2) into an

empty cell exponentiates the numbe inicell A2.
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CASE EXERCISES

1. Hot Dog revisited

We return to the market for supermarket hot dog dominance. Previously;, we invéistigated some

weekly scanner data from grocery stores on Dubuque’s market share and pi Cé azad the prices of
two competitors: Oscar Mayer and Ball Park. We used these d:ta to invest_igéte how Dubuque’s
market share depends on these prices. We saw how multicollir=arra/ affect2d r;ur findings. Now

we are prepared to be on the lookout for heteroskedasiicity:10n-consiaiii variance).

Keeping this in mind, we would like to use thig-data in the“iratdsg file to help Dubuque answer

some further questions:

a. If Dubuque prices at $%.65; Oscar, Mayer pri(;es at $1.75, and Ball Park prices at $1.50 for
regular and $1.60 for tl;eef franks, what is Dubuque’s expected market share?

b. If, at these prices, V¥ olizerve-Bauuque with a 1.5% market share, would this give us
reason to tl.ink.thn .marléet har' changed? What if Dubuque had a 4% market share?

c. Atthese prices, éhculd ubuque raise or lower its price? You may assume the size of the
kot r‘.;.‘g mariet is roughly fixed at 12,000 hot dog packages per week and Dubuque has a

ccst per uni produced of $1.30/ package. Does it matter how competitors would react to

thiz.change?
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2. Office networks

A tech support company, Net Geeks, is bidding on a major contract to provide netwoikirg
support to a firm that owns a chain of tax preparation consultancies across the country. in
preparing its bid, Net Geeks has acquired the data contained in the email fiie, whigh lists the
average number of daily internal emails and the number of computers “or asample of 24 of the
tax firm’s offices. One key question in determining their bid involves the-expacted-number of
internal emails in an office with 20 computers; specifically, Nzt Geeks negqls to know the
probability that any particular office with 20 computers will.hava an‘averdge Jdaily internal email
volume below 200. Your job is to develop the best regression mese! to answer this question and

use it to respond to the following questions:

a. What is the best estimate for the average-daily internal email volume for an office with 20
computers?

b. Provide a 95% predictjon/interval for this estimate.

c. Estimate the prokaiility.that+he averzge daily internal emails at a particular office with
20 computers will be~undér.200.

d. What can you-say ahout tite validity of the estimate in part c¢?

e. Estimate the probabiiitvthat the mean number of average daily internal emails for offices
witn 20 campeters will be under 200.

3.-Super-staifing

Youz.company is currently building a new factory, which will employ 1,200 workers. You are

confronted with the question of how many supervisors (supers) to hire for this plant to supervise
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the workers and to ensure a well-organized production process. You have employee data
(Factory) from your other factories, namely the number of supervisors and workers at these

facilities.

Construct a linear regression of supers vs. workers.

a. Mathematically, what does the coefficient on workers tell usaueut cur steaffing needs?
b. Estimate the number of supers needed for our new faciory and prcyide a 95% prediction

interval for your estimate.

c. Are there any problems in using this regression to answer-gart b?

Construct a regression of Insupers vs. workers.

d. Mathematically, what does the-coefficient-on viorkers tell us about our staffing needs?
e. Estimate the number ci si:pers neecledfor our new factory and provide a 95% prediction
interval for your estimatg.

f.  Are there anv probléms ifrsing this regression to answer part e?

Construct a regression of Insupers vs. Inworkers.

g. . Mathematically, what does the coefficient on workers tell us about our staffing needs?
h. Estiisate-tiie number of supers needed for our new factory and provide a 95% prediction
irjterival for your estimate.

i. Avethere any problems in using this regression to answer part h?

J- Which of the three regressions above is the best one to use for this scenario? Explain.
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4. Big movies revisited

Movie studios spend a great deal of energy determining which films will be successful. £ major
hit or flop can have a measurable effect the bottom line of companies as big ans diverse as
Disney and Time Warner. The bigmovies® file contains information on the-major£ilms of 1298
that we briefly examined in Chapter Two. Use this information to develop &medel that predicts

total domestic gross for a film based on the following independentvariaites:

Best Actor The number of actors or actresses in the moviewho vserelistad in Entertainment
Weekly’s list of the 25 Best Actors andthe 25 Besv Actresses of the 1990s
Top Dollar Actors The number of actors or actresses-anpeaiing in the movie who were
among the top 20 actars and top 20 actresses in average box office gross
per movie in thieir-careeiz at the beginning of 1998 and had appeared in
at least 10-imovies at that time
Summer A dummy var;able indicating if the movie was released during the summer
season (Mlay 31.to Sent B-inclusive) (= 1 if released during summer, =0
otherwise)
Holiday A durmmy*sanapie-indicating if the movie was released on a holiday weekend
(President’s Day, Memorial Day, Independence Day, Labor Day, Thanksgiving,
Chrisimas Day, New Year’s Day) (=1 if released on a holiday weekend, = 0
otherwise)
Ch:-'ictma: # dummy variable indicating if the movie was released during the Christmas

season (December 18th — 31st) ( = 1 if released during the Christmas season, =0

otherwise)

® Source: The Internet Movie Database, http://www.imdb.com.
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Opening Screens The number of movie screens the film was shown on during the film’s

first weekend of general release

a. Construct a linear model using total domestic gross as the dependent veilaie:
b. Use the Model Analysis function in Stata to check the assumptions-of the-regressioi

model.

Now add a new column of data titled Intotalgross that containg the naturai*ogsrithm of the total

domestic gross.

c. Construct a semi-log model using Intotalgros: as tae ereno‘ent variable.

d. Use the Model Analysis function in‘Steta to check the assumptions of the regression
model.

e. Choose the better model frerrthe two abce arid use it to predict the total gross of a
movie opening on 2,600 screens viith ho big or top-dollar actors on a non-holiday

weekend during thi.suramei=Provide a 90% prediction interval for your estimate.
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CHAPTER 9

SODA SALES AND HARMON FOODS: DEALING

WITH TIME AND SEASONALITY

We will use two forecasting cases in this chapter to demonstralte (jifferent ta;chmiques for
modeling seasonality. Quarterly data in the soda case disziay-a saasoriar-pattern as summer sales
outpace winter sales. We use multiple dummy variah/les to additiwer model and measure the
seasonal impact on sales. Next, the longer Harmon Foads rBS case'uses a multiplicative
seasonality model to forecast sales of its brakfast cereal. The case introduces the technique of
lagging independent variables to mode: lirgering-2ffects. Finally, we will explore different

techniques for analyzing time serics data including-the‘Cochrane-Orcutt method and the Auto

Regressive Integrated Moving Average (ARIMA) model.

329



9.1 Soda Sales

INTRODUCTION

You have been asked by Cesca, Inc., to forecast future sales of Dada Seda. The data are in the

soda file. It consists of quarterly Dada Soda sales figures for the fast four y'a_%;i: (see-Figure 9.1).!

Quarter 1 is the beginning of a year and is, therefore, a winter iquédrter.

Quarterly Salas*Data |

[ (o 5 10 15
quarter

Figure 9.1: Quarterly sales for Dada Soda.

! To generate this graph, click User>Core Statistics>Bivariate Statistics>Bivariate Plots (twoway) or
type db twoway to open the twoway dialog box. Click Create... to specify your dependent and
independent variables, and select Connected in the “Basic plots: (select type)” field. The direct command
for this example is twoway connected sales quarter.
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Two things are apparent from the graph: Sales are growing over time, and a strong seasonal factor
exists. Suppose we ignore the seasonality and regress sales against the quarter variable, i.e., draw

a best-fit line through the graph (see Figure 9.2).

Quarterly Sales Data

Fitted values

Fiqure Y:2: Querterly sales for Dada Soda with regression line.

This procedure enables us to-astimate future sales growth by extrapolation since the coefficient on

the X variable (Guarter) represents average sales growth per quarter in the last four years. The
|

estimatad ceefficierit 0n quarter is 6668.61 so predicted sales growth is 4x6668.61 = 26,674.44

units-ner year. tiowever, there are two problems: One is practical and the other is technical, but

.. Stil important. The practical problem is that it would be useful to have an estimate of the seasonal

effeats as well as of the average sales growth. At the moment, the regression is predicting sales

will increase every quarter, and that is not the case: From year to year, sales are going up, but, for
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example, they consistently decrease from summer to fall in a given year. Solving this practical
problem takes care of the technical one, so we will go through the solution first and explain what

the technical problem was at the end.
INTRODUCING SEASONAL DUMMIES

We need to introduce dummy variables to take account of the effect ot tiie.differerit.seasons. To

cope with the four seasons, we will need three dummy variabl&s hiecause oie szason will function
| |

as a benchmark to which we will compare the other three M/e choose-to-iiicli:de one for each of

winter, spring, and summer, so our extended dataset ;00ks like Figure 9.3.

quarter | sales I wiiiter sprind summer
1] 122520 1 0 0
2| 149031 ~. 0] 1 0
T 162467 | 0 0 7
i 922630 | 0 0 0

B 5_'_ 122818 1 0 0
6 | 17325 0 1 0

| “Etc.n |
A

Figure 9.3: Dada Soda data.

Maw-=ae will rumthe yew regression and discuss what the coefficients tell us (see Figure 9.4).
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Figure 9.4: Regression of Dada Soda with seasonal'dunimy variables. |

INTERPRETING THE DUMMY COEFFICIEMTS

. regress sales quarter winter spring summer
source ss df MS Number of obs = 16
F( 4, 11) = 76.38
Mode 2.4167e+10 4 6.0418e+09 Prob > F =, 0.0000
Residual 870139592 11 79103599.2 R-squared = 0.9652
Adj R-squared ‘= '0.9526
Total 2.5037e+10 15 1.6692e+09 ROOT MSE & 8894
sales Coef. std. Err. t P>lt] [93%—<enf. Intergvarl]
quarter 6708. 056 497.1909 13.49 0.000 5613. 747 | 7802. 366
winter 5612.169 6463.481 0.87 0.404 —-8€13. 857 19838.19
spring 44590. 36 6367.15 7.00 0.000 .305/%. 36 58604. 36
summer 54721.06 6308. 645 8.67 0.000 40835. &2 68606. 29
_cons 98817.44 6670. 515 14.81 0.00C 24155.73 113499.1

As always when dealing with dummy variables, we work out what the equation means by going

through the different qualitative states, i-e., the*different seasons, one at a time. For example, in

fall, we know that all three duminiesegual zero and the regression equation from Figure 9.4 reads

as follows:

sales = 98817 + 6708 quarter

If we coripare-fall ore year to fall the next year, this equation will apply to both but the quarter

variablz hes increased by four, so it predicts that fall quarter sales should increase by 4x6708 =

76,832 it ner year. If we look at summer instead, we know that the summer dummy equals 1

and boththe nthers equal 0, so the regression equation from Figure 9.4 reads as follows:

sales = 98817+6708 quarter+54,721(1)

= 153,538+6708 quarter
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Again, this tells us that if we compare yearly summer quarter sales, we should expect an increase
in sales of 4x6708 = 26,832 units per year. The same will apply if we look at spring end winter,
so the first conclusion is that once we have controlled for seasonality, the predizted ariiual
increase in sales is 26,832 units. In addition, we can predict how sales will .change-quarterly:
Suppose we move from summer to fall. The quarter variable increases:n vc:!u_e Dy 1, giving an
extra 6,708 units, but the summer dummy changes from 1 to 0 so \ve 10se-54;721 Ginits, a net
decrease of 48,013 units. Things are a little more difficult when (for examgle) 've move from
winter to spring. The quarter variable goes up by 1 as befare,_tha wiriter.gdmray goes from 1 to 0,

and the spring dummy goes from 0 to 1, so the net efiect is +6,705-3,612+44,590 = 45,686 units.

We have, therefore, managed to resolve the‘changes into a quarterly seasonal effect, and a yearly
growth trend. The R-squared has increzsec-fromi-around 60% to over 95%, which suggests this
multiple regression fits the data better iivan the regrqs_sion without the seasonal terms did.
However, R-squared is not the/apnropriate:way to compare the fit of two regressions that have the
same dependent (Y) variaiia but difierent-nunibers of independent (X) variables. A better
measure for such a comparisca, is samething called the adjusted R-squared. It is reported on the
Stata output directly c2low-the R=sguared. The purpose of the adjusted R-squared is to adjust the
measure of a regression’s fito account for the extra degrees of freedom that adding additional X
variables alisorbs:.In this example, even after this adjustment there is a large improvement in
variati¢n exnlained,oy <he regression with the seasonal dummy variables as demonstrated by the

large. increase-in-tiie adjusted R-squared. Finally, we will discuss the technical problem

ri;antionerl earlier.
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SEASONALITY AND AUTOCORRELATION

The regression model makes a number of assumptions about the distribution of the error'terms
(i.e., the distribution of Y around its average given the values of the independerit (X) variarles).
One of these is the rather mysterious sounding assumption that “the errors are independent.”
Look again at Figure 9.2. For any particular quarter, the estimated errcs terim i_s thedistance from
the fitted line to that quarter’s data point.? “Independence” means iiat kirewiing the-size of one
quarter’s error does not say anything about the next quarter’s ¢rrqr. But thét isi’t true here. If you
tell me this quarter’s sales were “well above average,” i.e-well"above-thefitted line, then I can
guess this quarter is summer, next quarter will be fal}, and the fal*quarter’s sales will likely be
well below the fitted line because of the seasonality ir.sode-sales. This phenomenon of the failure
of independence is known as autocorrelation and, much like the heteroskedasticity studied in
Chapter 8, interferes with the statistica! infezence-we do using regression. When it is present, our
estimated coefficients are still unbiasedeztimates, buj[ ‘ne estimated standard deviations are not,
S0 we cannot use confidence intervals or hypoihesis tests unless we correct this problem, which

we did here by adding ths seascnal Gemmy variables. We discuss autocorrelation more generally

in Section 9.4, including a methoa$or detecting it and removing it.

SUMMARY

We saw, how.seasconal dummies may be used to “de-trend” time series data, enabling us to

estiiizate a“yeariy growth trend and seasonal effects. This also solved the problem of

autocorre!atibn in the data.

Z It is an estimated error term because it is calculated using the estimated regression line. The true error
term is how far the data point lies from the true regression line.
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9.2 Seasonality: Using Seasonal Indices in Forecasting

The Dada Soda case shows us one way to account for seasonal variations in our data. in ti:at case,
the sales seemed to vary consistently over the four quarters or seasons. We captured this-/ariation
in our estimated regression prediction by including dummy variables for.the-ditierent seasons. By
using these intercept dummy variables to capture the seasonal effects,_we were implicitly
assuming the seasonal effect was additive. In other words, we snlv-aiicwed the s2ason to move
the regression line up or down by a constant, and we did not atlow:the seasibn 0 change the slope
of the line. In practical terms, we assumed that the surimer. winter;-soring,-and fall effects were
each of a fixed size. The effects would be identical it we. were seiling 1 million cases or if we

were selling 100 million cases.

Sometimes, we may want to use a different madel of.seasonal effects, one where the effect of the
season is expressed as a percentage.si-the ntimber of sales. In other words, the summer effect
might be to increase sales by 10%., With this model, the effect of summer at the 1-million-case
level is to add about 100,800 cases;-at the 130-million-case level, it would add 10 million cases.
This percentage-based model is knowi: as a multiplicative model of seasonality in contrast to the
additive model above. Why multiplicative? Because we can express each season’s effect
(month’s.etfect, day-of-the-week’s effect, etc.) by a seasonal index, which is a number

multiplied by our regression results to get a prediction.

or exaraple, in the Harmon Foods, Inc. case (see Section 9.3), the seasonal index for January
shiprirenis is 113. This number should be interpreted as saying that, all else equal, shipments in
January will be 113% (or 1.13 times) the average of all months’ shipments. We say all else equal

because we know other factors such as a time trend or advertising affect shipments.
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So, how can you use these seasonal indices in combination with regression to make forecasts?

Step 1: Deseasonalize the Y variable by dividing each observation by its corressoriding seesonal
index (converted from percentages if necessary). In the Harmon Foods, Inc:Case;this meariz

dividing January shipments by 1.13, February shipments by 0.98, etc.

Step 2: Build a regression model as usual (ignoring seasons) with the deseasorialized data as your

Y variable.

Step 3: Use your estimated regression model to get a jredicted desensonalized value for the time

period of interest.

Step 4: Multiply this predicted valiic-3y-the appropriate seasonal index to get a prediction. You

should multiply any interval egtimates by ‘the ¢easonal index as well.

That’s all there is to it. If the*seascnal effect works in percentage terms, the multiplicative model
and seasonal indices™will T2 appirepriate; if the seasonal effects are of a fixed absolute size, the

additive model will be a betiar choice.

Seasonally-adjusted’data are data that have been deseasonalized. For example, many economic
statistics s ci-as-uilemployment, retail sales, and housing starts are usually reported in a
Giaseasonelized form. How are seasonal indices estimated? Some statistics packages can do this

proaedure-for you. In fact there are many ways, some quite complicated, to estimate seasonal

effects. For a taste of how part of the U.S. government does it, go to the Bureau of Labor
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Statistics web site at http://stats.bls.gov/, search for the term “seasonal adjustment,” and explore

some of the links.

Often, as in the Harmon Foods, Inc. case, seasonal indices previously estimated-0y Guirs (in this
case, an industry group) using a large set of historical and industry-wide or.county/-wide data aie
provided; thus, these indices do not need to be estimated from your data. Y:au nzed only use them

in your analysis.

9.3 The Harmon Foods, Inc., Case

The Harmon Foods, Inc. case is located in the racket of cases bundled to the back of this text.

QUESTIONS TO PREPARE:

1. Using only the data“giviing montiiiy shipments of Treat (and possibly a time trend, but no
variables thzat-arlow for.seasanal or monthly cycles), provide a forecast for shipments of
Treat in Januair, 1928. Give a 95% prediction interval for this forecast. This forecast
shaws-ahat one can Ga without the rest of the data in the dataset and without seasonal
informaticn.

2. "Develop ard estimate a model you think makes the most sense to use for forecasting
maonthly shipments of Treat cereal. How did you arrive at this model?

3. LUise the model you developed above to forecast shipments for January 1988 assuming
that 200,000 consumer packs are shipped in that month and $120,000 in dealer

allowances are provided. Give a 95% prediction interval for your forecast.
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4. Use your estimated model to comment on the impact and effectiveness of consumer
promotions and dealer promotions.
5. What improvements, if any, would you recommend to the product manager in terms of

the timing and amounts of dealer promotions and consumer promotionsif tie-uture?

9.4 Regression Analysis of Time Series Data

Most of the datasets that we have encountered in previous.chapiars are.se<cal’ed cross-sectional
samples: We have some data on a population (e.g., car/ouyers, navispaper subscribers) at a fixed
point in time, and analyze the relationship among varigus variables in the sample (e.g., price and
income, Sunday and daily circulations). Time riays no role in these analyses. In other datasets,
notably in the Harmon Foods and Dadz Scda cases, we have consecutive observations of several

variables (sales of the product and.iiarketing efforts). i'hese data are called time series data.

When we work with a tiriezeries daiaset-and build a regression model to explain a dependent
variable, we should immediately censider including two types of variables among the explanatory
variables: a time index (a/ariabietnat increases by one every period, representing a linear
trend) and seasonal dummiag‘(variables that allow us to represent seasonal variations in the
dependeént variabiz).® /Another lesson that we learned in the Harmon Foods case is that, in the
regression, wie can 2asily incorporate the idea that our current actions matter for the future by

using-laggad explanatory variables.

® To set an existing time variable (e.g., the variable quarter from the soda file) as a time index in Stata,
you can type the command tsset varname. See the list of new Stata functions at the end of the chapter for
more details.
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We mentioned earlier a new problem that may arise when we run a regression using a time series
dataset. We may encounter the problem of autocorrelated residuals: The error terms that
represent the difference between the actual observations of the Y variable and the theorezical
regression line may not be independent (completely random) over time. This is.{ne Case, for

example, if the shocks that affect the dependent variable are persistent over-i{ime.

Suppose the Y variable represents the sales of our product. If sales-iiis vweekwere-higher than
expected due to a random event (e.g., good weather, a favorabie review inthe ocal paper), it is

likely that we will be “lucky” next week as well since weather tands*a.nessist, information about

the review will diffuse among our potential customers, e:c.

Autocorrelation of the residuals has the same c4nsequences as heteroskedasticity: The standard
errors (of the coefficients, the estimates’ mean, tire regression and the prediction) become
unreliable. In particular, in the most-caimmon forriss of ‘autocorrelation, the standard errors on the
coefficients will be underestirnated, resuiting, in p-values for the coefficients that appear to be
lower than they are in realis. As a result. wve rnay conclude that a coefficient is significant when

in reality it is not. In A time sefies regression, one must be exceptionally wary of this possibility.

Another issue in time series+xagressions is if we can include the lagged dependent variable among
the regressciS. ifresiduals are autocorrelated, then the inclusion of lagged Y among the X-
variables will caust bias in the coefficients and must be avoided.

70 see this, donsider the following example. Suppose (as in the Harmon Foods case) we have a
tirii2 series dataset, where our dependent variable is Sales and the explanatory variables measure
marketing efforts (e.g., number of Coupons issued, cash Incentives provided to dealers). It is

reasonable to believe that promotions have different immediate and delayed effects (e.qg.,
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consumers stock up on the product when there is a discount). Moreover, Sales in previous
periods may affect our current sales, e.g., satisfied customers tend to become repeat customers.
You may think a variable like Sales_1 (Sales lagged one period) could successfully; represent

the effects of our past actions (promotions and the resulting sales) on our currer: safes:”

However, it may be wrong to regress Sales on Coupons, Incentives:. a t.mg index, seasonal
dummies, and Sales_1. Why? Sales_1 may be correlated with th&errgi-term in tais regression
because Sales_1 contains last period’s error term and errors may pe autocc¢rreiated. For example,
the error term may reflect the effects of a newspaper review-on Zales;-2a5i that effect is likely to
be persistent. The error term essentially stands for all' variables oriiited from the regression, and
we know coefficients become biased when an included variable {Sales_1) is correlated with
omitted variables. Therefore, if error terms-are-autocorrelated then including Sales_1 leads to
biased coefficients. Instead of including the-lagged dependent variable (Sales_1), you should
include lagged explanatory variablesta represent ine idea that our past actions (marketing

efforts) matter for current Sales.

Several simple and irtuitive tésts exist to detect specific forms of autocorrelation in the residuals.
For example, after having rin the regression of the dependent variable on the appropriate
explanatorv.variables, you caiv-regress the residuals (the difference between the actual and the
fitted valugs of Y"for each observation) on past values of the residuals (lagged residuals) and see

if the ccefficient on'the lagged residuals is significant.

In"Gtata, you'can generate the residuals (from your most recent regression) from the custom menu
by ciickirig User>Core Statistics>Model Analysis, using most recent regression>Residuals,

outliers and influential observations (inflobs) or typing db inflobs or, to get the residuals
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alone, through the standard menus by clicking Statistics>Postestimation>Predictions,
residuals, etc or typing db predict. Choose Residuals (equation-level scores) from the
“Prediction” field and type the name that you want in the “New variable name” field." (Vi/e will
name our residuals residuals for illustrative purpose here.) To create once-lagosa resiauals, you
can type the command generate residual_1=residuals[_n-1] (the [_n-1] ceinmaid indicates. that
the n™ value in the residual_1 column is taken from the n-1% value in tiie rasiduals column.)
Then, perform a simple regression of residuals on lagged residuals~_roe-car-run this regression
with or without a constant; both produce a valid test for first-orde,” autocoivelation given large

samples.) If the slope coefficient is significant, this indicates first-order auiocorrelation. This

procedure is called the Cochrane-Orcultt test.

A cure for this autocorrelation is relatively simele using the Cochrane-Orcutt method. Suppose
you find autocorrelation in the Cochrane-Qrcutiest: The coefficient on lagged residuals in the
regression of residuals, call it p, is sigiiticant. Transform each observation (the Y and X
variables) as follows. For each/observatiofs, att =2,3,..., create Y*t= Yt-pYt-1; similarly, create
X*t = Xt—pXt-1.° (The firsiebservatien_ is grorped because no observation occurs before it.) Now
regress Y* on the transformei.expianatory variable(s), X*. This new regression usually does not
exhibit autocorrelatec-residuais; if-it-does, then the procedure of transforming the variables can be
repeated. The coefficients ori-all-the X* variables will be the same as the coefficients on the
corresponcling oiiginat, X variables. However, the coefficients will have the right standard errors
and p-values becauge adtocorrelation in the residuals has been eliminated. We can rely on the new

p-\i2alyes rar aetermining which variables are significant.

“Alterriatively, you can type the direct command predict varname, residuals after running a regression.

> To gene:ate Y*; in Stata, you can type the following command after obtaining the coefficient p by
regressing residuals on residual_1: generate varname = Y-_b[residual_1]* Y[ _n-1]. varname is the
name that you would give for Y*,, Y, is the name of your Y variable, and _b[residual_1] is where Stata
stores the estimated coefficient p from the regression of residual on residual_1. X*; can be generated
similarly.
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In Stata, you can correct for autocorrelation more easily by using Stata’s built-in Prais-Winsten
and Cochrane-Orcutt regression. To do this, click Statistics>Time series>Prais-Wiristen
regression or type db prais. Specify your dependent variable and independent ariasic(s)..Check
the boxes corresponding to “Cochrane-Orcutt transformation” and “Stop after the-first iteraiion

(twostep).”

Click OK, and Stata will report the estimated coefficient(s) orithe X* wariable(s).
Note that these estimates agree with those produced using the manuaiprecedure Gascribed

above.” Stata also lists the estimated coefficient on lagged residuais next te rh?. Note that Stata

estimates p by regressing residuals on lagged residuals without'a coiictant.

If you do not check the “Cochrane-Orcutt transformation™hox, Statz will run the default Prais-

Winsten regression instead, where it keeps #nd.ransforms the tirst observation into Y*; =

1- ,o2 Y1; (Likewise for X*,.) For t=1, ¢ *.andX*, are transformed using the method described

in the previous paragraph. The difference between using the Prais-Winsten method and the
Cochrane-Orcutt method is small when you| have large samples.

Finally, if you do nst check e Stop-after the first iteration (twostep)” box, Stata will
automatically repeat the-transformation procedure until the estimate of p becomes stable. Both

iterative meeinoas-are theoretically equally valid.

Anothertest ter-aatocorrelation is the Durbin-Watson test. In Stata, you can click User>Core

Statistics>ivlodel analysis, using most recent regression>Default Durbin-Watson statistic

® Altesnatively, you can directly type the command prais depvar indepvars, corc twostep.

" There is one small difference. When you estimate the model Y*=pq(1- p)+BX*+u*; using Stata’s built-in
Cochrane-Orcutt transformation, the reported estimated constant is an estimate of . On the other hand, if
you estimate this model using the manual transformation described above, the reported estimated constant
will correspond to the estimate of Bo(1- p).
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(ddw) or type db ddw. Stata reports the Durbin-Watson d-statistic, which can range between 0
and 4 and should be close to 2 if there is no autocorrelation. Positive autocorrelation tends to

lower the value of the d-statistic, while negative autocorrelation raises the value.

SUMMARY

Everything described thus far belongs to what we can call the “traditional.ecanorizetric
analysis” of time series data. We can apply the same regressign techniquey, thet we use for cross-

sectional analyses. The only differences relative to a cross-sestitnal regrassicn are the following:

1. New candidates for regressors like a time index, seassnai dummies and lagged x
variables
2. The potential problem of autecorrelated residuals (resulting in incorrect standard

error estimates)

9.5 Time Series Airalysis

We can alse-usc-a different apgioach to analyzing time series data, called time series analysis.
Time sgries analysis, iit its purest form, ignores ordinary explanatory variables and, instead,
focuseson estimating the dynamic behavior of the dependent variable alone. In other words, time
series-analysis is the science (and sometimes art) of extrapolation from a series of numbers, Y4,

Y, .., Y4, Without using any X variables except time and seasonality.
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For example, one simple method of extrapolation (forecasting Y., basedon Y, Y,, ..., Y ) is
linear trend extrapolation. You can do this by regressing Y against a time index. Another
method, exponential trend extrapolation, is carried out by regressing In(Y) on a time index. To
make both models fit better, we can enrich them each with seasonal dummies. ki1 wriactollaws,
we discuss more sophisticated, but similarly atheoretical (i.e., no underlying moage! or theory)

methods.

There are at least three reasons for interest in such simplistic, riaivye methodls of forecasting. First,
in practice, collecting data on potential explanatory variables to-carry-out-g proper regression
analysis is sometimes too expensive; the only data readily availabic.may be a series of
observations regarding the dependent variable. Second, even if ve can obtain the extra
information and build a proper regression model, time series forecasts are cheap, require little
effort to produce and can serve as a useiul 2encizmark for comparison purposes; running a time
series analysis may uncover patterrs-iiiat-we will bxplla.n using regression methods. Third, a
sophisticated time series forecist (for exaraple, the ARIMA model, which we will describe
below) may well outperfeim anunscphisticated (or incorrectly specified) econometric model. In
the 1970s and 1980s. time series rizodels became popular after several studies showed the

superiority of ARIMA.modals Gvei-siandard econometric models in particular applications.

Econorvietric methods:have since improved (e.g., in handling autocorrelation) and are generally
preferred over extrepolation methods when available.
‘he ARIMA model of time series analysis (also called the Box-Jenkins method after its inventors

in 970) kas two building blocks: autoregression (AR) and moving average (MA).
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A variable Y is a p™-order autoregressive series, AR(p) for short, if it can be written in the

following way:

Y= OY DY ot DY e — J

®,, @,, ..., @, are the parameters of the AR(p) process, and & is an indepencant-error term.

In other words, the current value of Y only depends on its past vajues (ub 0 p jags). A variable Y

is a q"-order moving average series, MA(q) for short, if it-car, be.writier-in the following way:

Yt = St+618t_1+6281_2_l’ . .+6qv':‘f.ul

01, 0., ..., 0, are the parameters of the M A{qjnrocess, and the & terms are independent errors. In
other words, the current value of s a weighted sum-of current and past (unobservable)

disturbances. [

The ARIMA(p,d,q).iriuaetisnare general than AR or MA. First, we difference the original series
d times. Differencing a-seriez.means that we replace Y, with Y.-Y,; that is, we consider the
increments-oi-the series insteau of the series itself. We call the original Y series an
ARIMA(p.d,q) prosesy, if, after differencing it d times, the resulting series Y* can be written in

the follcwing-way:

L Y5, = O,Y % DY * ot DY * 0,600,600t .. TOETEL
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ARIMA(p,d,q) can be thought of as a model where the d™difference of Y follows an AR(p)

process such that the error term is MA(q).

There is no reason as to why a variable Y should follow an ARIMA process. ARiiviA-i: nct
supported by any formal economic theory; it is a general class of random pracessas widely*sec
in practice for forecasting without using explanatory variables. For exa:npls, if Y is generated by
the famous “random walk” process, then it is ARIMA with p =0, d-=-2..anG q. = C..If one decides
to model Y as an ARIMA(p,d,q) process with a given p, d, and g,/then a Lomp'_Jter program (such
as Stata) can estimate the parameters @y, @,, ..., D,, and 0,, 0,,".., T, Gi\leln these parameters,

you can forecast future values or see how the past (observed) valuss ot Y fit the ARIMA model.

In Stata, you can compute the parameters of-a g2neral ARINA(D,d,q) process by clicking
Statistics>Time series>ARIMA and ARMAX.models or typing db arima. This will open the

following dialog box:
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(2] arima - ARIMA, ARMAX, and other dynamic regression models =] E >l
Model | Model 2 | Model 3 | by/if/in | Weights | SE/Robust | Reporting | Maximization |
Dependent variable: Independent variables: [ Time s&hﬂ% ]
["] Suppress constant term £ o -
—
ARIMA model specification Y. . . S
@ ARIMA(p.d.q) specification: () Supply list of ARMA lags: {e:.g 13 1
015 Autoregressive order {p) - | Lishs i AR $0s
y 0% Integrated (dfference) order (d) - .‘j"~'gf‘<‘5’x=;‘i
0+%-| Moving-average order {(q) -.““x Mo
Y |
Constraints: {optional) o W
[] Keep collinear variables {rarely used) |
. |
"\ .
o =
7 D Coe ) )
. .\.'\-\.‘ ey
"\'\.

S N . .
Select your dependent variable'ana indepandent variable(s) from the respective drop-down lists.
| LY

Check the box next to “Suppress dMStant_térrr.” and enter corresponding values for p, d, and q in

&, L

the “ARIMA(p,d,q) speciﬁ‘éuidﬁ’iﬁeldT Click OK, and Stata will display its ARIMA regression

result.® Under the Ceef. cattma, you ¢an find Stata’s estimates for @, and 0, in the ar Lp. and ma

",
o
b e

Lq. rows, respectively. kx\ b
r - T )

-,

,

[ A
The main p.rhactical (uestion that remains is how to choose the parameters p, d, and g for an
—,
~ARIMA"model and-forecast. Time series analysts would probably say that this is the “art” part of
4 .. "h._

- rarecastir.g. The most important guideline is to keep these parameters as low as possible

", e
", .,

x(p?r§i~mbny). In general, choose d, the number of times the series is differenced, to make the

& Alternatively, you can directly type the command arima depvar indepvar, noconstant arima(p,d,q).
Omit indepvar if you are not including any explanatory variable.
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series stationary, which means that the mean, variance, and other properties of Y* must not

depend on time. Usually d = 1 or d = 2 suffices.

To find the “right” parameters p and q, time series analysts usually look at a dizgranicdlled a
correlogram. To create this diagram, for all k = 1,2,..., we compute p,, the-correiation coersicient
between Y* and Y* lagged k times, and plot p,against k. The correlogiam :»h(_)l:ld fall off to
numbers close to zero as k increases; otherwise, Y* is not stationary anu-reeds to e differenced

further. A correlation coefficient p,on the correlogram is called significani.if It is greater in

absolute value than 2/ \/? , Where T is the number of akservaticns.

The pattern on the correlogram suggests the appropriaiz nuriiseis for p and g. For example, if p,
(respectively, p, and p,) are significant but.the-subsequent p, values look random, then Y* is an
MA(2) (respectively, MA(2)) process.:If the'eorreragram declines geometrically, then Y* can be
modeled as an AR(1) process. If it'exhibits-a wave, then AR(2) or a higher order AR process is
required. If the correlogram appecrs to deciine geometrically but the sign of p, does not match the

signs of the rest of the p.valtes, then ARIMA(1,d,1) is suggested.

We summarize ARIMA:-hy vearking out an example. The Kodak file contains the annual gross
revenues of-Easiiman Kodak Ci. between 1975 and 1999 (in billions of constant 1982 dollars).

Plottin] the data ir-Figure 9.5, there is no visible trend, so we do not difference the series (d=0).
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Kodak's Annual Revenues (in Billions of 1982 Dollars)

12 14 16
|

10
M

T T T T T T
1975 1980 1985 _ 1968 1995 2000

Figurs 9.5¢ godak "s.annual revenues.
Next, we look at the correlogrem n Figure.9.6, This graph can be generated in Stata by clicking

Graphics>Time-series ¢i'enhs=Coirelograr (ac) or typing db ac, choosing Revenue as the

variable, and typing 7 in the “Nuniber of autocorrelations to compute” field.’

“Alternativeiy, you can directly type the command ac Revenue, lags(7). Note that instead of plotting p,, the
correiatio: coefficient between Y* and Y* lagged k times, against k, the ac command plots the
autocorrelations of Y* against its lags. Although autocorrelation is defined as the correlation between a
time series variable and its lags, it is calculated using a slightly different formula than the standard formula
used to calculate the correlation coefficient between two generic variables. You can refer to Stata’s PDF
manuals for the respective formulas that Stata uses to calculate p, and autocorrelations.
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Correlogram: Kodak's Revenues (1975-1999)

1.00
|

0.50
|

0.00
L
—e
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Bartlett's formula for MA(q) 95% confidence Lands

-1.00

Figure 9.5: Correlogram of Kodak revenues.

The decline in p, appears to be steady (and-approximately linear); the first two p. values are

significant (greater than %/ V25" 4irausoldte value), but the rest do not appear to be random
either (this is not aniviAresess). An AR(1) process seems to be appropriate. When we run the
AR(1) regression in Stata, we find that the estimated AR(1) process can be written in the

following way-°

Revenue = 1.63692 + .8501455*Revenue_1.

19To run this regression, you can directly type the command regress Revenue L1.Revenue after declaring
Year as your time index variable using the tsset command. L1.Revenue equals Revenue lagged one
period. In the boxed AR(1) equation, Revenue_1=L 1.Revenue.
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To check how well the AR(1) process fits the data, we can estimate Kodak’s revenues for the
years 1976-1999 and calculate the mean absolute deviation (MAD) from the actual
observations. To do this in Stata, you can type the following commands after running,the, AR(1)
regression: 1) predict residual, residuals; 2) generate abs_residual=abs(resigiuaiyj;ad 2)
summarize abs_residual. The Mean value is the MAD and turns out to be0.761931, or alsaut
$0.76 billion. As a comparison, the average level of Revenue in the simpiz.is about $11 billion

(both in constant 1982 dollars).

SUMMARY

Though there is no theoretical reason why a particularvarighle riigkt follow a linear or
exponential trend, the techniques we have seen-are useful. Predicting future performance using
these methods has its drawbacks. However;-the advantages mentioned earlier (including the value
of the ARIMA model when the oriy daia-available-are for the dependent variable and for

establishing a baseline) make knowledge 6% this approach worthwhile.

NEW TERMS

Additive'medet A regression model using dummy variables to account for seasonality.
Each season is assumed to have a fixed effect on the dependent variable

.'\/Iu_ltiplicaiive modci A regression model which assumes each season affects the dependent
variable by a certain percentage

Seasoridl index An index used to seasonalize and deseasonalize the dependent variable
and predictions in a multiplicative seasonality model

Time series data Consecutive observations of a set of variables
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Time index A variable that increases by one every time period. Used to model a
linear trend over time
Lagged variables Variables that use values from a previous time period to expiain
outcomes in the current time period
Autocorrelated residuals A problem where the error terms are not iraeperident
Cochrane-Orcutt test A test for autocorrelation using the residuals
Linear trend extrapolation A time series method used to mocziiirear ends+n Y over time
Exponential trend extrapolation A time series method/ussd to mdéell ﬁ_néar trends in
In(Y) over time _
ARIMA or Box-Jenkins method A time series method emgioying autoregression (AR)
and moving average gl\/lA) ‘..echniques
Stationary A model where ths properties of Y* do not depend on time

Correlogram A diagram used to-determine the proper time series parameters

NEW STATA FUNCTIONS

Statistics>Time sexies>Setup and utilities>Declare dataset to be time-series data
Equivalently, you may type dbsset. This command opens the tsset dialog box. You can select

the variable that yot-want to declare as a time index from the “Time variable” field.
Aaterrigtivaly, you can directly type the command tsset varname.

T0 create a-generic time index using observation numbers, you can enter the following

commands: 1) generate newvar=[_n], and 2) tsset newvar.
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Statistics>Time series>Prais-Winsten regression

Equivalently, you may type db prais. This command opens the prais dialog box, where you can
ask Stata to implement either the Cochrane-Orcutt transformation or the Prais-Winstén
transformation to correct for autocorrelation by checking/unchecking the “Cocksane=Srcutt
transformation” box. Check the “Stop after the first iteration (twostep)” boxit yoe, want Stata to
transform your variables only once, as described at the end of Section $.4. lote/that you need to

declare a time index variable using the tsset command before runpirigiie.orais ccmmand.

Alternatively, you can directly type the command prais depvar-indegvars; cei'c twostep.

Omitting the corc option will implement the Prais-Winsien transfsimation instead.

User>Core Statistics>Model analysis, usirig rnost recent regression>Default Durbin-Watson
statistic (ddw)

Equivalently, you may type db ddw:-Elick OK irthe £nsuing ddw dialog box, and Stata will
report the Durbin-Watson d-stutistic with“which you can use to detect autocorrelation in the
residuals. The d-statistic ranges:betvieen 0-anc: 4 and should be close to 2 if there is no
autocorrelation. Positive autcorretation tends to lower the value of the d-statistic, while negative

autocorrelation raises-the vaite:

StatistiZs>TiIme<eries>ARIMA and ARMAX models

Equivalentiy, you may type db arima. This command opens the arima dialog box, where you
can-soecn’y ire-dependent variable, independent variable(s) (if any), and the order numbers for p,
G;-g according to your model. Stata reports the estimated values for @, and 6y in the ar Lp. and

ma:Lp. rews, respectively. Note that you need to declare a time index variable by using the tsset

command before running an ARIMA(p,d,q) regression.
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Alternatively, you can directly type the command arima depvar indepvars, arima(p,d,q).

Graphics>Time-series graphs>Correlogram (ac)

Equivalently, you may type db ac. This command opens the ac dialog box, wheie you-can'select
the variable for which you want to generate a correlogram. You can specif\-the rizmber of iags.in
the “Number of autocorrelations to compute” field. Note that you need:to cGeclare a'time index

variable using the tsset command before generating a correlogram.

Alternatively, you can directly type the command ac varname, 1agsi+).

CASE EXERCISES

1. Harmon Foods

Read the Harmon Foods case and miepaie.answers to the five questions listed in Section 9.3 of

this chapter.

2. Paradise tax

The governor of the state oHaviaii is bound by the state constitution to budget no more funds
than the-amesiist-nrojected by the State Council on Revenues. Part of this revenue is from the
transient accommodations tax, which is a hotel tax. Forecasting the tax revenues from this and
Sther tousism taxes are important to the state as well as the major businesses operating in the
sourism iibdustry. The data in the hawaii TAT* file contains information from 1990 through the
stmmei 0f' 2003 regarding the quarterly collection of this tax as well as statistics such as visitor

days (the number of days spent by visiting tourists each quarter) and the average daily room rate.

! Derived from http://www2.hawaii.gov/DBEDT/.

355



Furthermore, a seasonal index based on visitor arrivals by plane (no tourists swim or drive to the

islands though a tiny percentage arrives by boat) has been constructed as well.

Develop an additive and a multiplicative model to forecast the state’s collectior-of tiic-tranzient
accommaodations tax. Which model do you feel is the better choice to make-a preaiction for-the
fall of 2003 when the room rates are expected to average $133 per nighit with 14,009,000 visitor

days? Provide estimates from each model and justify your choice.

3. Restaurant Planning

The owners of Blue Stem, an upscale restaurant in a tiendy-area.of Chicago, have gathered data
on its nightly receipts. Over the year, the restat:rant occasionally offers a free dessert promotion
to ticket holders from the theater next coor:The“gromotions occur mostly on the weekends,
which are the most popular nights.for diing out. th restaurant would like to separate the
promotion effect from the wee<end effect, s0 it can determine if the promotion is worthwhile.

The data are available in tie.bltestein? fite.

An industry group has-nrovided airightly index reflecting the relative popularity of different

nights for higher end restauraats’in the city.

Develop twa_models, ¢he using additive and one using multiplicative techniques, to test the

effectiveriess of-uie promotion. In each case, report how much, on average, the promotion boosts

rezenues on 4 Saturday night.

12 Source: Linda Hall, Co-owner Blue Stem Restaurant

356



CASE INSERT 3

NOPANE ADVERTISING STRATEGY

In this case, we will look at the advertising strategy for a drug, Nopane. Tne.srend manager is
faced with the choice of advertising level, copy, and region in the face of-interise.competition.
The assignment is to read the case and answer the following quésticns=-Eor tae Tirst tnree, you can
use the regressions included with the case; however, you will need to conduct your own analysis

using Stata to respond to the additional questions.
Questions to Prepare
1. What does Regression 1 in the*case saz.aboet the merits of “emotional” vs. “rational”
copy? What does Regression-2.say ahout the two types of copy? What is the

interpretation of the ccefficient on ¢op) in Regression 1? Regression 3?

2. Assuming Alison Silk’s hypothesis is correct, which of the regressions is most relevant

for choosing an advertising strategy? Why?
3. | Ahswer quéstidn 2, assuming instead that Stanley Skamarycz’s hypothesis is correct.
4. ~iven the data from the case (in the nopane file), what national advertising strategy (i.e.,

whiZh copy and which one of the three levels of ad spending) would you advocate? Each

additional unit sold per 100 prospects over a six-month period yields a profit (net of
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production and delivery costs, but not net of advertising costs) of $10. Provide support

for your position.

5. Instead of a single national campaign, Ms. Silk knows it would be posstole {aweugi more
costly) to have one campaign for the East and West Coast states anzianother for the

middle of the country. Comment on the desirability of splitting up <he camnaign.

Hints: Remember omitted variable bias. For questions 4 and 5/ yqu may want ‘o think about using

dummy variables and/or slope dummy variables.

The Nopane Advertising Strategy case is located in tle packet of/'cages bundled to the back of this

text.!

! Nopane Advertising Strategy, Harvard Business School Case, Product #9-893-005.
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CASE INSERT 4

THE BASEBALL CASE

Singha Field is home to the BK Lions professional baseball team. The tear:’s new-marketing
director, Noelle Amsley, has been trying to develop a better understaniing“ef the kzy drivers of
attendance at the ballpark to increase ticket revenues, optimize concession.iriventories and

staffing, and schedule the timing of promotional giveaways.

The stadium is capable of holding almost 41,000 fans. Tine exact.xiicmber is hard to pin down due
to the sale of standing-room-only tickets and VIP tickat cGmping. Tne data for this case are

included in the file baseball case.
PART A: REGRESSION-ANAL-Y SIS

Noelle’s first model uses tiree oncants topredict attendance: time of day, temperature, and day
of the week. Specifically, sfic.has-a dummy variable for night games, the day’s high
temperature, and tiizee Gammies-indicating if the game takes place on a Friday, Saturday, or

Sunday, respectively.

1.}, Usz Regressioni 1 to estimate attendance for a Sunday afternoon game where the

wemiperafurs is 82 degrees.
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. regress Attendance nightgame temp f Friday Saturday Sunday

13653.73 24754.64

L

source SS df MS Number of obs = 92
F(C 5, 86) = 8.96
Model 1.0736e+09 5 214729715 Prob > F =, 0.0000
Residual 2.0606e+09 86 23960007.5 R-squared = 0.3426
Adj R-squared'= '0.3043
Total 3.1342e+09 91 34441859.6 ROOT MSE = A1894.9
Attendance coef. std. Err. t P>|tl [95%<Tenf. Intenvar]
nightgame 2514.662 1381.219 1.82 0.072 -233.1106 | 5260.434
temp_f 186.1147 38.75908 4.80 0. 000 q 109.0642 263.1652
Friday 3572.419 1458.08 2.45 0.016 “H73.5514% 6470. 986
Saturday 6451.255 1641.437 3.93 0.000  3x88.177 9714.324
sunday 4313.778 1488.045 2.90 0.005" 1255.641 7271.914
_cons 19354.18 2716.616 7.12 0.C00

Regression 1

A quick look at the model analysis output from Stata '(clicking Uszi>Core Statistics>Model

Analysis, using most recent regression>Residuals, ouﬂ"rers,_ar[d influential observations
(inflobs) or typing db inflobs) shows six ovtliers among the 92 data points. Two of them are day
games on very cold weekdays where the madel gredicts the lowest possible turnout. However,

these particular games nearly sold sut:-Moelle kicks he:self: They’re both the opening day of the
- x\ i
season, a special game for basg:ba'l fans. ™

r 5, _—

k. . .

Adding a new dummy \_/a_riqbi.o. caited opening_day that equals one on the first home game of the

season and zero otheiwise produces-Regression 2.
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. regress Attendance nightgame temp_f Friday Saturday Sunday opening day
Source SS df MS Number of obs = 92
F( 6, 85) = 9.87
Model 1.2870e+09 6 214503987 Prob > F =4 0.0000
Residual 1.8472e+09 85 21731591.8 R-squared = 0.4106
Adj R-squared = '0.3690
Total 3.1342e+09 91 34441859.6 RoOT MSE # A661.7
Attendance Coef. std. Err. t P>|t] [95% Counf. Intemval]
nightgame 2766.433 1317.873 2.10 0.039 146.119 | 5386.717
temp_f 214.272  37.99071 5.64 0.000 - 132.7763 289. 8077
Friday 3265.076 1392.081 2.35 0.021 “AQ7 . Z4T75H 6032. 905
Ssaturday 6723.671 1565.658 4.29 0.000 _ 3620.722 9836.619
sunday 4626. 661 1420.672 3.26 0.00z 1201:985 7451.338
opening_day 10892.11 3476.049 3.13 0. 602 398{‘ 759 17803.43
_cons 17143.61  2681.662 6.39 0.000 11815.75 22475.47
1
|

Regression2

2. Use Regression 2 to estimate the attendance for a Sunday; afiernoon game where the

o

temperature is 82 degrees and it is not opening ¢ay.

3. Compare your results from qucqf.ior{s' L.ana2, _Explain why your estimate changes
between the two models:” . N |
The team management ré:er_{ti . 'beg;;n @éiﬁg a more sophisticated pricing structure to improve its
revenues. Instead ci 6hérg|hg: ire s-amo_ set of prices for every game, there are two different
pricing schemes: fuII—.pr'i-c.e t'it,!'e_tlc, a.md cheap tickets. For games where management anticipates a
lower levei of interast, it cha.rées the cheap ticket prices in order to stimulate demand. Regression
3 shovs,é the signif'ilant effect of cheap_tickets on attendance, but the coefficient is confusing to

Noc!le, She had expected the sign to be positive. Shouldn’t the lower prices increase attendance?
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. regress Attendance cheap tickets
Source SS df MS Number of obs = 92
EC 1, 90) = 26.21
mModel 706837350 1 706837350 Prob > F =\ 0.0000
Residual 2.4274e+09 90 26970798.6 R-squared = 1 0.2255
Adj R-squared = '0.2169
Total 3.1342e+09 91 34441859.6 RoOOT MSE =, 193.3
Attendance Coef. std. Err. t P>lt] [95% Cuaf. Intesvall
cheap_tick~s -7957.35 1554.374 -5.12  0.000 -11(35.39 | -4869.314
_cons 35638.73 584.2966 60.99 0.000 - 34477 .93 36799. 54

Regression 3

4. Do these results violate the law of demand that says a.| eise being .e-qu«;;l, a lower price
should increase the quantity demanded?

Noelle’s colleague, Andrew Groden, is interested in leazning now two other factors are driving
attendance: promotional giveaways such zs free. hat day; and popular opponents, such as the
team’s historic rivals, the ML Tigers, as well"as their cross-town rivals, the Pachyderms. To test
these factors’ significance, Noelte ha.s éddedhthree duimmy variables called promo, Tigers, and
Pachyderms, which are addec, to her earliér regression to produce Regression 4. She quickly
informs Andrew that the“first 2vG-are signifizant, but the Pachyderms do not seem to be a big

draw to the ballpark.

Andrew disagrees:“It’s just because those games were all scheduled on days that were already
popula,". Five of the, six times they played were on Fridays or the weekends, and all of the games
wera in the stirmer wien the weather is usually perfect! Those games increased the interest in

the garises, tut there just weren’t enough seats available in the ballpark to see the effect.”

5x.Does Andrew’s theory sound reasonable? Why would a team schedule games against a

popular rival, knowing that it did not need to encourage attendance on those dates?
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. regress Attendance nightgame promo temp_f Friday Saturday sunday opening day Tigers Pachyderms
source ss df MS Number of obs = 92 i
EC 9 82) = 8.78
Model 1.5385e+09 9 170949120 Prob > F = 0.0000
Residual 1.5957e+09 82 19459355.4 R-squared = 0.4909
Adj R-squared = 0.4350 .
Total 3.1342e+09 91 34441859.6 ROOt MSE = 4411.3
—. .
Attendance coef. std. Err. Tt P>lt] [95% conf. Interwal] . "
nightgame 2325.537 1277.577 1.82 0.072 -215.9704 4807.044 |
promo 2429.939 994.7415 2.44 0.017 451.0809 4£408.796 |
temp_f 201.3943 37.09662 5.43 0. 000 127.5973 275.192.2
Friday 2717.848 1339.668 2.03 0.046 52.82217 53c2.874
Saturday 5487.209 1579.43 3.47 0.001 2345.22 _96.29.";97 "
sunday 4180.384 1357.82 3.08 0.003 1479.245 6881, 52%
opening_day 11109.54 3300.049 3.37 0.001 4544 .94 217674.29 "
Tigers 4010.042 1701.466 2.36 0.021 625. 83 7324.792
Pachyderms 2848.318 1931.134 1.47 0.144 -993.13223 6689 959
_cons 16564.32 2580.768 6.42 0.000 114:0. 3% 2169¢. 29,

.

Regression 4 = ’ -
1 1 1

Regression 5 adds two more variables to Noelle’s rnod.el..“Crl_e_iS school, which equals one

"

whenever the local public school system is.in sdssion (keeping thousands of potential fans away

from many games) and zero otherwise - The.othéz.variable she adds is cheap_tickets, as was used

in Regression 3. —
# - '\-H_\ B

.\'.
k"
|

6. Is the variable chaen _t.i@ké'l"a significunt in this regression? Interpret the coefficient and
\H' e ‘H'-

l\' e

its significance_in the-zoniext of this new regression.
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. regress Attendance nightgame promo temp_f Friday Saturday sunday opening day Tigers Pachyderms school cheap_tickets
Source Ss df MS Number of obs = 92
EC 11 80) = 8.23
Model 1.6642e+09 11 151288404 prob > F = 0.0000
Residual 1.4700e+09 80 18375459.7 R-squared = 0.5310
Adj R-squared = 0.4665
Total 3.1342e+09 91 34441859.6 ROOT MSE = 4286.7
Attendance Ccoef. std. Err. t P>t] [95% conf. Interval]
nightgame 2348.312 1378.057 1.70 0.092 -394.1095 5090.734 e ]
promo 1611.908 1031. 802 1.56 0.122 —441.4437 3665.259
temp_f 136.0009 44.01722 3.09 0.003 48.4038 223.5979
Friday 2312.421  1359.573 1.70 0.093 -393.2155 5018.058
Saturday 5222.544  1592.267 3.28 0.002 2053.832 8391.255
sunday 3709.767 1414.021 2.62 0.010 895.7766 6523.758 b
opening_day 10272.16 3266.219 3.14 0.002 3772.179 16772.14 .
Tigers 4391.416 1672.612 2.63 0.010 1062.812 7720.02 |
pachyderms 2671.457 1879.949 1.42 0.159 -1069.762 6412.675
school -2768.247 1272.056 -2.18 0.032 -5299.72 -236.7742 -
cheap_tick~s -1792.012 1656.934 -1.08 0.283 -5089.416 1505.391 " W
_cons 23724.38 3713.754 6.39 0.000 16333.78 31114.99
. hettest ",
Breusch-Pagan / Cook-weisberg test for heteroskedasticity W
Ho: Constant variance 1
variables: fitted values of Attendance | |
chi2(1) = 15.23 Y
prob > chi2 = 0.0001L -

RegressionB

7. Use Regression 5 to make a forecast Gt attendance-for 2-Gaturday night game against the
Tigers that is not on opening day. Alse.. the temperature is 89 degrees, there are full-price
tickets, a promotional giveaway, and éciaopl'l;.out of session. Provide a 95% prediction

) _ , -
interval for your answer. D0 you-have, any concerns about your forecast?

PART B: NON-LINEARITIES

-,

Noelle has been studyirig'R_egncssion 5. She is concerned about the Breusch-Pagan Test, which
indicates a'hé;[éroskedasticity problem with the model. She becomes more concerned after
conductinjy a semi-Ing Inodel, Regression 6, which failed to fix the problem. Noelle suspects that

a-+inear.madel may not be the most appropriate fit to the data; in particular, she is worried about

ihe large-number of games that are pushing the stadium’s capacity limits.

-,
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. regress InAattendance nightgame promo temp_f Friday saturday sunday opening day Tigers Pachyderms school cheap_tickets
Source SS df MS Number of obs = 92
F( 11, 80) = 7.42
Model 1.7894293 11 .162675391 Prob > F = 0.0000
Residual 1.75413753 80 .021926719 R-squared = 0.5050
Adj R-squared = 0.4369
Total 3.54356683 91 .038940295 ROOT MSE = .14808
Tnattendance coef. std. Err. t P>|t] [95% conf. Interval]
nightgame .0732643 . 0476031 1.54 0.128 -.0214689 .1679974 T iy
promo . 0570305 .0356422 1.60 0.114 -.0138997 .1279607
temp_f .0047972 . 0015205 3.16 0.002 .0017713 . 0078232
Friday . 0738067 . 0469646 1.57 0.120 —. 0196557 -1672692
Saturday .1598875 . 0550026 2.91 0.005 . 0504287 .2693462
Sunday .1149284 .0488454 2.35 0.021 .017723 .2121338
opening_day .3253515 .112827 2.88 0.005 .1008186 . 5498843
Tigers .1484943 .0577781 2.57 0.012 .0335123 .2634763 |
pPachyderms .0792164 . 0649402 1.22 0.226 —-.0500188 .2084516
school -.0766163 .0439414 -1.74 0.085 —-.1640625 . 0108299 -
cheap_tick~s -.0701241 -0572365 -1.23 0.224 —-.1840283 . 0437801 i
_cons 10.04899 .1282865 78.33 0.000 9.793688 10.30428
. hettest
Breusch-rPagan / Cook-weisberg test for heteroskedasticity
Ho: Constant variance 1
variables: fitted values of TnAttendance | |
chi2(1) = 26.70
Prob > chi2 = 0. 0000

Regression 6

Both linear and logarithmic models are unbounded, meaning-tisey don’t have an upper limit.
Regression 1, for instance, predicts more than 4?,000 fans fo.r a Saturday afternoon game with a
temperature of around 88 degrees (not.unreasonatiie for a summer day) even though that exceeds
the capacity of the stadium by maie than a t!]_ousénd reople. A regression of InAttendance using
the same independent variables predicts more than 43,000 fans.

The problem as Noeiie-sees-it is.that no-ne of the models she has learned about seems right for the
pattern she observed iri-the Getaset: attendance getting closer and closer to a maximum value as
“conditionsiimprove. Takingtemperature as the independent variable, Noelle plots Attendance
versusIT ernperatura with two different fits. These fits include one linear and one curving up

toward the canacity. These plots are seen in Figures 1 and 2.

Lbcking 4t Figure 2 gives Noelle an idea. Though a semi-log model, Y = a-¢* does not have a

maximuri when the constant a is positive, it does have a minimum. Y will never fall below zero.
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Figure 2

Flipping Figure 2 upside-down by plotting Empty Seats versus Temperature gives Noe!le the
graph in Figure 3, which looks just like the kind of graph where a semi-log model fits'perfectly!
Taking a log of the empty seats and plotting it versus Temperature gives her Fig'.".m..4. Iémpty-
seats were computed using 41,000 as the capacity. Regression 7 uses the same debelndent v.arlable

but adds the entire collection of independent ones as Noelle had done praviousiy.
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Log Empty Seats
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How does the semi-log,inodiei-ef empty seats used in Regression 7 compare to the models

used in Regressions 5 ana-6? Briefly d!scuss the pros and cons of using this last model.

oy

Use Regression 7t_6 predict at’endance for a Saturday night game against the Tigers that
iS not opening day Alzq, the temperature is 89 degrees, there are full-price tickets, a
r:'drﬁbt-ion‘q! giveaway, and school is out of session. In addition to a single attendance

[ nmber, prévice a 95% prediction interval for your answer.
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. regress InEmptySeats nightgame promo temp_f Friday saturday sunday opening day Tigers Pachyderms school cheap_tickets

Source sS df MS Number of obs = 92
F( 11, 80) = 11.03
Model 55.7147795 11 5.06497995 Prob > F = 0.0000
Residual 36.7373895 80 .459217369 R-squared = 0.6026
Adj R-squared = 0.5480 o
Total 92.452169 91 1.0159579 ROOT MSE = .67766
i 1
TnEmptyseats coef. std. Err. t P>|t] [95% conf. Interval] "-_ b
nightgame -.6626704 .2178499 -3.04 0.003 -1.096205 -.2291353 —— _',_
promo -.1457834 .1631122 -0.89 0.374 —-.4703869 .1788202 ; ""\.
temp_f -.0171723 . 0069585 -2.47 0.016 —-.0310201 —-.0033246 - e %
Friday —.5424369 .2149278 -2.52 0.014 -.9701568 -.1147169 B S
saturday -1.338069 .2517131 -5.32 0.000 -1.838994 —.8371442 e "'H.,H_ ,
sunday —. 6943257 .2235351 -3.11 0.003 -1.139175 —.2494766 Y B
opening_day -2.061168 . 5163394 -3.99 0.000 -3.088716 -1.03362 -
Tigers —.4419581 .2644145 -1.67 0.099 —. 9681598 .0842436 |
pachyderms —. 6054207 .2971914 -2.04 0.045 -1.19685 -.013991
school . 8304046 .2010927 4.13 0.000 .4302173 1.230592
cheap_tick~s —-.0222473 .261936 -0.08 0.933 —. 5435166 .4990219 i
—_cons 9.636074 . 587088 16.41 0.000 8.467731 10.80442
., B!
. hettest " y
Breusch-rPagan / Cook-weisberg test for heteroskedasticity | "\M "'._ d
Ho: Constant variance | | Y i
variables: fitted values of InEmptyseats | L .I |
1 %,
chi2(D) = 0.01 W
prob > chi2 = 0.9309 — o S
5 —
o
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APPENDIX: ASTATA MINI-MANUAL

This Stata mini-manual is a complement, not a substitute, for the other resourcgs available far you
in learning Stata. Do not worry if some of the terminology used in this masiual is uafamiliar. %ne
purpose here is to instruct you on the mechanics of using Stata, not in &nderstanding the statistics:

this is what the text is all about!

GETTING STARTED WITH STATA

Loading the Core Statistics Custom Menu

Stata is statistical software that enables ysu t@.do €asily many of the statistical calculations
required for this course. It is quitz'a poweriul and fiexable program, and is likely to meet your
statistics needs not only througholut your eccation, but also throughout your career. To start

Stata, you can either:

1. Double-click te-opeita Stata .do file (of commands), or

2. Doutie=click to open a'Stata .dta file (of data), or

3. [ Dypuble-clizk (lor otherwise start) the Stata executable.
I7 this-text,"we will be making extensive use of the custom Core Statistics menu and will assume
threughout the text that you have loaded it into Stata. To load this menu, follow these steps: Run

Stata:There will be a command line. Type the command
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do http://kellogg.northwestern.edu/stata/menu.do and hit enter (you will need an internet
connection). In the dialog box that appears, check “Core Statistics” only. After the dialog box
executes, the custom menu will be installed under the User Menu in Stata. It only ne2ds'to be

installed once, and will appear there each time you start Stata. —

Using Menus, Dialog Boxes and Typed Commands

Throughout this manual, commands on the main menu and sub-menus wiit, be'separated by the >

sign. For example, clicking User>Core Statistics>Univariate Statictics>Standard (ktabstat)

means doing this:

Statistics | User | Window Help

H-1A 1 Data »
Graphics »
] Statistics »
Record your work »
Load Data ... » ",
Save Data ... »

Browse Data (browse)
Edit/Modify Data (edit}
Manipulate Variableand G

Core Statistics P “Univariate Statistics » Standard (ktabstat)
Bivariate Statistics » Custom (tabstat)
Regression (regress)

Model Analysis, using most recent regression >

Test Hypotheses, using most recent regression >

Prediction, using most recent regression (confint)

Y'ou can.Ciick on User, then Core Statistics, then Univariate Statistics, then Standard
( I_(tabsfa:) (tnce each), or click on User, hold the mouse button down as the sub-menus pop up,

and relgase the button when you have gotten to Standard (ktabstat).
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You can also open most Stata command dialog boxes by typing db dialogboxname in the

Command box. For example, typing db ktabstat will open the ktabstat dialog box.

A third and commonly used alternative for carrying out Stata commands is to t\ype cuirmainds
directly into the Command box. This method is most efficient for frequentl; used-commands. that
have few options (e.g., running a regression). For more complicated tagks, such-as generating a
graph with customized title, legends, scales, etc., it is generally easiei-ic-usethe dialog box
instead. Note that whenever you use a dialog box to run a command, Statawil’ display the
corresponding direct command at the top of the output. When tiis test lists Ia airect command

(such as regress depvar indepvars), the italicized portic:i refers te-the following:

depvar - the name of a dependent vzriable

indepvar(s) - the name(s) of (an) irdependent variable(s)
newvar - the name that yor-wait.to give ta.a n2w variable
oldvar - the name of a!1 existing veriatle

varlist - a list of variabi2 naimes separated by spaces
varname - the name-af a variable

varX - the name oran AX-variable

varY - the name of &Y variable
Loggirig Yaur Work

i-is geneially a good idea to record the work that you have done in Stata so you can refer to it in
the-futureif necessary. You can use Stata’s log command to store all of your commands and
outputs in a plain text file. To start logging your work, click User>Record your work>Open

Log (log using) or type db log. (Stata’s native menu option is File>Log>Begin....) Type the
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name that you want for your new log file, select Log (*.log) as the file type, and click Save. After

you have started a log file, all output in Stata’s Results window will be recorded.

If you want to record your work using an existing log file, you can open the log-dldiogvox.
double-click on the desired file, and select “Append to existing file” in the chsuirig Stata Lég

Options window.

Alternatively, you can type the direct command log using newfilename.lGg tocreate a new log
file. Stata will store this file in the default data folder unless you. specifv fhel directory in which
you want to save your log file (in this case the direct corimand weld be log using
directory\newfilename.log). The direct command fo: append!nq to an existing log file is log
using filename.log, append. However, it is‘gerierally easier 10 open or create a log file by using

the log dialog box instead.

To stop logging your work, you can click tJser>Record your work>Close Log (log close) or
File>Log>Close. You may-alst.type-the direct command log close. Any open log will be closed

automatically when vou exit"stata:
Opening/Starting a Data File

When State.starts, it will have an empty data sheet in the Data Editor. This is where you enter all
the data thatyouwish to analyze. Usually, you will want to load a data file into Stata. To do this,
Click Usei>I.oad Data...>Stata Dataset (use) or type db use." You will see a window like the

one.below: Choose the folder that your data file is in, choose the data file and click Open. For

! Alternatively, you can click File>Open...
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example, in the following window, you can import the capm.dta dataset into Stata by clicking

Open.
.-";-. I'l
Yo
'|I' ll'.
——
Open o —
@Ov! |, « Datafiles » Chapter2 » v | 5 | l Search _,.-f"d_-h“\' _ﬁ\-\‘f?l
— g — e = N
. opo . \ =)
8y Organize v 22 Views ~ B New Folder 4 r 2
Faveeite Links Name Date modif... Type Size K‘gs\
: -
[E| Documents B8 chZcov hles s \ ’
T |bank { f k!
Bl Desktop 2 . | |
% T |bigmovies \ \ |
i Recent Places 'Ej]capm L \ _——
@ Computer T |forbeswealth L~ S
B Pictures T hawaiipercapita [ [ 1:; kY
B Music T package \ \ J' |
(% Recently Changed T proportion \\ -/
E Searches t{]restaurantstoc?kasﬂ —
)i Public Tltestmarket /*
'y %
Folders A 7 k
File name: ;| \\' :i v [Stata Data (".dta) ']
PN (open ] [ Cancel ]

Once your data are in place,

SRR

f f %

i
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8 Data Editor (Browse) - [capm] (=T
File Edit Data Tools
=2 TN Bl A= A0
date[1] [2601 |
e date Sp500 smstk crpbon govtbon thill
) o .ossmss o072 .o17se  .oo3se
8 2 2602  -.034737 -.060187  .008224  .010037  .006406 g
g 3 2603 -.051864 -.101712  .014007  .009737  .008602
s 2604  .015907  .008508  .000301  -.00181  -.005971
s 2605 .023505  -.001029  .009987  .006998  .005715
6 2606 .053215 . 045285 .007891 .011303 .01095
7 2607 .057324 .020622 .015134 . 009869 . 011677 -
8 2608 . 030559 .031335 .010114 .00572 .00825
9 2609 .019444 -.005799 -.000047 -.001984  -.003474
10 2610  -.032168  -.026507 00589  .006364  -.000615
1 2611 .030874  .016954  .001905  .012202  -.000703
12 2612 .019593 .033184 .0056 .007813 .002778
13 2701 -.011712 .037133 .013161 .015033 .010024 1
14 2702 . 061366 . 062345 .014519 .016397 .010189
15 2703 .014429 -.049013 .014058 .031086 .008717 e
16 2704 .020101  .057339 L0055  -.000491  .002546 o
17 2705 .05297  .065657 -.008822  .003142  -.004714
18 2706 -.016285 -.039868 -.005279 -.016473 -.006996 -
19 2707 . 086003 .070554 . 019275 .023945 .021966
20 2708 .057297 -.012026 .014103 .013403 .00856
21 2709 .039203 -.001091 . 009063 -.004039 -.003741
22 2710 -.055978 -.071702 -.000303 . 004056 -.003283
23 2711 .074012 .082749 .008723 .011629 . 004009 | :
24 2712 .029785  .033563  .008727  .009078  .004157
25 2801 -.002033 .0501 . 00463 -.001679 . 004466
26 2802 -.00285 -.013953 .016471 .015791 .012965
27 2803 .110081 .053051 .0041 . 004545 .002943
28 2804 .032548 . 089037 -.000553 -.002313 . 000277 F -
29 2805 .013899 .037939 -.013648 -.013562 -.00261
30 2806 -.030748 -.076473 .005352 .011887 .010874
21 2807  n1an7 nnsRcE - _0n1 - N21741  NN2WI2& i x
V
Ready ! [ Vars:6 || Obs:240 || Fiiter: Off || Mode: Browse |[CAP [[NUIM

There are other ways to input data into Stata. Iri-a blank Data Editor, you may copy and paste or
type in data manually. Often, you may-have data ¢lreacy entered in a spreadsheet that you want to
import into Stata. To import df.[a from an E>.<~(':o.l spreadsheet, for example, you can do one of the
following:
1. Directly copy arid -paa.te the entire dataset from your Excel spreadsheet into Stata’s
Data E'oitor_. Esiore-eepying the data, you should first format your spreadsheet so that
f[he_ first rowl cortaing variable names. When you paste your data into the Data Editor,
Click. “Treat first row as variable names” in the Paste Clipboard Data prompt. Click
.File>Szave in the Data Editor or click User>Save Data...>Stata Dataset (save)” in
the Staia main window to save your dataset as a .dta file.
21 $ave your Excel spreadsheet as a comma separated file by clicking File>Save As...

in Excel. Select CSV (Comma delimited) as your file type and click Save. Next,

open Stata and click User>Load Data...>ASCII (text) data created by a

2 Alternatively, you may type db save.
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spreadsheet (insheet) (or type db insheet).? Select Comma Separated Values
(*.csv) from the file type drop-down list. Browse for your file, choose Comma-
delimited data from the “Delimiter” field, check the box next to “Preserie variable
case” and click OK. Open the Data Browser to verify that your data hassean

imported correctly.

A few things to keep in mind when you are converting and importiaga-esv file:

1.

You need to format an Excel spreadsheet properly beiore saving i as a comma
delimited file. The first row in your spreadsheet sheuld containlvariable names, and
there can be no empty rows or columns \vitkin your dsia. Your dataset should not
contain non-numeric symbols such as coramasz anq thie clollar sign. When you have
missing data, you should leave tne appropriate ceil(s) blank instead of entering
placeholders such as N/A.

Stata does not allow space{e).within &varizble name. For example, a variable with
the name Avg Tenp n Excerwili be imported as AvgTemp into Stata.

Stata stores the-narnes GEall iniported variables in lowercase unless you check the
“Preserve variabie case” box in the insheet dialog box.

If you criapse tise aefauit as your “Storage type” in the insheet dialog box, Stata
will store any variabie that contains decimal values as a float variable. Because a
rloat-varieble has about 7 digits of accuracy, and because Stata may store a value of
5.6 as £.5999999, you may encounter rounding discrepancies as you work with
tatases converted using the default float storage type. One solution to this problem is
10 select the Force double storage type when importing a .csv file. This option keeps

variables with decimal values accurate up to 16 digits.

® Stata’s native menu option is File>Import> ASCII data created by a spreadsheet.
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Exporting a Data File

Sometimes you may need to export a datasheet from Stata to another spreadsheet prograin such as
Excel. To do so, you can use one of the following methods:
1. Open your .dta file in Stata. Go to the Data Editor and select the-entire datcset
Copy and paste the dataset into Excel and save the sprgadsneet.in e desired file
format such as .xls or .csv.
2. Open your .dta file in Stata. Click User>Save Duta...>ASCI! (text) data
readable by a spreadsheet (outsheet) or tvoe'db OL!fSthtI.A Click on the Save
As... button to specify the name and/location for.;yaur data file and choose
Comma Separated Values (*.csv) az thé file_type. select Comma-separated
(instead of tab-separated)-tormat in the “Delimiter” field and click OK. You
can open the new .csv file in Exzel to verify that your dataset has been exported

correctly.
Basic Statistics and Critical Vialues

With Stata, you can easily-abtari-semie basic statistical quantities. As an example, open the
adsales.dta data file. Click t!ser>Core Statistics>Univariate Statistics>Standard (ktabstat)
(or type db-Ktaletat)to generate useful summary statistics for each variable in the file.® The

output ooks like that in Figure A.1.

* Stata’s native menu path is File>Export>Comma- or tab-separated data.
® Alternatively, you may directly type the command ktabstat.
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. ktabstat
preserve

destring, replace force
tabstat _all, s(mean sd semean min median max range skewness kurtosis count)

stats expend sales
mean 2.290087 16.88738

sd .7776593 .8666047
se(mean) . 059296 . 066078
min .3567983 13.62897

p50 2.300221 16.94198

max 4.848972 19.0247
range 4.492174 5.395734
skewness .3112767 —-.8184991
kurtosis 3.517164 4.903701
N 172 172

Figure A.1: Univariate statistics for the adsales.dta data.

If you want Stata to calculate statistics other than the onss incluazd in the ktabstat command, or

if you want Stata to display basic statistics only for spetific variables in your dataset, you can

click User>Core Statistics>Univariate Statistics>Custom (tabstat) or type db tabstat)

instead.® This command allows you to select tin to eight statistics that you want Stata to display

for your specified variable(s). Tke direct command is'tabstat varlist, s(...), where you can

specify the names of summary,statistics in the i(...) portion of the command. For the complete

list of summary statistics:-type-héin tabstat into the Stata Command box and refer to the

Options>statistics c,_ecti'on. Noiethat tre tabstat command will not work for string, or non-

numeric, variables. Therefore;.if there is any string variable present in your dataset, it is generally

easier to 1'se the kéabstat command instead, as it is programmed to convert string variables to

numeri.i: viariables temgorarily prior to calculating summary statistics. Your original dataset will

not_he aifecte

Gy

this temporary conversion.

“.To Tind the correlation coefficients between all pairs of variables in your dataset, you can click

User=>Core Statistics>Bivariate Statistics>Correlations (correlate) (or type db correlate),

® Stata’s native menu option is Statistics>Summaries, tables, and tests>Tables>Table of summary
statistics (tabstat).



leave the “Variables” field empty, and click OK. Stata’s native menu option is
Statistics>Summaries, tables, and tests>Summary and descriptive statistics>Correlations
and covariances, and the direct command is correlate. If there are some non-numeric variables
in your data, correlate will return an error message. If you want Stata to compuie curiclation
coefficients for selected variables (e.g., the non-numeric ones) only, you ca:i specify those
variables in the correlate dialog box.” Again, using the adsales.dta data, ve prodiice the output

in Figure A.2.

. correlate ’ |
(obs=172) |
| expeid gales
expend 1.6300
sales L. 0.955% _ 1.0000

Figure A.2;~Correlgtions for adsales.dta data.

Here, 0.9555 is the correlation hietw:zer-expeid and sales.

To perform a 1-Sample t-tast 1iz.Steta, voucan click Statistics>Summaries, tables, and
tests>Classical tests of. hvbothéses>()ne—sam ple mean-comparison test (see Chapter 2).2 To
compare the means of twic-nopelations using a 2-Sample t-test, click Statistics>Summaries,
tables, arid tésts>c.'assical tests of hypotheses>Two-sample mean-comparison test (see
Chapter 2).° We will usually assume the variances of the variables in a 2-sample t-test are
differeat $a you will.check the box next to “Unequal variances.” The dialog box for a 2-sample t-

test lookz like this:

" The direct command is correlate varlist.
8 The direct command is ttest varname == #.
® The direct command is ttest varnamel == varname2, unpaired unequal.
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-Z] ttest - Two-sample mean-comparison test M
Main | by/f/in |

First variable: Second variable: i |
|

[+] [+]

[¥] Unequal variances F—— -‘ .T o,

[7] Welch's approximation

95 v Corfidence level M7

(oK | Il [ Canvel |, ) [ Submt
: i

By
%, o

"

£

Specify your variables and click OK, ard Stata.will return the test statistic as well as the p-values

corresponding to the alternative hypqth_é_ses tha"t“thme difference in population means is less than,

.,

£ —
not equal to, or greater than 0. / R
. .
I. '.xm
" L
LN -
Regression NN
o —

In this sectiorl, we will usekthe capm.dta data.
r g ) T )
/ S, %
| |
The command you will probably use most frequently is the regress command. You can access the
. %, g

_-’aialnq 'bo,f:for this-<command by clicking User>Core Statistics>Regression (regress) (or type db

iegress).”” Siata’s native menu option is Statistics>Linear models and related>Linear

", .,

regressiori. Clicking on the menus will open the following dialog box:

1% The direct command is regress depvar indepvar(s).
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| Suppress constant term
Has user-supplied constant
Total SS with constant {advanced)

regress - Linear regression Q=HEC
Model | by/if/in | Weights | SE/Robust | Reporting | _
Dependent varizble: independert variables: ( g
‘smstk [«][eee] | 5500 crpbon tbil E]_LE_]RH
Treatment of constant —

In this example, we will N
T —

—y,

&
our independent vaiiables /

—

When y u ch N[ata will display the regression output as in Figure A.3.

\f

,f"_““"

&

stk-as our dependent variable and sp500, crpbon, and thill as
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. regress smstk sp500 crpbon tbill

source SS df MS Number of obs = 240
F(C 3, 236) = 267.97

Model 3.47607164 3 1.15869055 Prob > F = 0.0000
Residual 1.0204516 236 .004323947 R-squared = 10.7731
Adj R-squared = '0.7702

Total 4.49652324 239 .018813905 RoOOT MSE = 106576
smstk Coef. std. Err. T P>|tl [95% ::n_f. Intervalid
sp500 1.364617 .0510192 26.75 0.000 1.264106 | 1.465129
crpbon 1. 546602 .4035748 3.83 0.000 . 7515328 2.341671
thill -2.537447 .6767151 -3.75 0.000 =3.8s0021 -1.204273
_cons -.0012814 .0045284 -0.28 0.777 . —. 2102025 . 0076398

Figure A.3: Regression of smstk on sp500, crpoon; and thill.*

From the output above, we can see that our regressioti ec:aation is.

smstk = -0.0012814+1.364617*sp500+1.546602*cr.pbon-2.537447:’<tbiII. Stata lists the standard
errors, t-ratios, p-values, and 95 % confidenze intervals foreacii coefficient in the Std. Err., t,
P>It|, and 95% Conf. Interval columns, respestively. Under the SS column, you can find
explained sum of squares, residual sim of squares, anc:total sum of squares in rows Model,
Residual, and Total, respectivily, The dbgrg'es of fre.edom of the error term is listed in the
Residual row and the df_mlurm. The nl_meer of observations, F-ratio, p-value (Prob > F), R?,
adjusted R? and the stapdard e-rru:"_or tre regression (Root MSE) are listed in the top right corner.
The p-value (Prob >-E) listea ,m;f ahcve the R?in the regression output is for the hypothesis test
with the null hypothesis .that the zoefficients for all the variables are equal to zero. The p-value of
ZEro savis wc can.reject the null hypothesis with high confidence, and thus have strong evidence
that at I‘easf. one of the independent variables is related to the dependent variable.

0 havé Stata calculate the beta-weights for each coefficient, you can click the Reporting tab in

tfie.regress dialog box and check the box next to “Standardized beta coefficients.” You can

alternatively type the direct command regress depvar indepvars, beta.
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To make predictions using your most recently performed regression, first open the Data Editor.
Suppose we want the predicted value for smstk where sp500 = 0.05, crpbon = 0.01 and thill =
0.02. Enter these numbers into an empty row in the cells corresponding to each variainle {we leave
a blank row above our entry to remind ourselves where the original data ends; i Tiis-case we will
enter our new set of values in row 242). Minimize or exit the Data Editor. Mext, click User=Cove
Statistics>Prediction, using most recent regression or type db confiiit. Glick-OK,, and you will

obtain the following output:

8 Data Editor (Edit) - [capm]

File Edit Data Tools

25 G 0 [E]e3 | =1 0| 7 A% e
sp500[242] 05

IE date Sp500 smstk crpbon govtbon tbill predicteff sejest_mean se_%nd_prid CIlow CIhigh PITow PIhigh

2 240 4512 .007951 .013374 .009617 .015746  -.003379  .033016- 060293 .D660316  .0211382  .0448946 -.0970722 .163105
241 . . . . . . . . . .
242 . .05 . .01 . .02 .0316666 .0130438 .06 038 . 0059695 .0573637 -.1004027 .1637358

k10ysdeus

As you can see, Stata has generated new Yariehles-corresponding to fitted or predicted values
(predicted), the standard error ofthe estimiated meai-(se_est_mean), the standard error of
prediction (se_ind_pred), as well as 95% confidence and prediction intervals (Cllow/Clhigh and

Pllow/Plhigh, respectivéaly).

To change the confiderice leval for these intervals, open the confint dialog box again and type the
confidence-feveiou want in tiie “Confidence level in %” field. Click OK, and Stata will
regene;ate the varicbles listed in the previous paragraph using the new confidence level.

T0 do-predistions for more than one set of values, simply enter each set of values for the

- inaenend:2nt variables in a separate row in the Data Editor. Suppose we want to make predictions
for sp'%bf =0.05, crpbon = 0.01, and thill = 0.02, as well as sp500 = 0.02, crpbon = -0.02, and

thill = 0.03. After you have entered these values in the Data Editor and clicked User>Core
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Statistics>Prediction, using most recent regression (confint), the Data Browser should look

like this:
date sp500 smstk crpbon govtbon tbill predicted se_est_mean se_ind_pred CIlow CIKTgr DT_'OT PIhigh
240 4512 .007951 .013374 .009617 .015746  -.003379  .0330164 .0060293 .0660326  .0211382  .)448946 -.0970722 163105
241 > ¢ . ¢ 5
242 3 .05 S .01 5 .02 .0316666 .0130438 .067038  .0059695,~.ULFI637 -.1004027™, .1637758
243 . .02 g -.02 . .03  -.0810445 0266192 .0709403 -.1334552 -.0286027 -.2208017  .ASHT127

=

If you want to generate only predicted values, only the standard e:vor of T2 _(.e:*ir.nat\ﬂd mean, or
only the standard error of prediction after running a regressior], yipu can c.I I'n";k |
Statistics>Postestimation>Prediction, residuals, etc. e=typs Gh preaict. In the “New variable
name” field, type in the name for which you want ycur »redicted-values or standard errors to be
displayed as, and choose the appropriate variable fron:the “Proguce’ list:

a. To generate predicted values, £hoose “Linear prediction (xb).”

b. To generate the standard creor oi*the estimated mean, choose “Standard error of

the prediction.”

c. To generate the siandard eiror of prediction, choose “Standard error of the

forecast *

The corresponding direct ccmmands are:
A predict newvar, xb
b. predict newvar, stdp

2. predict newvar, stdf
. Nete that Stata’s native predict command does not automatically generate the confidence and

preuictiori intervals for fitted values. Therefore, it is generally more convenient to use the

prediction (confint) command from the Core Statistics custom menu instead.
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After performing a regression, you can use some other advanced options by clicking User>Core
Statistics>Model Analysis, using most recent regression. This will expand the submeriu from
which you can select the respective commands that will calculate variance inflatiorieciors.for the
coefficients, display the test statistic and p-value for the Breusch-Pagan hetzroskedasticity test.
plot residuals against predicted values, identify outliers and high leverage oints, and calculate
the Durbin-Watson d-statistic for detecting autocorrelation.* The carresponiding Tiative menu
options in Stata and the direct commands for each of the options in the Mcdel'Analysis submenu
are the following: |

i) Variance Inflation Factors (vif) (or type db vif)

e Stata menu: Statistics>Linear mode:s arid related>Regression
diagnostics>Specification-tests, etc. (or type db estat) = Variance inflation
factors for the indepengent.yarighles (vif)

e Direct command: it

if) Breusch-Pagan hz:teroskedasticity test (hettest) (or type db hettest)

e Stata meriu=Statistice=>L inear models and related>Regression
diagnostics>&pecification tests, etc. (or type db estat) > Tests for
heteresketastiCity (iiettest)

o __ Direct comniand: hettest

iii; Plot'resicuals vs predicted values (rvfplot) (or type db rvfplot)
s Staia menu: Graphics>Regression diagnostic plots>Residual-versus-fitted
e Direct command: rvfplot

i) Residuals, outliers and influential observations (inflobs) (or type db inflobs)

1 The Jarque-Bera non-normality test is also included in the Model Analysis submenu, although we will
not be using this command in this text.
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e Stata menu: Statistics>Postestimation>Predictions, residuals, etc. (or type db
predict) 2> You can have Stata generate residuals, studentized residuals, Cook’s
distance, and leverage using this dialog box.

e Direct command: inflobs

v) Default Durbin-Watson Statistic (ddw) (or type db ddw)

e Stata menu: Statistics>Linear models and reIated>F'egress@cn
diagnostics>Specification tests, etc. (or type dh-gstat) - _LCurbiri-Watson d
statistic (dwatson - time series only). Note thzt you need te declare a time index
variable prior to using this command. Sea-the Cther-&tata
Commands>Declaring a Time Indzx Variable-se¢ction for instruction on
declaring time index variables.

e Direct command: ddw

Graphs

In this section, we will use-the adsaies.dta‘data. Load this file into Stata by clicking User>Load

Data...>Stata Data Set (use).or &/oe db use.

To plot one variable in your-data’against another, such as Y vs. X, click User>Core
Statistizs>5ivariate Statistics>Bivariate Plots (twoway) or type db twoway."” Click Create...,
choose'Batic plots = Scatter, and choose the corresponding variables from the Y/X variable

drop-dowin Tists_FEsr example, to plot sales against expend, you should have a dialog box that

raoks like thiss:

12 Stata’s native menu option is Graphics>Twoway graph (scatter, line, etc.).
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] Plot 1 S

Plot  |if/in

Choose a plot category and type .
@) Basic plots Basic plots: (select type) LY
) Range plots y
(@) Fit plots

) Immediate plots
() Advanced plots

Plot type: (scatterplot)
Y variable: X variable:
sales B iratpend

[ Marker properties | [ Markerweights |

L\ H;u__]
R =i | "

{
If you want the regression line to appear on you?'\@@c‘) , first click Accept to close the Plot 1
.-"
dialog box. Next, click Create;. 1ga|n aﬁq ect Fit plots = Linear prediction. Choose sales
| |
and expend as your Y an(4 a{‘lib-ex recr)ec*lvely, and click Accept - OK. You should obtain

a scatterplot as well as the regression iine of sales versus expend as shown in Figure A.5.

r —ty

U
R\
)
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Scatterplot

20+

18 7

16

14 °

0 1 2 3 4 5
expend |

® sales

"
Fitted Véluei,
Figure A.5: Scatterplotof sales vs. expend.

To save this graph, you can click =ile>Sav# ol right-click on the graph and select Save As....
Doing so saves your grapiias a .gph fila by default, which can be opened only in Stata. To insert
a graph into a different file or p_r_og‘.'am,_you can right-click on the graph, select Copy, and paste

that graph into the desired iacatioir.

You mzy kave ncticed that when you generated the scatterplot and regression line for sales versus
|

expenc by fallowing the instructions above, your graph does not have a title or a y-axis label as

showm inFigureA.5. You can easily add these elements as well as make various other

.. aciustmer.ts 1o your graph by using Stata’s Graph Editor. For example, to add the title

“Sc:ttei‘plot” to the graph in Figure A.5, click File>Start Graph Editor from the Stata Graph
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window.™ In the Object Browser window, double click title under Graph>positional titles and

type “Scatterplot” in the “Text” field. Click OK, and your scatterplot will now have an

appropriate title: VoA
L |
— %
il Stata Graph - Graph _,-"".-_-ﬂ"""-\.._. (=[] T&?LI
File Edit Object Graph Tools Help I _“‘-I |
S G N lE]A 9 e u» AN
Color: Dark navy ~ Size: Large > Margin: Vsmall v Text H More...
1l Graph | = T, 45X | Oigict Browser X
T T - - w R Graph
o | [ = z AN \\-. L (- plotregionl
\ ~ [:Z] Textbox properties L,J—M I | -y
i . \ 2
® Text 1Box I Format l Advanced W \\\__j / EJ-vTaXIsld
— = [ legen
5 Text: F : \\H__ \ [#- positional titles
&r_,-, ® Scatterplot ' . ... note
g =4 | | -: ."'. .. caption
Text styles \ 1 - subtitle
Size: Large . e — m
>
& Color:__ @hnavy e
= Mar\g1n: \‘small v
/
. “H
ot " =
S /= }“"&mﬂ | )
, =
0 1 | 2 3 4 5
exoend
_.-"
\‘-I:O s‘*_qles =——— Fitted values ]

N

Slmllarly, double click title undér Graph>yaxis1from the Object Browser and type “sales” t

label th- y axis ab%.\Mngly

\ A\

f’Tn ,th \\

tﬁﬁ\{-a?‘b (x-axis), right-click on yaxis1 (xaxis1) from the Object Browser and select Axis

.__-'

pertles "(ou can adjust various aspects of the axes such as scaling, fonts, and label

origatatio:.

3You can also right-click on the graph and select “Start Graph Editor.”
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Note that instead of editing a graph after it has been generated, you can specify graph properties
in advance via the optional tabs in the twoway dialog box. For more information on editing
graphs, you can refer to Stata’s accompanying manual or type help graph editor inte th

Command box.

In general, it is easier to use dialog boxes instead of direct commands o generate graphs in Stata
because of the various graph options available. Nevertheless, you carruse.these fGilowing
commands to generate common graphs:

e Scatterplot: twoway scatter varY varX

o Connected graph: twoway connected varY varx

e Graph of regression line: twoway Ifit varY varX

e Graphing regression line on top of .4 scatterplot: twoway (scatter varY varX) (Ifit varY

varX)

In evaluating a regression, the graph of residuzls versus predicted (or fitted) values will often be
useful. Here is how to gerieiate stch a-graph for a regression of expend against sales. First, run a
regression where expand is tii2 depandent variable and sales is the independent variable. Then,
click User>Core Statistics=Modei Analysis, using most recent regression>Plot residuals vs
predicted values (rvfplot) (6z.type db rvfplot).** Click OK in the ensuing dialog box, and you

will obtain‘the grenh shown in Figure A.6 of residuals against the fitted values.

1 Stata’s native menu option is Graphics>Regression diagnostic plots>Residual-versus-fitted.
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Residual Plot
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Figure A.6: Plot of residuals v5. prédicted values from regression of expend on sales.

— ,
Alternatively, you may type th2 d'rect comimarid rvfplot after running a regression.

&y
i "
B, et
- “uy, .

Getting P-values . ——

In this section, we will use thie rewspapers.dta data. A regression of Sunday against Daily

generates the output irs Figure A.7.
| A
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. regress Sunday Daily

source SS df MS Number of obs = 35

F( 1, 33) = 211.19

Mode 4370974.89 1 4370974.89 Prob > F 24 0.0000
Residual 683001. 518 33 20697.0157 R-squared = 0.8649
Adj R-squared '= '0.8608

Total 5053976.41 34 148646.365 RoOt MSE = 143.86
Sunday Coef. std. Err. T P>|tl [95% Con_f. Intervaiy]
Daily 1.351173 .0929771 14.53 0.000 1.76291 | 1.540337

_cons 24.76346 46.98668 0.53 0.602 £70. 83155 120.3586

Figure A.7: Regression of Sunday on Daiiy.

The p-value of 0.000 corresponding to Daily in Figure A:7-is-foi~one jaiiicutar hypothesis test,
where the null hypothesis is that B, the coefficient o .D aili/, is equa.‘lto z.ero. This p-value says
we can reject the null with high confidence—we can ba (vinua:iy.) 160% confident 3, is not zero.
If we wanted to test some other null hypothesis.—for examplé, B, = 1.1—we would have to do the

test manually. The t-statistic for this test is the.follcwing:

135117311
0.6928771

2.7015

Now we can use Stata“s.ttait.function to look up the p-value corresponding to this value of t. The
full syntax fer-this function is&isplay ttail(n, t), where Stata will compute the area to the right of
t underl'a tedistribttionwith n degrees of freedom. In this example, n equals the residual degrees
of f_reeonm'(-—33). and .t is our t-statistic (=2.7015). Since we are talking about the probability
ssociated with a two-tailed test, we need to multiply the value ttail(33, 2.7015) by 2. Type
~._display 2~tt1il(33, 2.7015) into the Command box, and you should get the value 0.0108128.
Thus; tﬁc p-value for the test is 0.0108128; that is, if the coefficient on Daily were 1.1, there

would only be a 1.081% chance of obtaining a coefficient as far away from 1.1 as 1.351173
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because of randomness in the data. We would reject the null hypothesis at any confidence level

up to about 99% (or any significance level down to about 1%).

We can also use Stata’s invttail function instead of a table to find critical valuesoi e wull
syntax for this function is display invttail(n, p), where Stata will calculate e value x for vehich
the probability of falling to the right of that value is p under a t-distribtitior-.with n degrees of
freedom. To find the t-statistic corresponding to o = .10 for our twa=taiied test, yoe can type
display invttail(33, 0.05) into the Command box (remember that/p = .10/2,= (.05 since we are
interested in a two-tailed test). The result tells us the t-statistic 1z, 1.65226G3. S0, we would reject
the null with o = .10 if we obtained a t-statistic greatzr than 1.6923603 or less than -1.6923603
(which we did). This additionally tells us that for a one-sided tesi with a ‘greater than’ alternative,
we would reject the null with o = .05 if we-obtained a t-statistic greater than 1.6923603, and for a

one-sided test with a ‘less-than’ alternative, we wenld reject the null with o = .05 if we obtained a

t-statistic less than -1.6923603.

We can also use Stata’s riorial(z) furiction i place of a z-table. The full syntax for this function
is display normal(z), whereSiata viidll calculate the area to the left of z under the standard normal
distribution. Suppose viie waat to look up the p-value corresponding to a test statistic of z=2.7 for
a one-sided-tesi=with a ‘less-than’ alternative. Type display normal(2.7) into the Command box,
and you skould gew0.99653303 (=P(Z<2.7)).

Sappose we, wanted to find the z-statistic corresponding to oo = .10 for a two-tailed test. We can
do“this uging Stata’s invnormal(p) function. The full syntax for this function is display
invnermal(p), where Stata will return the value x for which the probability of falling to the left of

that value under the standard normal distribution is p. For this example, we want the number x
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such that there is a 5% (i.e., /2 %) chance of being greater than x, or, equivalently, a 95%
(p=0.95) chance of being less than x. Type display invnormal(0.95) in the Command box, and

the result tells us the appropriate z-statistic is 1.6448536.
Creating New Variables

Sometimes, you will need to make a new variable out of the ones-given i q‘ji!e..Fur example,
you may want to use the logarithm of a variable as a predictor|or ’esponsé.' IAs an example, create
a new column, which includes the logarithm of the variabic-expend. Ts-do this, first open the
adsales.dta data. Next, click User>Manipulate Varjakles and Sb:>Generate New Variable
(generate) or type db generate." Type the name you*yanito_oive to the new variable, say
Inexpend, into the “New variable name” fi¢ld - Type In(expend) into the “Contents of new
variable: Specify a value or an expression” feld."®. You should have a dialog box that looks like

this:

15 Stata’s native menu option is Data>Create or change data>Create new variable.
1° Alternatively, in the generate dialog box you may click Create... and select Mathematical>In(). You
need to type expend in place of x inside the In() expression.
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generate - Create a new variable

) Fill with missing data

b Attach value label:

Main I #/n ]
|
Variable type: Variable name:
[M '] Inexpend
Contents of variable
i @ Specify a value or an expression
. In(expend)

~

e

[ e

)

i .
| OK r{ IIPCmoqL i Submit
| |

LY

X

C

Click OK and open the Data Browser. Your datasheet will look i

)

ke this:
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i@ Data Editor (Browse) - [adsales]

File Edit Data Tools

Edlcn HARES T e

. 4296055
.7041928
.4865394
.9075758
.6304252
.7811165
. 8236947
. 4462235
.3412986
.1134673
.5026054
.3860321
.0238682
.8193913
. 9665357
. 4477649
.5402601
. 6677496
.4753199

| sjoysdeus i) |

W O N 6V s W N e

o
(=]

N N OB B R R R R R R R
B O W NGO Vs W N
N N N B NN BN MNP N MR N MM N M WN

~N
~N

Inexpend[1] |1.0868287
expend sales Tnexpend
. 9648569 17.313528 1.086829

i oy -
.3318942%, 1@»?9‘9_932 ..5466809
- , ——
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Now we are done. We createit.a-new variable called Inexpend. Each observation in Inexpend is

& -

the logarithim of the cGrresponding observation in expend.

|
| |
"

H .... I
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'chte -thaf‘yﬁu cari also open the generate dialog box within the Data Editor by clicking
/ Y

. Data>Creat? or change data>Create new variable. You can see new variables generated live
., e F

'y oy

when usirig this method.

oy

R
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Many other functions are available in the Expression builder dialog box (accessible via the
Create... button in the generate dialog box) that you can use to manipulate data. For more
information on data generating options, you can type help generate into the Command Lox or

refer to Stata’s accompanying manual on data management.

Another type of variable we may want to create using Stata is a seasonal demmy veriable. In the
soda.dta dataset, we have the dummy variables winter, spring, ana-surmmes. Winter, for

example, is a column with the following sequence of numbers

1000100010001000

There is a one for each row of data that corsesronds to a winter quarter, and a zero for any other
guarter. One way to construct a variab'e like.thisis to open the Data Editor, type a 1 into the first
cell of an empty column, and type-iitree zeroes intc-the second, third, and fourth cells. Then, copy
these four cells and paste them' by, choosing the appropriate cells as a destination. In the soda
example, you need to pasie-his ‘pattern-thiee rnore times. Stata automatically names a new
variable “var#” whez-yon iniiially“enter data manually into a new column. To rename your
variable, right-click oix.the“variabieriame at the top of the column, and click Variable
Properties... Tvpe in the name that you want and click Apply, and your new variable will be
renamed agppropriately, The direct command for renaming a variable is rename oldvar newvar.
Masruallyentering data with repeated patterns can be very tedious, especially when you have a
very large detaset. Fortunately, you can use the fill() function of the egen command to generate a
variahle wwith repeating patterns easily. For example, suppose we want to generate an additional

column of data in the soda.dta dataset, say, winterl, that is identical to the winter variable. To
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do this using the fill() function, click User>Manipulate Variables and Obs>Extended

Generate New Variables (egen) or type db egen.!” Type winter1 in the “Generate variable”

e

field, select Fill pattern from list of egen functions, and enter 1000 1 0 0 0 in the “_‘-..\.Iuinber list

that provides the pattern” field (you should generally enter a pattern twice so that Stata

e 5,

e

understands exactly what pattern you would like it to repeat).”® You should tiave a.dialog bix that

5
i

looks like this: PR
x"-\. 'H...-
Ty
"'\.x 4
o ) . “
-\. = Y,
; NN
-Z] egen - Extensions to generate [ E:_LEI_IE
Main | by/f/in N e
Generate variable: Generate variable as type! N A~
y Y
Egen function: Egen function argument ™,
Cut - Number list #Aat ~rovides the pattem:
Different A
o CF i | [Tooo700%
EEr—
Group S,
fl | |Interquartile range - _ .
Kurtosis = x'\ "
A
. .. ...\'\'\.\..\. )
Lo R&ﬁ -
=, .
hy ", —
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'\'\..\. —
s, . . X - —
'H.xx \"-\,\.
=, Ny
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= .
Q0ORE [ OK [ Cancel |[ Submt |
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& ™

oy
oy

xhyvimﬁmtl_.wnh the sequence 1 0 0 O repeated four times.

T

ey

.

R
.,

4 CIicIZ"@K and examine the Data Browser. You will see that Stata has generated the variable

" The native menu option in Stata is Data>Create or change data>Create new variable (extended).
'8 Alternatively, you can directly type the command egen winter=fill(1000 10 0 0).
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Other Stata Commands

Keeping Track of Edited Data

The snapshot command in Stata is very useful in recording the changes that ycu have mads to
your dataset. Every time you create a snapshot, Stata will save a copy of ysur dataset up to thiat
moment. Therefore, if you make any editing error or simply want to reztore=yoxir daltaset toan
earlier state, you can select the appropriate snapshot that you want to rettin tc. .

For example, suppose we want to edit the adsales.dta dataFhe*arigitiai-vataset contains 172
observations, and we want to add the 173" observati'_J.n 'Nh-ere E)"pEI’.d=2..2 and sales=16.79 (for
illustrative purpose only). Open the Data Editor. Befoire maiing d.n\f Ichanges, you can create a
snapshot of the original dataset by clicking Fouls>Snapshot§... or clicking the Snapshots tab.
This will expand the Snapshots windowv orithe le* of the Data Editor. Click on the Add button

(shown below):

File Edit Data Tools .
£ b | Ba @[22 LT 230 | ORR | i

expend[l] ™ . 2964856863
[e,' Snapsh_pts . +
w o
@ | 2 | Label Timestamp Source

S]oL St

There.are no items to show.
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Enter a name, say, original, to remind ourselves what the data snapshot contains. Click OK, and
you can see in the Snapshots list that Stata has created the first snapshot of your data. Néw we
can proceed to enter new values in the adsales dataset. Suppose, however, that :ve aucideﬁi'ally
entered 2.2 in cell expend[172] instead of expend[173]. The original value-in ceila:g)-(pc-an&[l?:?_j',
2.507401228, is now lost, and we want to rectify this mistake. To do this, c!ixclf.;)n the Snapshots
tab again. Select the snapshot that you want to restore to (original i t'i'.i::(.‘,ése) and _c_Iick on the

Y
Restore button as shown: / ™

,- Data Editor (Edit) - [adsales]

File Edit Data Tools Vo | [

SHhaEs3ER THEEs N

expend[173]
e ‘Snapshots S h i
2 © 04 (@)
.g_ # Label Timestamp .~ Source™,

1 onginsl | hug 2009 foaf sl

&y
i "
B, et
- “uy, .

Click Yes, and Stata will ‘.'-?g,t'o'mlour data back to its original state.

{ ™,
The direct command for creating a snapshot is snapshot save, label(**snapshotname™"); the direct

&,
et

COMITENG -for'rés't'(')ring to an earlier snapshot is snapshot restore snapshot#, where snapshot#

correspaads to the number under the # column in the Snapshots list.

=,
e

The byiif/in Option
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The by, if, and in options are useful for specifying particular portions of data that you want to
use. Specifically, the by varlist option repeats a command for groups of observations defined as
having the same values for the variables in varlist. The if exp option specifies that a comimand is
carried out only for observations satisfying the expression in exp. The in option-Spetitiés arange

of data for which you want to carry out a command.

As an example, consider the California Strawberries case from Sectior-<:2, wheré2yve want to run
the regression of Time versus Boxes separately for the Monteray and the Bakersfield systems.
Open the california.dta dataset, which contains a dummy variahle Flant thlat equals 0 if the data
come from the Monterey plant and 1 if the data come' frem the Bakarsfield plant. We can utilize
the Plant variable and the by/if/in options to run the sepaiate _re(j."essions in three different ways.
The corresponding direct commands are the‘foliowing:
1. Using the by option:
a. by Plant, sort: regress-Time Boxes
2. Using the if option:
a. regress Time Boxes.if Plant:-=0
b. regress Tinie Boxas if Plant==1
3. Using the in“aptiGa;
a. regress Tirria Boxes in 1/15
D. “Fegress Time Boxes in 16/30
You shpuld.try thes: three sets of commands and verify that they produce the same regression
ouf!;\ut. Nete-that-tiie by option sorts the data by the value of Plant before doing the regression. It
Geesn’t matter in this example (because the data is already sorted in this way), but more

geirerally «you should be careful not to save the data in its sorted form if you wish to maintain the

original observation order.
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The if exp option is also frequently used in generating or manipulating variables. For example, in
Case Exercise 4 of Chapter 1, we wanted to create a new variable called half_plus that equals 1 if
Acceptance_Rate is greater than 50 percent and equals 0 otherwise. To do this, you can ¢lick
User>Manipulate Variables and Obs>Generate New Variable (generate) ortype-ao
generate. Type half_plus into the “Variable name” field, and type 1 into the “Spa‘ci.fy -a vaiae or
an expression” field. Switch to the if/in tab and type Acceptance_Rat;>0.5 intf; th; “If:

(expression)” field."® You should have a dialog box that looks like tiis:

=] generate - Create a new variable IE‘.LI-Z_*J [Z] generate - Create iynew varizble (==
Man (i | [Mand #n_|
Variable type: Variable name: |Restri’t observations
float v half_plus | ff: {exipression) L |
’-\cceptaq':e_Rate>0.5' | Create...
Contents of variable
@ Specify a value or an expression [7] Usé-= range of obsenitions
1 Create ... /] 1=
*) Fill with missing data

[7] Attach value label:

ry

Q0= (oK) [ fnea [ swie, )| @0 B [ || v || By o)

Click OK and open the f)ata Brawser_Yesican see below that half_plus has a value of 1 for all

observations wher¢. Acceofahcé__Rate-is greater than 0.5, or 50 percent:

9 The direct command is generate half_plus=1 if Acceptance_Rate>0.5.
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Store_Number
1 80
2 104
3 117
4 210
5 226
6 238
7 256
8 294
9 297
10 404
11 422
12 4439
13 648
14 682

Acceptance~e
. 6185
.4138
.5462
.3197

.631
.2924
.3766

. 419
.4346
. 4668
.2618
.4101

.513
.6569

half_plus

1
b 1
1
r
" \'H.
‘\'-\. g
— 5\".\.
._\\ H'H.
i ™
| 1 |
L N ] |
1 ",
1 B ",

.H ._ |

For any observation where Acceptance_Rate is less the .1_or' equal to 0.5, Stata has left a

corresponding blank cell in the half_plus Solimn. To replace the empty cells with 0, you can

click User>Manipulate Variables arid Obs> Rebia@e/Change Existing Variables (replace) or
type db replace. Select half_pli:s in th- “Viariabl
y “

\h.
(value or expression)” field. Switch to the ii/initab, and type half_plus==. in the “If:

-,

&

-

.,
T

€

99 W

(expression)” field. Yol should-have a dialdg box that looks like this:

=,

-

iield, and enter O in the “New contents:

B g = . .
=] replace - Replace contents of existii: variabi . L‘E_‘E_& (=] replace - Replace contents of existing variable =\ (E)
S ", —
Main | f/in ., i [ Main_| #4n
Variable: g T, Restrict observations
haff_plus, T --\-. If: (expression)
I M"& 1 half_plus==. Create...
New coftents (value or expressitn)
0 '_ E‘“x Create ... [] Use a range of observations
— 1 s 15
). .:HT-eweEﬂs
" 1
|
" |
e
",
B,
@R [C_ ok __J[_ Cancel [ Submt ] [ 0K [ Cancel [ Submt

% The direct command is replace half_plus=0 if half_plus==..
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Click OK and look at the Data Browser again. You should see that all previous empty cells in the

half_plus column have now been replaced with 0’s instead.

There are many other expressions that you can use with the if option to autcinate-the task oi-data
analysis and/or data manupulation. You can explore them by typing heip i%.intc/the' Command

box or by referring to Stata’s pdf manuals.

Declaring a Time Index Variable

When analyzing time series data in Stata, you first need 10 designai2 or generate a time index
variable by using the tsset command. If you want to ¢eclaie an e‘<ish.ng variable as a time index,
you can click Statistics>Time series>Setuy arid utilities>Deciare dataset to be time-series
data or type db tsset, and select the desired varizble from the “Time variable” field. The direct
command is tsset varname.

An easy way to generate z-generic time ingex variable is by first typing the command generate
newvar=[_n] where newvar iz wriztever name you want to give to the variable. This command
generates a new variahle Wit vaaes-corresponding to the observation numbers of your dataset.
Then, declare newvar as a time ihdex by using either the tsset dialog box or the direct command
tsset newvai'.

To :top designating a variable as a time index, you can click the “Clear time-series settings”

utton in thejtsset dialog box or type the direct command tsset, clear.

Doing Calculations in Stata
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You can use Stata’s display command as a hand calculator. For example, to calculate In(2)/5, you
can type display In(2)/5 into the Command box and get 0.13862944. The abbreviation di can also

be used in place of display.

Everything else

Stata is capable of many tasks not discussed here. As you work throug? thé prpblems in this
book, you will become more familiar with the program and a few.si 1ts many capagilities. To
learn more about a particular command, you can type help cornmandnamelin the Command box.

The Stata User’s Guide (in the pdf manual that comes with-Statz) alsu-providss a comprehensive

description of its commands. The Stata FAQ website/ (htip://ww\Siata.com/support/fags/ or click
Help>Stata Web Site>Frequently Asked Questions) ant-the Stata listserver

(http://www.stata.com/statalist/) are also gcod anline sources for technical and/or statistical

guestions.
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Prediction Intervals

What is a prediction interval?

A prediction interval is a confidence interval for a particular observauon, #ather than for the
population mean, . In Chapter 1, you learned the formulas for cainfidence inarvais-for . The

formulas for prediction intervals differ in two important ways from those folrm:JIas:

1. We can only calculate prediction intervals easily i{ w2 assume:-thet the population is normally
distributed.

2. For prediction intervals, we need to take-int account the variance of an individual observation
(the population variance) as well as th4 variaace 6. X . For confidence intervals concerning p, it

was only necessary to consider thé variance-of X .

How do we calculate a (4-0)2.06% prediction interval?

Assume our sample of Size n'is i.i.d. and is drawn from a normally distributed population.

1. If we krow thé population standard deviation, o, the P.1. is the following:

X + Za,ZJW/% +1

2. If trie_pojzulation standard deviation is not known, then the P.1. is the following:

X £t 508~ +1

S|
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Correlation

Usually, the value of a random variable conveys some information regarding thz vaiue-of another
random variable. For example, if you know the height of someone, this givzs yousome idea
about this person’s weight. Typically, a taller person is heavier than a ¢horiar persen. This is not
always the case, but it is fair to say that height and weight are positiveiy-eorrelated:. Examples of
positively correlated random variables abound, such as sales and advertis'irg.e‘_(p.enditures, the
price of a Coke and the price of a Pepsi, inflation and the increase in-the n'uonr,-)./ supply, education
and wages. In all these examples, the random variables are positively correlated because the
probability of a high realization of one random variablg is-righer Whén the realization of the other

random variable is high than when the realization of the other random variable is low.

A plot of two positively correlated.variacles may iaok dike this:
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An extreme case of positively correlated variables is the case of two variables perfectly and
positively correlated. In this extreme case, one variable is a positive linear transformétion of the
other, such as the price of a hamburger measured in cents and the price of a hamburygei~measured

in dollars. One random variable is the other multiplied by 100.

Analogously, two random variables are negatively correlated if ong-isiralyto be-above average
when the realization of the other random variable is low and bzlow averaga wien the realization
of the other random variable is high. Examples of negatively ccrrelaied ra; néio;n variables also

abound: inflation and contraction in the money supply, \wages and-overty, and health and cigar

consumption.

A plot of negatively correlated random.variable*may look like this.
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An extreme case of negatively correiated vaiiables is the case of two variables perfectly and
negatively correlated. In this extreme case, one variable is a negative linear transformation of the

other.

Two random variables are.indenendent if the realization of one random variable does not affect
the probability distiibution of the other random variable. A typical example of two independent
randorp vériables is\given by tossing two different coins. Two independent random variables are

nstcerreiated.

The semyple correlation coefficient of two variables x and y is obtained by dividing the sample
covariace by the product of the sample standard deviation of x and the sample standard

deviation of y:
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The components are as follows:

Iy = Sxy/(SxSy)

Iy = sample correlation coefficient
Sxy = sample covariance
s, = sample standard deviation of x

sy = sample standard deviationof y

The correlation coefficient of two variables is always*hetvieen -1/and 1. If it is -1, the two

variables are perfectly negatively correlatec: If it is 1, the two variables are perfectly positively

correlated.

Using Stata, you can find the correlation coefticients between all possible pairs of variables in

your dataset. To do this, ¢iick User=Core.5taistics>Bivariate Statistics>Correlations

(correlate) or type db correiate. =or example, using the adsales.xls data, we produce the

following output:

. correlate
(obs=[1712)

B i expend

sales

exnend 1.0000
: sales 0.9555
i -

1.0000

Here, 0.9555 is the correlation between expend and sales.
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If your dataset contains more than two variables, Stata will return a table giving the correlation
between any pair. If any of the variables are non-numeric, correlate will return an error. To avoid

this, you can specify in the correlate dialog box exactly which variables you would like'to see the

correlations among.
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Properties Of Logarithms

In this section, we outline some of the mathematical properties of logarithms, loas from_ here on,
we will need to use in this text. In this book (as in most real-world applications). we wiii use oirly
natural logs. Natural logs are called “natural” because they use the natiral xiumberle = 2.71....
We will use the notation In for natural logs. Other common notations are iage or log though the

latter more often refers to a different kind of logarithm, i.e., log ' base 10:

Definition: the natural logarithm of a number X is the\umksr y thaisatisfies: e” = x.

So, y=In x means y is the power you have to r2ise e to in"crder to-get x. It’s okay if the log of
something is negative. It means you neefi'to reise e to a negative number to get that value. On the
other hand, there is no number you canraise e @.ana-Qet -1; In -1 is not defined. In fact, In x is

not defined for any negative x.

Fractional values for the IGg are-nossihle:

In Ve =1/2since e = e.
Negati'se 1ractions are allowed as well. In x = -0.5 means that x is the -1/2 power of e or 1 over
'Lne_squarn. rant of 2:One general rule is that as x goes up, In x goes up as well, but not nearly as

fast as x doey. In fact, as x goes up geometrically, In x goes up linearly.

Raising something to a power ‘undoes’ the log as in this example:
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e"*=x, eg., e =4.

The same holds in the opposite order as well:

Ine*=x, e.q., Ine*=2.

SUMMARY OF PROPERTIES OF LOGS

There are a handful of properties of logs that get used a lot-in.generai-and-in this book in

particular. Here are some of the most important ones;

Property 1: Exponentiation and logs are inverses in that they undo each other. In particular, for

any positive number X, the following is‘true:

e" ™= x'and In (e*) = x

Example: e =e! =eund livfe’) = In (e) = 1.

Property 2: Logs of prodiicts are sums:

In (x*y) =1In (X) + In (y)

I'Ris is trie because you can add exponents in products as in this example.

In(e®e)=1In(e*)=3=2+1=1In(e) +In (e
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Property 3: Logs of powers are products:

In () =y In (x)

This is the same as property 2 above when you multiply the same thing togzther y.times as i this

example:

In (€ =In(e*e*e) =Ine+Ine+Ine+31In (€
/
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