Manuscript for
MANAGERIAL STATISTICS: A CASE-BASED APPROACH

STATA EDITION

Peter Klibanoff,

Kellogg School of Management, Northiwestern University
Alvaro Sandroni.
Kellogg School of Management, Nortiwestern University Boze Moselle,

Di ector, LECG Lid., London
Brett Saraniti,
Hawaiil Pacific University

Revised 2012
© 2010 CENGAGE LEARNING

Contents

Acknowledgements

CHAPTER 1 Double E (EE) 8

1.1 EE: Uncertainty and Probability 9
 Probability Distribution 9

1.2 The Mean 11
1.3 The Variance and Standard Deviation

12
The Mean and Variance of Financial Securities Standard Deviation 14
1.4 Proportions 14
1.5 The Normal Distribution 16

Excel Functions 17
Stata Functions 22
The Standard Normal 23
Excel Functions 25
Stata Functions 26
1.6 The t-Distribution 27

Excel Functions 28
Stata Functions 32
1.7 Estimating with Data 33

Estimating the Mean 35
Computation of the Sample Mear 35
Estimating the Standard Deviation 37
1.8 The Sampling Distribution 30

How Accurate an Estimato is the Sample Mean? 40
Estimating the Sampling Distributior of the Sample Mean 40
Computing the Star, üard Crro of the Mean 41
1.9 Confidence Intervals 42

Summary
 52

New Terms
52
New Stata and Exce:- Functions 54
Stata
54
Excel
56
New Formulas 57
Case Exercises
58
Problems
61
CHAPT드 2 Consumer Packaging
66
2. 1 Hypotinesis Testing: How to Make Your Case with Data 67
2.2 Fest Marketing 71
2.0 Hypethesis Testing: A Formal Analysis 81

One-7ailed Tests 84
Mechanics of Tests Concerning a Population Mean 86
Tests Concerning the Population Proportion 88
2.4 Consumer Packaging 88
2.5 Two Populations 93
Population Proportions 97
Note on Small Sample Sizes 101
2.6 Asset Returns 104
Summary 108
New Terms 108
New Formulas 110
New Stata Functions 112
Case Exercises 114
Problems 117
CHAPTER 3 The Autorama123
3.1 Introduction 124
3.2 Regressing Price on Income 126
3.3 Method of Least Squares 132
3.4 Predicting Spending from the Regression EquationAssumptions135
Warning 139
3.5 The Regression Model 139
Dividing the Population by Income Level What Regression Estimates
135
Quantifying the Sampling Error 142
Confidence Intervals on the Regression: Coefficients 144
Hypothesis Tests on the Regression Coefficients 145
Reading Significance in the Regression Qutput 147
Overview of the Regression Output Table 148
Summary 150
New Terms 151
New Formulas 151New Stata Functions152
Case Exercises 153
Problems 155
CHAPTER 4 Betas and the Newspaper Case 159
4.1 Capital Budgeting and Risk 160
Capital Budgeting and the Opportunity Cost of Capital 160
4.2 Estimating Betas 165
Estimaing Beta 166
Confidence Interval for Beta 167
4.3 Predicting Circulation 171
The Data 172
Sampling nistribution of the Fitted Value 174
Confidence Intervals with the Fitted Value 175
Prediction Intervals and the Fitted Value 178
Hyp-thesis Tests with the Fitted Value 179
The Decision 181
The R-Squared Statistic 182
R-Squared and Asset Betas 184
Summary 185
New Terms 185
New Formulas 186
New Stata Functions 186
Case Exercises 188
Problems 189
CASE INSERT 1 Energy Costs and Refrigerator Pricing 193
CHAPTER 5 California Strawberries 195
5.1 Dummy Variables 196Dummy Variables: Revisiting the Packaging Case
Interpreting Dummy Variables in the Regression Model 196
The Regression 197
A Note on our Assumptions 199
Summary 200
5.2 California Strawberries 200
Multiple Regression Analysis Including a Dummv and a Sione Dummy Variable 207
5.3 Head-hunting Agency 209
Summary 216
New Terms 217
Case Exercises 218
Problems 221
CHAPTER 6 Forestier Wine 227
6.1 Snowfall, Unemployment, and Spuious Correlation 228
6.2 Wine and Wealth 232 253
Summary
Summary
New Terms 254
New Stata Functions 254
Case Exercises 256
Problems 258
CHAPTER 7 The Ho Dog Case 200
7.1 The Hot Dog Case 261
7.2 Hot Dog Case: Solutions, Multicollinearity, Hidden Extrapolation and Tests of JointSignificance 262
7.3 Analyzing Sums and Differences of Regression Coefficients 276
7.4 Detecting Multicollinearity 280
7.5 Omitted Variable Bias 283
Calculating the Extent of the Bias 286
Summary 289
New Terms 290
New Formulas 291
New Stata and Excel Functions 292
Stata 292
Excel 294
Case Exercises 295
8.1 A Primer on Logarithms in Regression
300

Properties of the Natural Logarithm Function (In)
8.2 Logarithmic Regressions: Forms and Interpretation of the Coefficients

8.3 Prediction With Logarithmic Regressions

8.4 Ad Sales: Using Logarithmic Regressions 307

8.5 Introduction to Heteroskedasticity

 3118.6 An Optional Mathematical Digression 316
8.7 Heteroskedasticity: Detecting, Effect on Results, Possible Fixes Summary

New Terms
 321

New Formulas 321
New Stata and Excel Functions 322
Stata 322
Excel 323
Case Exercises
324
CHAPTER 9 Soda Sales and Harmon Foods
9.1 Soda Sales 330

Introduction
330
Introducing Seasonal Dummies
332
Interpreting the Dummy Coefficients 333
Seasonality and Autocorrelation 335
Summary 335
9.2 Seasonality: Using Seasonal Indices in Forecasting 336
9.3 The Harmon Foods, Inc. Case 338

Questions to Prepare 338
9.4 Regression Analysis of Time Series Dak 339

Summary 344
9.5 Time Series Analvsis 344

Summary 352
New Terms 352
New Stata Functions 353
Case Exercises >355
CASE INSERT 3 Nopane Advertising Strategy 357
CASE INSERT 4 The Baseball Case 359
APPENDIX:
A Stata Mini Manual 370
Prediction Intervals 406
Cor elation 407
Properties of Logarithms 412

ACKNOWLEDGEMENTS

In addition to the people acknowledged in the first edition of the text, we wold like to thank Shuyan Wu for her excellent assistance in helping us revise the book to use Stat? statistical software. Thanks to Reza Kheirandish for identifying some typos in the previces edition andito Josh Cherry for some additional editing. We also thank Andrew Sfekas and Florian Zettelmeyer for their help and advice on building the custom menu in Stata. Stata is a produc of StataCorp LP, and Releases 11 and 12 (StataCorp. 2009. Stata Statistical Software: Release 11. College Station, TX: StataCorp LP; StataCorp. 2011. Stata Statistical Software: Retrase 12. College Station, TX: StataCorp LP) were used to generate results, screenshots and putput in this version of the text.

ACKNOWLEDGEMENTS FFOM THE PREVIOUS

 EDITIONMany people have helped shape his cext and influence our thinking about or presentation of the topics therein. The book grew ort of a redesign of the core statistics course in the MBA curriculum at the Kellogg School si Management, No hwestern University. Initially, Peter Klibanoff and Boaz Moselle urderook this redesign. Alvaro Sandroni joined soon after in helping implement it. Brett Saranii joined us nore recently to help turn the notes into a text, while Boaz had left for the government and private sectors by this time and was less involved in the final phases. We awe great thanss to the many colleagues and former colleagues who developed some of the eariv matorial /rom which the redesign grew and who provided us with pedagogical advice and encouragement early in our careers. Larry Jones especially stands out in this regard and we also greatly valued the help from Matt Jackson, Alejandro Manelli, Tzachi Gilboa and Bob Weber. Don Jacobs, former Dean of Kellogg, deserves credit for motivating the redesign and for ins sting on Microsoft Excel-based tools. We want to thank those colleagues who heve faught Kellogg courses along with us based on our notes, and who also helped improve both the cor tent and form of the material. Peter Esö, Christoph Kuzmics, Karl Schmedders, Eilon Solon and Rakesh Vohra helped make our teaching more successful and more fun by being an active part of our "teaching team". Karl and Eilon jointly developed with us some of the material Chapter Two is based on. Peter Esö was extremely helpful in developing some of the Chapter Nine material and in creating the current form of Chapters Eight and Nine. Bob Weber was
generous enough to let us adopt and expand his KStat collection of macros for Microsoft Excel. Two of Peter Klibanoff's former doctoral students helped in producing the notes on which the book is based: Emre Ozdenoren helped integrate the use of KStat and Excel throughora, and Sayan Chakraborty helped with the material in Chapter One. Piotrek Kuszewski helped with the Test Bank materials. We thank the numerous doctoral students who have been curr teaching assistants for their help and contributions. Finally, this text literally would not exist without the joy and challenge of teaching our many MBA students at Kellogg over the years. It was they who motivated the whole orientation of the text and whose feedback conviriced us that oot only were we on the right track, but that students elsewhere could benefit froni, leand from and enjoy a text based on our approach to managerial statistics.

We would like to acknowledge the work of our revieners who provided comments and suggestions of ways to continue to improve our text. Thatiks to: Suryapratim/Banerjee, Vanderbilt University; Bruce Barrett, University of Alabama; Bernərd Dickman, Hofstra University; Walter J. Mayer, University of Mississippi; David R. McKeina, Boston Coliege; Muhammad A. Obeidat, Southern Polytechnic State University; Alan Clinsky, Bryant College; Victor R. Prybutok, University of North Texas; Helen M. Roberts, Montclair State University; Subarna K. Samanta, The College of New Jersey; and Edwand D. White III, Air Force Institute of Technology.

We would like to thank he team at Thomson/South-Western responsible for our text. We thank our senior acquisitions editor Charles McCormick, Jr., our senior developmental editor Alice Denny, our senior markeling neanager Larry Qualls and George Werthman for believing in the project enough to take us on ana for their patience as it developed. We thank our production manager at Thomsen, Kelly Hoard, ant our production manager at GEX, Inc., Sarah McKay, for their great work, comnennication skills and patience in seeing this through to the final product.

Finally, all of us thank cur families for bearing with the extra time and energy that this project trok from us away from them.

CHAPTER 1

DOUBLE E (EE): AN INTRODUCTIONTO

PROBABILITY DISTRIBUTIONS ANI)

ESTIMATION

This chapter introduces us to the Double E (EE) chair of consumer electronics stores and their struggle to improve operations by using some basic siatistical anzlysis. EE's main problem is dealing with pseudo customers who utilize its sales staff's time and expertise and then buy the products online or elsewhere. The case motivates the use of data to diagnose and help construct solutions to the company's issues. The topics intreduced include means, standard deviations, variances, proportions, normal and t-distributions, sampling, the sampling distribution of the sample mean, confidence intervals for means and proportions, and some associated Excel and Stata functions.

The techniques developed ins thi. case will establish a foundation for more sophisticated analysis

1.1 EE: Uncertainty and Probability

EE is a chain of stores selling consumer electronics in the United States. Over the last decade, it has expanded to more than 4,000 stores spread across the country, thereby bernming one of the largest retailers of consumer electronics in the country. However, of late, EEs prof ts have been declining. The primary reasons for this are suspected to be falling quality ef service and growing competition. EE has decided to deal with the problems aggress/vely anc vants to come up with fast and effective solutions. In this chapter, we will see how probability and basic statistics will be useful to EE in a number of areas. Furthermore, many topies/introduced :in this chapter will be used and referred to repeatedly throughout the remainde of the book.

Much of what EE deals with, of encounters in the course of its operations, involves fluctuating quantities. For example, it experiences variations in its weekly sales, the number of items turned in for repair each week, the number of itams a customer buys during one visit, the length of time a salesperson spends with a cingle cus.omer, the end-of-quarter profits, etc. One convenient way of summarizing the fluctuàions s to use a probability distribution. A probability distribution makes pussible the calculation of the chance that a variable lies in a given range. For example, a probability distribut on for weekly sales allows us to calculate the chance that the weekly sales will be in a given range (e.g., weekly sales between $\$ 10,000$ and $\$ 50,000$).

A continusus probability distribution is one in which the variable can assume any value within a range. This means that if a variable can take the values, a and b, it can assume any value
between a and b. Graphically, a continuous probability distribution can be represented by a curve (see Figure 1.1).

Figure 1.1: Graph of probability distryution d九scribing the daily sales (in dollars) at an EE store.

One variable that would typicaly be deseribed by a continuous distribution is the dollar amount of sales in a day at an EE outlet. The area under the curve within a given range gives the probability of sales falling in that range. . .or example, in Figure 1.1, the probability that the dollar amount of sales on given dav is betyeen $\$ 20,000$ and $\$ 30,000$ is equal to the area of the shaded region. Since something arvays has to happen, the total area under the curve for any probability distribution is equal ip one.

A discrete probability distribution is one in which the variable only takes on a certain
countable number of values. For instance, the number of customers who buy flat panel televisions tomorrow wh a given store follows a discrete probability distribution with possible values of $\{0,1$, $2,3,4,5$ or more $\}$. The tools developed in this text will rely on continuous distributions. In fact, though the dollar amount of sales is discrete (we cannot divide pennies any further), we have
assumed for simplicity that it is described by a continuous distribution. We will frequently use this standard trick to our advantage. For purposes of convenience, it often pays to approximate discrete distributions by continuous distributions.

1.2 The Mean

We will now introduce three of the most widely used attributes of a probabjlity distribution, namely, the mean, the variance, and the standard deviation. whe tart witl the mean. The mean of a distribution measures the average (or expected) value of that disibution. The mean is often our best single prediction for a variable's value. Consider the sales namager of an EE store. He knows that the weekly sales of desktop personal computers (PCs) can be described by a probability distribution. The mean sales provide him vith a single number around which the actual weekly sales will vary. It is usually denoted by the Greek letter μ ("mu").

What the mean does for prebatility distriby ion is similar to what the average does for a group of numbers. The mean is also calcunted much like the average of a group of numbers. Before learning how this is done, let us review how one computes the average of a group of numbers. Suppose the sales manager at an EE store observes the sales of desktop PCs for 5 weeks in successior. Let us take them to be 19, 25, 20, 25 and 27. To get the average sales of desktops per week dturing this period, she needs to sum up these numbers and divide by five. The average weenly number sold is equal to the following:

$$
\text { Average sales }=(19+25+20+25+27) / 5=116 / 5=23.2
$$

This means that, on average, 23.2 desktop PCs were sold each week at the store during this time period.

1.3 The Variance and Standard Deviation

Knowing the mean is not always enough to compare two probability dstributions. If a particular distribution has a higher mean than a second one, all the values of tie ifist one are not necessarily higher than the second one. To illustrate this, consider the dollar amounts ef scles in two of EE's stores. Suppose they can be represented by the probability distributions chown in Figure 1.2. The means of the distributions are labeled μ_{1} and μ_{2}. Thorgh the mean of distribution $2\left(\mu_{2}\right)$ is higher than that of distribution $1\left(\mu_{1}\right)$, a value drawn inom đistubution 2 may be lower than one drawn from distribution 1. In fact, because di, tribution 2 is so spread out there is a greater probability of obtaining very low values than here is with distribution 1 . This shows that having a measure of the spread around the mean is useful in addition to knowing the mean itself.

Figure 1.2: $\mu_{1}=$ mean of distribution $1 ; \mu_{2}=$ mean of distribution 2.

The variance is the most frequently used measure of variation or spread of a distribution around the mean. The higher the variance of a distribution, the more likely it is for the $\sqrt{\text { arrable to }}$ tossume values far from the mean. Mathematically, the variance is the average squayed deviation from the mean (i.e., for each possible value, subtract the mean, square the resulting sumber, and calculate the mean of these numbers using the probability distribution) and is usualy denoted by σ^{2} ("sigma squared"). Basically, it measures on average how "far" the actual sales are from their average.

Why is a number like the variance useful? Consider, lir example, the sales manager at an EE store who is in charge of ordering inventories. 7o order inventories in the right quantities, she needs to account for the variability in weely denand for different items sold at the store. She knows that probability distributions can be used to wnderstand the demand fluctuations. To set the right inventory levels, knowin\& the mean is generally insufficient. She also needs to know how spread out the distributionfor demand is abou its mean. In other words, she needs to measure the variability in demand for that particular item. The variance and standard deviation of the probability distribution cando this for her.

THE MEAN AND VARIANCE OF FINANCIAL SECURITIES

Cne importent application of mean and variance lies in finance. The return on any financial security f/ucquates and can be described by a probability distribution. A security with a higher mean retarn than a second one provides higher returns on average. Obviously, any investor would prefer a higher mean return all else equal. However, this is not the only factor that influences the
investment decisions of most investors. Investors' behavior suggests that they like high returns but dislike huge fluctuations or variations in the returns. Huge fluctuations suggest significant possibilities of very high or very low returns. This makes the security risky or volatile. The variance of the probability distribution used to describe the returns on a security/ is one ne sure of the risk associated with the security. The higher the variance becomes, the nore risky the serurity is. A risk-sensitive individual takes into account both the means and the vaiances of securities while making investment decisions. ${ }^{1}$

STANDARD DEVIATION

One drawback of the variance is that, as a number, it can be hara to interpret. This is because it is measured in the square of the original varizbles units. For example, the distribution of weekly sales measured in dollars will have a variante measured in dollars squared. Interpreting dollars squared is difficult. For this reason, it is common to use the square root of the variance, called the standard deviation, instead of the variance itself. The standard deviation is a measure of spread that is always in the same units as the origmal/ variable. Since the standard deviation is the square root of the variance it is ucually denoted by σ ("sigma").

1.4 Proportions

yorking with variables with only two possible outcomes can sometimes be helpful. Consider the custamers who come to an EE store. Some of them buy at least one product and some leave withost buying any. The variable "customer buys at least one item" has two possible outcomes:

[^0]YES or NO. To use this variable numerically, we can say the variable takes the value 1 if the customer buys at least one product and 0 if he or she does not buy any. If we use 1 and 0 in this way, then the average, or mean, of the variable is the proportion of customers who buy at least one item. A specific illustration is the following. We look at any five EE custorers. Wre observe if each customer buys an item or not on his or her visit to the store and assign the value 1 and 0 accordingly. For example, (see Figure 1.3), customers 1, 4, and 5 do not bly any items, and customers 2 and 3 do.

Let us take the average of the values in the right-hand column. The average is 0.4 . Notice that 0.4 (or 40%) is the prepor ion of these five customers who bought at least one item. Hence, the average of this variable gives the proportion of the five customers who bought at least one item.

When dealing with a variable with two outcomes coded as 0 and 1 , instead of talking about the mean, we will sometimes use the proportion, which we denote by p. The proportion is always between 0 and 1 . When p is the mean of the distribution of such a variable, $p(1-p)$ and
$\sqrt{p(1-p)}$ will be its variance and standard deviation, respectively. So, for a variable with only two outcomes, 0 and 1 , knowing the proportion tells you the mean, the variance, and the standard deviation.

1.5 The Normal Distribution

The normal distribution is one of the most common distributions n statistics. There is a whole family of normal distributions, one for each pair of means and standard deviations. Each normal distribution can be uniquely characterized by those two parameters.

Character stic features of a normal distribution are its bell shape and symmetry (see Figure 1.4). Symmetry of the distribution implies that if a vertical line is drawn along the middle of the distribution, the left and right halves will be mirror images of one another. The tails of a normal
distribution approach, but never touch, the X-axis. Though they are possible, values far above or below the mean occur with small probability. Normal distributions with large standard deviations have shorter peaks and fatter tails than most. Distributions with smaller standard deviatic ns have taller peaks with thin tails.

EXCEL FUNCTIONS

NORMDIST: The NORMDIST function in Excel calcatas he area within a given range under a particular normal distribution. Directly, this function gives us the area to the left of a given value, but because the total area under the curve is equal to one, we can use the function to determine any area or probability for a no mal distribution.

For example, suppose we want to find the area to the right of 36.5 under the normal distribution with mean of 28 and standard feviation of $\}$ (the area A as shown in the Figure 1.5).

Figure 1.5: Normal distribution with mean of 28 and standard deviation of 7.

To calculate this area, open a worksheet in Excel. Select INSERT>FUNCTION from the menu and choose Statistical from the Function Category window. Then choose NORMDIST from the Function Name window as shown below.

When you click OK, you will see a dillog box like this, and you can fill in the boxes with the appropriate values.

Click OK to get the area to the left of 36.5 . 7his area turns out to be 0.888 (rounding off to three decimal places). Since we wish to find the area the the right of 36.5 , we have to calculate 1 minus 0.888. This means that area A, whirh equals the probatility of being at least 36.5 , is $1-0.888=$ 0.112 .

How can we find the area between two values under a normal distribution using the NORMDIST function? Suppose we wave to find the area lying between 36.5 and 38 under the normal distribution with mean of 28 anc standard deviation of 7. This is the region marked B in Figure 1.6. Obserye that the sea of B is equal to the area to the left of 38 minus the area to the left of 36.5. Therefore, you should find these two areas using Excel and subtract the smaller one from the largen. Earlier, we found that the area to the left of 36.5 is 0.888 . (Typing $=$ NORMDIST(36.5, 28, 7, TRUE) into a blank cell will also give you the same result.)

Preceeding similarly, the area to the left of 38 is 0.923 . Therefore, the area between 36.5 and 38 is $0.923-0.888=0.035$.

Figure 1.6: Normal distribution with mean of 28 and standard deviation of 7.

NORMINV: Consider once again the normal distribution with mean of 28 and standard deviation of 7. Suppose we want to find the value for which the probability of falling below that value is 0.25 . In Figure 1.6, this is the point denoted by X. Tr find this value, select

INSERT>FUNCTION from the meon and hoose Statistical from the Function Category window. Then choose NORMIN ${ }^{\vee}$ from the Function Name window. When you click OK, you will see a dialog box like this (once we have filled in some of the boxes):

In the dialog box, type in the probability that you want to the left of the value (0.25 in this example). Type the mean and standard deyiation of the normal distribution corresponding to Mean and Standard_dev, respectivel_. When you click OK, Excel returns the value of X as 23.279. In other words, the probablity of ebtaining a value below 23.279 from a normal distribution with mean of 28 and standard deviation of 7 is 0.25 .

To calculate the valye hauing a given probability to the right, you will need to input 1 minus that probability into NORMINV. For example, if you enter 0.75 as the probability, you find that the probability of obtaining a value above 32.721 from a normal distribution with mean of 28 and standard deviation of is 0.25 . The NORMINV function tells you what value will give you a certain probability i/s left. At 32.721, we find 75% of the area to the left leaving 25% of the area under the curve to the right.

Notice how both of these values we calculated with NORMINTV are the same distance from the mean of 28 . That is, $|32.721-28|=4.721$ ard $|23.279-28|=4.721$. The symmetry of the normal distribution makes the distance from the riean (needed to get 25% of the area under the tail) the same in either direction.

STATA FUNCTIONS

You can find the area to the ieft of a particular value under a normal distribution and the value for which the \%eato the left is a given probability under a normal distribution by using the normal(z) and invormal(p) commands in Stata, respectively. However, these two commands assume the normal dis ribution with mean of 0 and standard deviation of 1 (called the standard rormat distribution). For this reason, we delay explaining these commands in detail until after discessing the standard normal distribution in the next section.

THE STANDARD NORMAL

The normal distribution with mean of 0 and standard deviation of 1 is called the stancard normal or the z-distribution. Any normal distribution can be converted into the standar normat. The method of transforming a normal distribution into the standard normal is rererred op as standardization. If a variable, X , has a normal distribution with mean of μ, and sta 1 dard deviation of σ, then the variable $\mathrm{z}=(\mathrm{X}-\mu) / \sigma$ has a standard normal distrib/ation. The new variable, z , measures the number of standard deviations X is away from tre rean. For example, consider the weekly sales of microwaves at an EE store. Suppose thatitis describeuty a normal distribution with mean of 25 and standard deviation of 5 . If X denotes the variatle weekly sales of microwaves, then the variable, $\mathrm{z}=(\mathrm{X}-25) / 5$, will have the stendard 10 rmal distribution.

Standardizing a normal variable is use uluse it eonverts distances from the mean into units of standard deviations. This is imporant ancelpful in drawing conclusions insensitive to the original units the variable was measured in. For example, stores A and B have weekly inventories of 30 and 20 microwaves, respectively. The yeekly demand for microwaves in store A is normally distributed with mean of 25 and standard deviation of 5 (see Figure 1.7). For store B, the weekly demand is normelly distributed but with mean of 16 and standard deviation of 3.5 (see Figure 1.8) Siven this informetion, management wants to know which store has a higher probab/lity of a stock cut, i.e., running out of microwaves.

Que way of answering this question is to do the following: To find the probability of a stock out in Store A, we look at the normal distribution with mean of 25 and standard deviation of 5 and fina the area to the right of 30. Similarly, in Store B, we find the area to the right of 20 under the
normal distribution with mean of 16 and standard deviation of 3.5 . We can compare these two probabilities and see which store has a bigger chance of a stock out.

Figure 1.7: Shaded area rep esent the probability of a stock out in store A.

Figure 1.8: Shaded area represents the probability of a stock out in store B.

A simpler and more intuitive way of answering the above question would be to standardize the two distributions and compare them directly. This will give us the number of standard deviations 30 and 20 are away from their respective means. In store A, an inventory level of $30 \mathrm{~s} z=(30-$ $25) / 5=1.00$ standard deviation above the mean. For store B, the inventory leve $10 \hat{0} 20$ is $z_{2}=(20-$ $16) / 3.5=1.14$ standard deviations above the mean (see Figure 1.9). The probability that a store suffers a stock out increases the fewer standard deviations its inventory level is above the mean. Since 1.00 is less than 1.14 , the probability of a stock out in store will be higher than that in store B. Standardization allows us to answer our question without finding the dactual probabilities of stock outs in each store.

Figure 1.9: The standard normal distibution. The shaded area represents the probability of a stock out in store A. The dotted area represents the probability of a stock out in store B.

FKEEL RUNETIONS

Excel has two functions that are useful when working with the standard normal. These are
NORMSDIST and NORMSINV. As the names suggest, these functions are similar to the

NORMDIST and NORMINV functions we encountered earlier. However, unlike NORMDIST and NORMINV, the NORMSDIST and NORMSINV functions assume the distribution to be the standard normal.

STATA FUNCTIONS

normal(z): The normal(z) function in Stata calculates the area to the left af a given. value z under a standard normal distribution. Therefore, to calculate the are to the left of a given value X that has a normal distribution with mean μ and standard deviation σ, vou will need to first standardize the normal variable by using the equation $\mathrm{z}=(\mathrm{X}-\mu) /$

Consider again an example where we want to find the area to the right of 36.5 under the normal distribution with mean of 28 and standard/deviation of 7 . To calculate this area, open Stata. Type display normal((36.5-28)/7) in the Command box. Dress Enter, and Stata will return the following: ${ }^{2}$
. display normal((36.5-28)/7)
0.88768068

Since this humber is the area to the left of 36.5 , to find the area to the right of 36.5 , we have to calculate 1 minus this zumber. Using Stata to do this gives:

[^1]To find the area between two values, say, 36.5 and 38, under the normal distribution with mean of 28 and standard deviation of 7, type display normal((38-28)/7)-normal((36.5-28)/7) Press Enter, and Stata will calculate the area to be 0.03575559 .
invnormal(p): The invnormal(p) command in Stata calculates the valve for which he probability of falling below that value is p in the standard normal distribution Solisider ance again the normal distribution with mean of 28 and standard deviation of 7 . Suppose we vant to find the value for which the probability of falling below that value is 0.25 . In. Stata, type display
invnormal(0.25) in the Command box and press En er oget:
. display invnormal(0.25)
-0.67448975

This tells us the area below -0.67449 in the standard normal distribution is 0.25 . To convert this into a value in the normal distribution with mean 28 and standard deviation 7 we need to multiply by the standard deviation and then add the mean. Since $-0.67449=(\mathrm{X}-28) / 7$, solving for X yields $X=-0.67449 * 7+28-23.27$. Wre esuld have done this directly in Stata by using the command display 7*invnormal $(0.25) \div 28$.

1.6 The t-Distribution

The t-distributions are a common family of distributions in statistics. In fact, we will use them far more often than the normal distributions. The curve of a t-distribution is similar to a standard
normal distribution. Like the standard normal, it is symmetric, bell-shaped, and has a mean of 0 ; however, all t-distributions have more area in the tails (i.e., fatter tails) than the standard normal.
 t -distributions are characterized by a positive number called degrees of freedom. At-tistribution with a few degrees of freedom has very fat tails, and one with many degree of treedom looks much like a standard normal. This is evident in Figure 1.10, where, as the cegrees of freedom of a t-distribution increases (from 10 to 25 to 100), its shape resembles the standard normal.

Figure 1.10: t -distrib ions converging to the standard normal as the degrees of freedom increases.
(The determination of the appropriate of degrees of freedom will be discussed further later on when we use t-distributions in connection with estimation.)

EXCEL FUNCTIONS

TEIST: The TDIST function gives the area under a t-distribution within a given range. Suppose we want to calculate the area to the right of 1 under a t-distribution with 20 degrees of freedom. This is the area marked A in Figure 1.11.

Figure 1.11: The t -distribution with 20 degrees of freedom. What are the areas of regions A and B ?

In Excel click INSERT>FUNCTION and chosese Statistical from the Function Category window. Then choose TDIST from the Function Name window. When you click OK, you will see a dialog box like this (once we have iviled in some of the boxes):

In the dialog box, we choose the number, which is 1 in this case, to the right of which we want to find the area. Next, we must plug in the degrees of freedom of the t-distribution (in this case, 20). Since we want to find the area in one of the tails of the t-distribution, we type in 1 corresponding to Tails. Clicking OK now gives the area of region A to be about 0.165.

Suppose we want to find the area to the left of -1 (B in Figure 1.11). To do this we have to make use of the symmetry of t-distributions since Excel does not accept a negative number as the first entry in the dialog box for TDIST. Symmetry ensures that for a variable Y with a t-distribution, Prob $(\mathrm{Y}<-1)=\operatorname{Prob}(\mathrm{Y}>1)$. In other words, the area to the right of 1 is the same as the area to the left of -1 , i.e., the area of A is equal to area of B. Once we have reaized this, we can determine the area of B by finding the area of A , Hence, the are of $\mathrm{B}=$ area of $\mathrm{A}=0.165$.

We might also be interested in knowing the area to the right of -1 under a t -distribution with 20 degrees of freedom. Since we cannct entor a negative rymber as the first entry of a TDIST dialog box, we cannot calculate this afea directly. Ho vever, we can see from the symmetry in Figure 1.11 that $\operatorname{Prob}(\mathrm{Y}>-1)=\operatorname{Prob}(\mathrm{Y}<1)=1-\operatorname{Prob}(\mathrm{Y}>1)$.

In English, that mean the grea to the right of -1 is equal to 1 minus the area to the right of 1 . We know how to calculate the area ty the right of 1 under a t-distribution with 20 degrees of freedom. In fact, we aid this earlier. It is equal to the area of A in Figure 1.11, which we calculated to be 0.165 . Therefore, the area to the right of -1 under a t-distribution with 20 degrees of freedom, equals $1-0.165=0.835$.

Suppose yre need to find the total area to the right of 1 and to the left of -1 for the t-distribution with 20 degrees of freedom. This is equal to the sum of areas A and B. You can do this by finding the area to the right of 1 and multiplying by 2 . The required area becomes $(2)(0.165)=0.33$. A
more automatic way of doing this is to utilize the option of 2-Tails in the TDIST function. In the TDIST dialog box, type in \mathbf{X} equal to 1, Deg_freedom equal to 20, and Tails equal to 2. Clicking OK gives the sum of the areas A and B, which is 0.329 . The difference between 0.329 and 0.33 is solely due to round-off error.

TINV: Like the NORMINV and NORMSINV functions, the TINV furction returns a number for a given probability/area. However, the TINV function operates in z-uifferent manner. Given an area under a t-distribution with a specified number of degrees of freedom, the TINV command returns a number to the right of which lies half the area entered. For example. referring to Figure 1.11, an area of about $(0.5)(0.329)=0.165$ lies to the right of 1 under a t-distribution with 20 degrees of freedom. To see how TINV returns the desired mumber, ciick INSERT>FUNCTION, choose Statistical and choose TINV from the unction Category and click OK. The following Dialog box appears (after filling in the valyes):

In the walog box, you will type 0.329 (the sum of areas A and B) for Probability and 20 as the
Deg_freedom. When you click OK, Excel returns the value 1.0005. (Since we rounded 0.329 a
little bit, the results here are off a little bit as well.) The function, therefore, returns a number to the right of which lies half the given area. The remaining half of the area lies to the left of the negative of the same number (in this case, -1).

Suppose we want to find the number to the right of which is an area of 0.0225 under a tdistribution with 14 degrees of freedom. To find the number using Excel, onen the FINV dialog box and type in 0.045 [$=(2)(0.0225)$] as Probability and 14 as Desfiredom. Excel returns the value 2.201 .

STATA FUNCTIONS

ttail(\mathbf{n}, \mathbf{t}): The tail(n, t) function in Stata gives fhe area to the right of t under a t -distribution with n degrees of freedom. Suppose that we want to calculate the area to the right of 1 under atdistribution with 20 degrees of frestom. Typing displey ttail(20,1) in the Command box and pressing Enter will generate the following:
. display ttail(20,1)
0.16462829

Note that the number entered in the tail(n,t) command may be positive or negative. For exampie, to calculate the area to the right of -1 under a t-distribution with 20 degrees of freedom, we simply type üsplay ttail($\mathbf{(2 0 , - 1}$) and get 0.83537171 .

Stata does not automatically calculate the two-tailed area corresponding to a given value under a t-distribution. If, for example, we want to find the total area to the right of 1 and to the left of -1
for the t-distribution with 20 degrees of freedom, typing the command display $\mathbf{2 *}$ ttail($\mathbf{2 0}, \mathbf{1}$) generates the answer (approximately 0.329).
invttail(n,p): The invttail(n,p) command in Stata calculates the value in a t-dist/ibution with n degrees of freedom for which the probability of falling to the right of that yaue is p. Consider the example related to Figure 1.11, where we calculated the area to the right of 1 under a tdistribution with 20 degrees of freedom to be approximately 0.165 . To see If 1 is indeed the number having area of 0.165 to its right in that t-distribution, using Stata, type display invttail(20, 0.165), press Enter, and get:
. display invttail(20,0.165)
0.99842649

The result is roughly equal to 1 . The discrepancy is duy to our rounding of the 0.165 . The usefulness of the invttail comnana will becone clearer below when we study confidence intervals.

1.7 Estimating with Data

One of the -easons for EE's declining profits is the stiff challenge posed by its rivals. EE is facing incroasingly tough competition from online retailers. Managers at EE suspect that a number of customers who come to an EE store get help from the salespeople in understanding and comparing different products but often stop short of buying the product. They would rather buy the chosen product from an online retailer. Online retailers, with lower operating expenses, overhead costs, and often a tax-advantage can afford to sell the product at a cheaper price than a
brick-and-mortar retailer like EE. Such a phenomenon adds nothing to EE's revenues and reduces the quality of service provided to customers who buy from EE.

To cut down on the service provided to pseudo customers (customers who use EE to learn about a product but do not buy from EE) and increase the quality of service for its true customers, managers at EE have suggested several possible strategies. One of the cugsested solutions is to set a refundable service charge for all customers seeking advice fromi a salesperson at EE. This service charge will be refunded in full if the customer goes on to buy the prodict from EE; otherwise, it will not be refunded. Before spending time debating the meri/s of various strategies such as these, EE must ascertain whether and to wha exent such aproblem exists. The manager might want to know the average time spent by a salesperson with pseudo customers per day, the average waiting time for a true customer (waiting time is detined by the length of time a true customer waits before being attended by a salesperson), and the proportion of pseudo customers. For instance, if pseudo customers do not take up nuch of the salespeople's time, then the problem of the sales force spending unproductive time vith pseudo customers would not be so serious. Specifically, EE manageraent, baseu on costs and industry benchmarks, has concluded that if less than 20% of a salesperson's day (anproximately 1 hour and 36 minutes of an 8 -hour day) is spent with pseudo customers, then tie drain on service personnel by pseudo customers will not be considered a serious problems $>$

To estinate the ave age time spent with pseudo customers, the manager could chart the daily time spent by eacin salesperson with pseudo customers by going to (or contacting) each of the 4,000+ EE stores and subsequently find the average of those times. In practice, observing the service tine spent by each salesperson with pseudo customers across all EE stores is costly. Even in situations where all the historical data could be collected, it is never possible to collect data on future service times. Thus, in all such situations, we will need to draw conclusions from a sample
of the elements of interest rather than looking at the entire population of interest (here, time spent by salespersons with each past, present, and future pseudo customer).

Sample Size:
The sample size is the number of observations in the sample. This is denoted by n, i.e., R
$=100$ means there are 100 observations in the sample. In general, the rarger the sample size, the more precise are the estimates based on that sample when deciding en the size of the sample, one trades off the cost and time involved ir collecting each observation against the value of more precise estimates.

ESTIMATING THE MEAN

The management team at EE would like $t 5$ know the average time a salesperson spends attending to pseudo customers. However, zil it has is the information in the sample. What is the best way to use the sample to estimate the population (cr "Irue") mean? The best estimate of the true mean is the sample mean. The sempie mean is calcyated by adding all the values in the sample and dividing by the sample size.

It is important to distinguish between the population mean and the sample mean. Notationally, the populatior mean is deroted by μ, and the sample mean is denoted by \bar{x} ("x-bar"). \bar{x} is the estimato that we'il use to estimate μ.

COMP TTATION OF THE SAMPLE MEAN
Consider a sample of service times that the service manager has collected. It is stored in the file service. This file provides the observed service times spent with pseudo customers in a day by

100 salespersons. The size of the sample is 100 . Service times have been measured in seconds and stored in the column named servicetime. To calculate the sample mean, we can use the ktabstat command in Stata. An easy way to invoke this command to calculate the sampie mean and a number of other statistics for all of the variables in a dataset is through the Univariate

Statistics>Standard (ktabstat) command on the Core Statistics custom menu. Fo do this, firs. load the service.dta file into Stata. ${ }^{3}$ Now select User>Core Statistic $<>$ Uivaviate

Statistics>Standard (ktabstat) from the drop-down menu (see Figure 1.12). You fan also invoke the ktabstat command by typing db ktabstat in the Cominand box.

Figure 1.12 The Univariate Statistics command in the Core Statistics custom menu.

[^2]| ```. ktabstat preserve destring, replace force tabstat _all, s(mean sd semean min median max range skewness kurtosis``` | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| variable | mean sd | se(mean) | min | p50 | max | range | skewness | kurtosis | N |
| servicetime | 4880.03> 2610.622 | 261.0622 | 562 | 4700 | 11921 | 11359 | . 2635133 | 2.171275 | 100 |

Figure 1.13: Univariate statistics for servicetime (mean).

How does this compare with the 1 hour 36 minutes threshold set by magement since the threshold is 5760 seconds (equal to 1 hour 36 minutes), we see the sample mean is below it. We hope that this is because the sample mean reflects the actual mear, but we are unsure. Maybe we were lucky (or unlucky if it means we make a bad decision) with the sample we used. We must continue the analysis to quantify more precisely our confidence that the population mean is below management's threshold.

ESTIMATING THE STANDARD DEVAATION

The sample mean provides an estimate of the fopulation mean. Is the time spent by most salespersons with pseudo cestoiners similar to the mean? Are a few spending a long time while the others are spending a shot time? To answer these questions, we must estimate the distribution's variance or the standaid deviation. Since we'll mostly be working with the standard deviation later on, we'll focus on that now. The best estimate of the true standard deviation is the sample stadard devation. The sample standard deviation, s , is the estimator we use to estimate the population standard deviation, σ.

The User $>$ Core Statistics>Univariate Statistics>Standard (ktabstat) command also calculates the sample standard deviation. The sample standard deviation is the number in the sd column (see Figure 1.14). For this data, $\mathrm{s}=2610.622$ seconds.

variable	mean	sd	se(mean)	min	p50	max	range	skewness	kurtosis	N
servicetime	4880.03	(2610.622)	261.0622	562	4700	11921	11359	. 2635133	2.111276	100

Figure 1.14: Univariate Statistics for servicetime (standard deviation).

1.8 The Sampling Distribution

We have estimated the average time spent by an EE salesperson each day serving pseudo customers. To do this, we have used a sample of a 10\% observations. Qur estimate, \bar{x}, of the mean, μ, depends on the particular sample we have used. Natural y, the average time spent per day by a salesperson to serve pseudo customers calculated from a sample of 100 randomly observed times of EE salespersons will be different from the \bar{x} calculated from a different sample of 100 randomly selected service times of EE salespersons. The value of the sample mean, \bar{x}, varies from sample to somple. The source of the variation in the value of the sample mean is the potential variation in the sample dyawn from the population. In other words, since many samples could be drawn frem a population, there are correspondingly many values of the sample mean \bar{x}. Thus, wo can view the sample mean as a variable having a probability distribution. This distributien is called the sampling distribution of the sample mean.

In general, any estirlator based on a sample will have a sampling distribution. There are sampling distributions for the sample variance, the sample standard deviation, as well as for the sample mean. Sampling distributions are important since they give us an idea about the accuracy of an estimator. The estimators that we commonly consider are all unbiased. An estimator is unbiased if the mean of the sampling distribution of the estimator is equal to what is being estimated. For example, the mean of the sampling distribution of \bar{x} is μ, the population mean. Thus, \bar{x} is an
unbiased estimator of μ. Unbiased estimators are desirable because, on average, they are right.
They are not consistently too high or too low.

A sampling distribution tightly concentrated around the mean tells us that the estimator is likely to be much more accurate (i.e., closer to the true value) than one that has a ampling distribution widely dispersed around the average. This is evident if one looks at Fi¿ure 1. 15. Estimator 1 is more accurate than estimator 2 since estimator 1 has a higher probaility of falling within any given distance from the true population value than estimator 2 . This occurs because the standard deviation of the former is less than that of the latter. An unbiased estinator with a smaller standard deviation of its sampling distribution will be more accurate than one with a larger standard deviation.

Figure 1.15. The sampl ing distributions of the two estimators show that estimator 1 is more accurate than estimator 2.

At this point, you might be thinking we have to draw all possible samples from the population to get a samphng distribution of an estimator. Fortunately, statistics tells us that a single sample is enough to allow us to approximate the sampling distribution of most estimators. We will make use of this fact whenever we want to determine the sampling distribution of an estimator.

HOW ACCURATE AN ESTIMATOR IS THE SAMPLE MEAN?

The accuracy of \bar{x} is determined by its sampling distribution. What is the sampling distribution of \bar{x} ? Since \bar{x} is an unbiased estimator of μ, its sampling distribution ha a mean of μ, the population mean. The standard deviation of the sampling distribution of \bar{x}, aented $\sigma_{\bar{x}}$, is equal to the population standard deviation divided by the square root of the sample size, i.e.,

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Furthermore, as long as the sample size is not too snall, the sampling distribution of \bar{x} is approximately a normal distribution. ${ }^{5}$ In sum. \bar{x} has a sampling distribution that is normal with a mean of μ and a standard deviation of σ_{x}. Eeuivalently,
has a standard normal (or z) distribution.

ESTIMATING THE SAMPLIN'; DISTRIBUTION OF THE SAMPLE MEAN

Since the population standard deviation is never observed, we must estimate it. The best estimator of the standard deviation of the sampling distribution of \bar{x} (i.e., $\sigma_{\bar{x}}$) is denoted by $s_{\bar{x}}$, and is ucually reizrred to as the standard error of the mean. $s_{\bar{x}}$ equals the sample standard deviation divided by the square root of the sample size

[^3]$$
\left(\frac{s}{\sqrt{n}}\right)
$$

Since the standard error of the mean is only an estimate based on the sample, it introduces some additional sampling error into our calculations. This causes

$$
\frac{\bar{x}-\mu}{s_{\bar{x}}}
$$

to have a t -distribution with $\mathrm{n}-1$ degrees of freedom, ${ }^{6}$ whereas as we saw above,

$$
\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}
$$

has the standard normal ((z) distribution. The additional sarnpling arror is reflected in the fatter tails of the t-distribution compared to the standard normal. This is. why the t-distribution will appear so often in this text and in statistics. We will often use the notation
because this quantity has a t-distribution.

COMPUTING THE STANDARD ERROR OF THE MEAN

You can calculate the stanảard error of the mean, $s_{\bar{x}}$, in two different ways. Once you know the samplestaldard deviation, s , dividing it by the square root of the sample size (\sqrt{n}) yields $s_{\bar{x}}$.

Proceeding in this fastion, we have the following:

[^4]We can alternatively calculate $s_{\bar{x}}$ using the User>Core Statistics>Univariate
Statistics>Standard (ktabstat) command. The standard error of the mean is the number in the se(mean) column (see Figure 1.16). Stata calculates this number to be 261.0622 seconds.

Figure 1.16: Univariate Statistics for servicetime (standard error or the mean).
 assuming that the sample from which was calculated was gathered using a good sampling procedure. What makes a smmpling procedure good? In a good sampling procedure, each observation sioulábe randonsy selected from the population of interest and each observaior should de chosen independently of any other. Choosing observations indepeidiently means that the probability of choosing a particular observation does not depend on other observations. Such a sample is often referred to as independentiy and identicaily distributed (i.i.d.).

1.9 Confidence Intervals

Having obtained an estimate, we will be interested in ascertaining its accuracy, i.e., how close the estinate is to the true value. The service manager at EE has calculated the estimated mean time spent by an EE salesperson attending to pseudo customers per day to be 4880.03 seconds. It is
important for him to know how precise this estimate is. He would be happy if his estimate came within, for example, 120 seconds of the true mean. On the other hand, he might be unhappy and the estimate would be quite misleading if the estimate were 1500 seconds away from the mean. Therefore, we would like to know the probability that the estimate will be withis or beyond a certain distance of the mean.

What is the probability that the estimate meets the service managers aceuracy neods? In other words, what is the proportion of samples of size n for which our estimate the sample mean, \bar{x}) is within 120 seconds of the population mean, μ. In probability terns, wa rould like to know the probability that the sample mean is within 120 seconds of the true nean. Using the notation for probability statements, we can write this as $\operatorname{Prob}(-120 \leqslant \bar{x}-\mu \leq 1 / 20)$.

From the previous sections, we know that:

has a t-distribution with $⿺ 1-1$ degrees of fleedrm. We can use this to do the following simplification of the dove nrobability statement:

In going from the first line to the second line in the above box, we divided through by $s_{\bar{x}}$. From the sample, we can calculate $s_{\bar{x}}$ by using Stata. In fact, we did compute its value previously as 261.06 seconds after rounding. Hence, in this example:

Since $\mathrm{n}=100$, the t -distribution has 99 degrees of freedom ($100-1=99$). The efore, the required probability is the area between -0.46 and 0.46 under t -aistribution with 99 degrees of freedom. This is the shaded area in Figure 1.17.

We can use the ttail command to calculate this. In the Stata Command box, type in display $\mathbf{2 *}$ ttail($\mathbf{9 9}, \mathbf{0 . 4 6}$). Stata returns the yalue 0.646524ρ So the required probability is 0.35 , i.e.,

This implies that the ser manger sestimate of the average time spent by an EE salesperson interacting with pseadu custon.ars per day has a probability of 0.35 of being within 120 seconds of the true average time spent with pseudo customers by a salesperson daily.

Figure 1.17: t-distribution with 99 degrees of freedom.

In the form of an equation, we have shown the ollowing:

In other words, we calculated the probaviitity of selecting a sample of size 100 that gives a sample mean time within 120 seconds \mathfrak{f} the true mean. However, once we have the sample, the sample mean either is within 120 sesonds of the true mean or it is not. For this reason, it would be incorrect to plus in $\bar{x}=4880.03$ seconds (as calculated previously) and conclude that the probability the true mean, μ, is between 4760.03 seconds and 5000.03 seconds is 0.35 . Instead, we sav that we are $35 \%[=(0.35)(100) \%]$ confident the true mean is between 4760.03 seconds and 5000.0 seconds. Specifically, if our sample is one of the 35% of possible samples having a sample reea that is within 120 seconds of the population mean, then the interval we calculated for μ will contain the true mean.

Why do we say that we are 35% confident that the true mean is between 4760.03 seconds and 5000.03 seconds rather than saying the probability the true mean is between 4760.03 seconds and 5000.03 seconds is 0.35 or 35% ? This distinction between confidence and probability en phasizes that the randomness lies in which elements of the population are observed in thesannit and not in the value of the population mean. Informally, any given sample you obseive may be more or less representative of the population as a whole. If the sample happens lo be more representative, the sample mean will be close to the population mean. On the otherinald, it the sample is unrepresentative, then the sample mean will lie far from the prpuation mean. Of course, one can never tell whether a particular sample is representative. The best you can io is know the probability of obtaining such a sample.

We have just seen how to calculate how corfident we are that the population mean is in a given range. We can also reverse the procedve and find the range that we have a given confidence contains the population mean. For example, what is the range within which we are 95% confident that the true mean falls? The arswer to this is called a 95% confidence interval for the population mean, μ. Once the sample heant \bar{x}, and the standard error of the mean, $s_{\bar{x}}$, are known, computing the confidence intival for the population mean, μ, is straightforward. However, before we proceed, it is necessary to introduce a new notation.

For example, if $\alpha=0.05$ and $n=100$, then $t_{0.05 / 2,(100-1)}=t_{0.025,99}$. Figure 1.18 illustrates the meaning of $\mathrm{t}_{0.025,99}$ graphically. Using Stata, we can calculate $\mathrm{t}_{0.025,99}=\operatorname{invttail}(99,0.025)=1.98$.

Using the above notation, $a(1-\alpha)(100) \%$ confidence interval for the population mean, μ, is given by the following:

$(1-\alpha)(100) \%$ is called the level of confidence (or confidence level). A 95% confiaence interval for μ tells us that 95% of the time a sample of size n is drawn f\%ome popuration and used to calculate a 95% confidence interval that interval will contain μ. For a grapthical representation, see Figure 1.19.

Figire 1.18: A t -distribution with 99 degrees of freedom with $\mathrm{t}_{0.025,99}$ indicated.

95% confidence interval of μ

Figure 1.19: 95\% Confidence interval.

We will see how to calculate confidence intervals with the help of an example. Suppose we want to find the 95% confidence interval for the mean service time for pseude customers. As we have seen above, to calculate the confidence interval, we will need to low the values of the following three quantities: $\bar{x}, s_{\bar{x}}$, and $\mathrm{t}_{\alpha / 2,(\mathrm{n}-1)}=\mathrm{t}_{0.05 / 2,(100-1)}=\mathrm{t}_{0.02 \ldots 99}$.

We know that \bar{x} and $s_{\bar{x}}$ are equal to 4880.03 seconds and 261.06 seconds, respectively. To calculate $\mathrm{t}_{0.025 \text {, } 99}$ using Excel, ye could use the TINV command with 0.05 for the Probability and 99 for Deg_freedom. As above, $\operatorname{TINV}(0.05,99)=1.98$. The value of $\mathrm{t}_{0.025,99}$ can also be calculated using the invttail conmand in Stata. Typing display invttail(99,0.025) in the Command box wili also produce the yalue 1.98.

Therefore, the 95\% epnfidence interval for the mean service time for pseudo customers is the

This means we are 95\% confident the average time spent by a service person interacting with pseudo customers in one day is between 4363.13 seconds and 5396.93 seconds.

In Stata, you can automatically calculate the 95% confidence interval for the population mean, μ, of a variable by using the Confidence interval command. Consider the previov/s example where we want to calculate the 95% confidence interval for the mean service time for pseydo customers. To calculate this in Stata, open service.dta and click Statistics>Summaries, tables, and tests>Summary and descriptive statistics>Confidence intervals (ortvpe do ci). Choose servicetime as your variable and click OK. ${ }^{7}$ You shbula get the following:

Stata calculates the 95\% confidence interval for the mean service time to be [4362.026, 5398.034]. The discrepancy between the Stata output and our manually calculated result is due to our rounding of $t_{0.025 \text {, } 2 \text {, totwo decimal places. }}$

Note that in state you can easily calculate the confidence interval for the population mean of a variable fo any confidence level. For example, to find the 90% confidence interval for the mean service tinne, simply type ci servicetime, level(90) and get [4446.565, 5313.495].

[^5]The standard error of the mean plays a crucial role in determining the width of a confidence interval. This makes sense since we learned previously that the smaller the standard deviation of the sampling distribution, the more accurate an estimator is.

Confidence intervals can identify reasonable best (or worst) case scenarios egarding the mean value. For example, since the 95% confidence interval for the mean se vice time for pseudo customers is (4363.13 seconds, 5396.93 seconds), we can say, "Weare 95% confident that salespeople spend at least an average of 4363.13 seconds interacting with pseudo customers per day and at most an average of 5396.93 seconds per day with pseudo eustemers." Furthermore, we can say, "We are 97.5% confident that salespeople spen at most an average of 5396.93 seconds per day." ${ }^{8}$ Similarly, "We are 97.5% confident that salespeople sperd at least an average of 4363.13 seconds per day with pseudo customers."

Now that management estimated the time spent with pseudo customers, what should its decision be? Since 5396.93 seconds is fewer than 5760 seconds (equal to the 1 hour 36 minutes cutoff that management decided on) management is 97.5% confident that average time spent by an EE salesperson serving pseudo cestomers is less than the threshold. Management, therefore, should conclude that pseudo custemers are not a large enough drain on salespersons' resources to change policy given the costs and disruptions involved with these changes.

Confidence intervals may also be constructed for proportions and we briefly discuss them here.
The special properties of proportions that we discussed earlier are useful in this regard. For
${ }^{8}$ How did we get 97.5% confidence when the 5396.93 seconds figure comes from a 95% confidence intervel? A 95\% confidence interval is constructed so the mean will be below the lower bound of the interval for 2.5% of samples, above the upper bound of the interval for 2.5% of samples and between the interval limits for 95% of samples. If we want to say how confident we are that the mean will be below the upper bound without specifying whether it is above or below the lower bound, then our confidence level is 95% plus the 2.5% below the interval to make a total of 97.5%.
instance, with a sample proportion of \bar{p}, the standard error of the proportion $s_{\bar{p}}$ is equal to $\sqrt{\bar{p}(1-\bar{p}) / n} \cdot \frac{\bar{p}-p}{s_{\bar{p}}}$ has approximately a standard normal (or z-) distribution. A (1-Q)(100)\% confidence interval for the proportion is

$$
\left[\bar{p}-\mathrm{z}_{\alpha / 2} s_{\bar{p}}, \bar{p}+\mathrm{z}_{\alpha / 2} s_{\bar{p}}\right] .
$$

Note that in Stata, you can easily calculate these confidence intervals for proportions. After loading your dataset of interest, click Statistics>Summaries, tables, and tests>Summary and descriptive statistics>Confidence intervals or type d/b ci. Ehter be name(s) of binary variable(s) in the "Variables" field, and choose Binomial variables and Wald as your variable type and binomial confidence interval, respectively. Yo. can specity the confidence level at the bottom of the dialog box. You should have a dialog box that looks like this:

Click OK, and Stata will report the sample proportion (displayed under the Mean column), standard error of the proportion (Std. Err.), and the (1- α)(100)\% confidence interval for the proportion ((1- $\boldsymbol{\alpha}) \mathbf{\%}$ Conf. Interval) of your selected variable. ${ }^{9}$

SUMMARY

In this chapter, we introduced several important ideas includirg discrete and continuous probability distributions, the mean, variance and standard deviation, proportions, and the normal and t-distributions. We worked extensively on integrating Excel and Stata into our understanding of these concepts. Later, we learned how to use Stata tre estimate the mean and standard deviation and other aspects of probability distributiors given a data sample. We learned how to use that same data to quantify the accuracy of these nean estimates using the standard error of the mean and confidence intervals for the mean. We also examined the special case of proportions.

NEW TERMS

Probability distribuetion A description of how probabilities are spread out over possible outcomes Discre e probability distribution A distribution which can only take on a certain countable number of vaiues.

Continepus probability distribution
A distribution that can take on any value within a given
${ }^{9}$ Selecting the Wald binomial confidence interval uses the formula presented above. This relies on the central limit theorem to approximate the binomial with a normal distribution. Selecting Exact instead of Wald will calculate a confidence interval based on the binomial distribution itself rather than the approximation. Neither is unambiguously more correct or useful than the other.

Mean The center or average of a distribution
Variance A measure of the spread around the mean determined by averaging the squared deviations from the mean

Standard deviation A measure of the spread around the mean determined by taking the square root of the variance

Normal distribution Any of the family of common bell-shaped prowabisity distributions
Standard normal distribution A normal distribution with mean of 0 and strandand deviation of 1 t -distribution Another family of distributions similar to the stardard normai but with fatter tails

Degrees of freedom A parameter used to characterize the t -distribution
Population The entire set of values of interest
Sample \quad The portion of the population that is abserved
Sample size The number of observations in the sample
Sample mean The mean or average of the values in the sample, denoted by \bar{x}
Sample variance The variance of the sampie. denoted by s ${ }^{2}$
Sample standard deviation The stanard deviation of the sample, denoted by s Sampling distribution of the sarnple mean The probability distribution of \bar{x} Unbiased An estimator whose mean is equal to the parameter being estimated Standard error of the neart An estimate of the standard deviation of the sampling distribution of x, denoted by $s_{\bar{x}}$ and equal to $\frac{s}{\sqrt{n}}$.
independent and identically distributed (i.i.d.) A sampling procedure that creates a sample with desirable properties

Confidence interval A range of values that will contain the mean of the population with a
certain spe-ified level of confidence

NEW STATA AND EXCEL FUNCTIONS

STATA

User>Core Statistics>Univariate Statistics>Standard (ktabstat)

This command generates univariate statistics for all variables contained in the curfent Stata data file. These statistics include the sample mean, sample standard deviation, standard error of the mean, minimum, median, maximum, range and sample size. It alsp generates some other measures of the variables' distributions such as skewness and kurtesis that we will not make use of here.

Alternatively, you can directly type the comnand ktabstat.

User>Core Statistics>Univarigte Statistics>Custom (tabstat)

This command allows you to specify up to eight statistics that you want Stata to display. The direct command is tabstat varlist, $\mathrm{s}(\ldots)$, where varlist corresponds to the name of the variables for which you want to calculate the summary statistics. You can specify the names of summary statistics in the $\mathbf{s}(\ldots)$ portion of the command. (For the complete list of summary statistics, type help tabstat into the Stata Command box and refer to the Options>statistics section.) Typing _all instear of varlist will generate univariate statistics for all variables currently listed in Stata. Note that Stata cannot genfrate univariate statistics for string, or non-numeric, variables. Therefore, if there is any tring variable present in your dataset, typing the direct command tabstat _all, $\mathbf{s}(\ldots)$ wilnessyt ir. an error. You can still execute the tabstat command on numeric variables by omitting the names of string variables from varlist. However, it is generally easier to use the ktabstat command instead, where it is programmed to convert string variables to numeric
variables temporarily prior to executing the tabstat _all, s(...) command. Your original dataset will not be affected by this temporary conversion.

Statistics>Summaries, tables, and tests>Summary and descriptive statistics>Conifdence

intervals

Alternatively, you may type db ci. This opens the Stata ci dialog box, where ycu can choose variable(s) for which you want to calculate confidence intervals for the ponuration mean(s).

Alternatively, you can directly type the command ci varlist, level(\#), where \# corresponds to (1$\alpha)(100) \%$. Omitting the level(\#) option will generate a 95% confiäence interval for the population mean of a variable by default.

To calculate confidence intervals for propitions through the cidialog box, choose Binomial variables and Wald in the "Variable type" and "Binomial confidence interval" field, respectively.

Alternatively, you can directly type the command ci varlist, binomial wald level(\#).

Typing display invnormal(p) into the Command box will return the value x for which the probability of falling to the left of that value under the standard normal distribution is p .

ttail(n,t)

Typing display ttail(n,t) into the Command box will return the area to the right of t under a tdistribution with n degrees of freedom. You may enter a positive or negative value îve.

invttail(n,p)

Typing display invttail(n,p) into the Command box will return the value x for which the probability of falling to the right of that value is p under a t-distribution with ni degrees of freedom.

EXCEL

AVERAGE

Typing =AVERAGE(A2:A7) into a blank cell will return the average of the numbers in cells A2:A7. You can select Insert>Function and choose A.VERAGE from the list of statistical functions.

NORMDIST

Typing $=$ NORMDIS $T(20,25,10,1)$ into a blank cell will return the area to the left of 20 under the normal distribution with a mean of 25 and a standard deviation of 10 .

NORMSDIST

Typing =NORMSDIST(-1.91) into a blank cell will provide you with the area under the standard normal curve to the left of -1.91 . This area equals the probability of having an outcome from a standard normal less than -1.91 . To find the probability of an outcome greater than +2.04 (the area under the curve to the right of 2.04), use =1-NORMSDIST(2.04).

NORMSINV

Typing =NORMSINV(0.42) into a blank cell will return a number sucit that the probability of obtaining a value less than that number from a standard normal distribution will equal 0.42.

TDIST

 with 48 degrees of freedom. Typing $=$ TDIS $7(1.76,48,2)$ will return the area above 1.76 plus the area below -1.76 in a t-distribution with 48 degrees of freedom. You may not enter a negative number for the first argument. You عan select Insert> y unction and choose TDIST from the list of statistical functions.

TINV

Typing $=\operatorname{TINV}(0.05,, 88)$ into a bianle cell returns the value having area 0.025 above it in a tdistribution with 98 degrees of ffeedom. This tells you how far in each direction one would have to go from mean to get an area of 1-0.05 $=0.95$ underneath the t-distribution.

NEW FORMULAS

The $(1-\alpha) 100 \%$ confidence interval for a mean: $\left[\bar{x}-\mathrm{t}_{\alpha / 2,(\mathrm{n}-1)} s_{\bar{x}}, \bar{x}+\mathrm{t}_{\alpha / 2},(\mathrm{n}-1) s_{\bar{x}}\right]$
The (1- α) 100% confidence interval for a proportion: $\left[\bar{p}-\mathrm{z}_{\alpha / 2} s_{\bar{p}}, \bar{p}+\mathrm{z}_{\alpha / 2} s_{\bar{p}}\right]$

CASE EXERCISES

1. Return to me

A Hawaiian hotel chain is interested in studying tourists who travel to the state. One question they are investigating is whether or not tourists who return to the islands stayed at the same hotel as in their previous trip. The data file return lists the responses of 1,000 teurists who were involved in the study. A one (1) indicates they did return to the same hotel whereas a zero (0) indicates they did not. Calculate the proportion of torrists in the stady who stay at the same hotel as they had on their previous trip. Using the formulas in section 1.4 and the proportion you just calculated, calculate the variance and stand deviation of the responses in the study.

2. EE TV sales

The weekly sales of flat panel televisions at ore EE store (store A) follow a normal distribution with mean of 12 and standard deviation of 4 . Store B usually has lower sales normally distributed but with mean of 9 atd stanuard doviation of 3 . If the two stores currently have 18 and 14 flat panel televisions in stock, resperively, and neither will receive a new shipment for the next week, determine which store has the higher probability of running out of stock.

If the company has declared that each store should stock enough inventory so the chances of running out of stock are at most 2\%, determine the minimum number of flat panel televisions each store should keep in its weekly inventory to comply with the rule.

3. EE job applications

Certain data from EE's 4,000 stores are not entered into its electronic data base. For instance, employment applications are typically handwritten on paper forms and never re-entered nto their computer system. EE would like to learn more about the acceptance rate for ent.y-iever employees. Specifically, it feels that if stores are accepting more than half gi thent applicants, then the quality of the typical employee may suffer. Since entering these data fors its undreds of thousands of applicants would be expensive and time consuming, ㄷ. itas deeided to use sampling to learn about this issue. Access the data in the file EESample, which contain information from a random sample of 55 EE stores.

a. Determine the sample mean, sample standard deviation, and the standard error of the mean.
b. Construct a 95% confidence interyal for the true mean acceptance rate of entry-level job applicants at EE stores.
c. Construct a 90% confiderce interval for the true mean acceptance rate of entry-level job applicants at EE streres.
d. Assuming the true mean acceptance rate of entry-level jobs was 50%, determine the chances that he sampie mean could have been as low as it is or even lower.
e. What does your ansver to part d tell you about the feasibility of the assumption about the

The management at EE wants to investigate the consistency in hiring practices across all of its stores. Rather than learning whether the mean acceptance rate for all EE stores is less than 50%, it wants to know the probability that any given store has an acceptance rate above 50 percent.

Access the data in the file EESample, which contains information from a random sample of 55
EE stores.

Create an additional column of data called half_plus which is equal to one (1) if the accepance rate is greater than 50 percent. ${ }^{10}$

a. Determine the sample proportion for the fraction of EE stores hich hive more than half of their applicants.
b. Provide a 95% confidence interval for the true proportion.
c. Provide a 70% confidence interval for the true proportien.
d. Assuming the true proportion of stores that accept over hom of their applicants is 0.50 , determine the chances that our sample proportion would haye been as low as it is or even lower.

e. What does your answer to part A tell you about the feasibility of the assumption about the true proportion?

5. Cashing out

A local mortgage bank in New Jersey is interested in knowing more about its customers.
Specifically, it would like to vincerstand how much home equity customers who refinance their homes rem to cash out. A sample of 65 loans is contained in the file njbank.
 generate half_plus $=\mathbf{1}$ if Acceptance_Rate >0.5, and 2) replace half_plus=0 if half_plus==. (make sure to include the period after $==$). Open the Data Browser to verify that the new data are generated correctly. See the Appendix for general instructions on how to generate and/or manipulate variables in Stata.
b. Construct a 95% confidence interval for the true mean cash out value for customers at the bank
c. Construct an 82% confidence interval for the true mean cash out value for custoiners at the bank.

The bank is interested in the proportion of customers who did not take any rash out when they refinanced. Make a new column of data titled No_Cash that equals-one (1) If the costomer took no cash out and zero (0) for all other amounts. ${ }^{11}$

d. Determine the sample proportion of customets ho did ngt take any cash out when they refinanced.
e. Construct a 95% confidence intervar for the true proportion of customers who did not take any cash out when they refinanced.
f. If the true proportion of customers who did no take any cash out when they refinanced is equal to 0.5 , determine the chances thet the bank would have discovered a sample proportion as low/as or lower thar it did in its sample.

Problems

1. Given z юllows a siandard normal distribution, determine the following:
a. $\quad \operatorname{Prob}(\mathrm{z}<2.3)$

[^6]e. $\operatorname{Prob}(\mathrm{z}<-1.2)$
2. Given that z follows a standard normal distribution, determine the following:
a. $\operatorname{Prob}(\mathrm{z}>2.3)$
b. $\operatorname{Prob}(\mathrm{z}>1.3)$
c. $\operatorname{Prob}(\mathrm{z}>0.3)$
d. $\operatorname{Prob}(\mathrm{z}>-0.7)$
e. $\operatorname{Prob}(\mathrm{z}>-1.7)$

- Prob $(z>-1.7)$

3. Given that z follows a standard normal distribution, determine the following:
a. $\operatorname{Prob}(2.9>\mathrm{z}>2.1)$
b. $\operatorname{Prob}(1.9>z>1.1)$
c. $\operatorname{Prob}(0.9>\mathrm{z}>0.1)$
d. $\operatorname{Prob}(-0.3>\mathrm{z}>-1.1)$
e. $\operatorname{Prob}(-1.3>\mathrm{z}>-2.1)$

4. Given that x follows a normal distribution with mean of 55 and standard deviation of 12 , determine the following
a. Prob $(\mathrm{x}<90)$
b. $\operatorname{Pro}(x-71)$
c. $\operatorname{Prob}(\mathrm{x}<5 /)$
d. $\operatorname{PrOD}(x<42)$
e. $P \cdot o b(x<25)$
5. Given that x follows a normal distribution with mean of 7 and standard deviation of 20, determine the following:
a. Prob $(x>30)$
b. Prob $(x>9)$
c. Prob $(x>2)$
d. Prob $(x>-12)$
e. Prob $(x>-29)$

6. Given that x follows a normal distribution with mean of 800 and standara deviation of 350, determine the following:
a. Prob $(1000<x<1200)$
b. Prob $(800<x<1000)$
c. Prob $(600<x<800)$
d. Prob $(400<x<600)$
e. $\operatorname{Prob}(200<x<400)$
7. Given that z follows a standard normal distr bution, determine the value of z for the following examples:
a. The area to the left of z equals 0.50
b. The area to the leit of zequals 0.18
c. The area to the left $\mathrm{O}_{-}^{\mathrm{z}}$ equals 0.025
d. The area to the right of z equals 0.29
e. The area to the right of z equals 0.10

8. For a t distribution with 24 degrees of freedom, determine the following:
a. $\operatorname{Prob}(\mathrm{t}>1.25)$
b. Prob ($\mathrm{t}>0.92$)
c. $\operatorname{Prob}(\mathrm{t}>0.58)$
d. $\operatorname{Prob}(\mathrm{t}>0.21)$
e. $\operatorname{Prob}(\mathrm{t}>-0.25)$
f. $\operatorname{Prob}(\mathrm{t}>-2.05)$
9. For a t distribution with 64 degrees of freedom, determine the folloving
a. $\operatorname{Prob}(\mathrm{t}<1.55)$
b. $\operatorname{Prob}(\mathrm{t}<0.72)$
c. $\operatorname{Prob}(\mathrm{t}<0.18)$
d. $\operatorname{Prob}(\mathrm{t}<0.04)$
e. $\operatorname{Prob}(\mathrm{t}<-0.75)$
f. $\quad \operatorname{Prob}(\mathrm{t}<-1.99)$

10. A Gallup Poll (Will Investors Jump on the Optimism Bandwagon? October 27, 2003) noted that 57% of investors say the ecoromy has hit bottom. The article also states that the survey included a random sample ef 802 aciolt investors. Determine a 95% confidence interval for the true proportion of investors who would say that the economy has hit bottom.

11. In response to concern by many of its clients, Nucleus Research reported findings from a recent sud, on spam and employee productivity (Spam: The Silent ROI Killer September 24, 2003) The article noted that the average employee in its survey of 117 workers spent 6.5 minutes per day dealing with unwanted emails or spam. Assuming the sample standard deviation, s , is 14 minutes per clay, determine a 90% confidence interval for the true mean number of minutes per day that employees spend dealing with spam.
12. You are given a sample consisting of 83 data points with a sample mean of 37 and a sample standard deviation of 21.
a. Construct a 90% confidence interval for the true mean
b. Construct a 95\% confidence interval for the true mean
c. Construct a 99\% confidence interval for the true mean

13. A sample of 43 data points results in a sample mean of 1.15 and a sampie standard deviation of 0.482 .
a. Construct a 90% confidence interval for the true mean
b. Construct a 95% confidence interval for the rue mean
c. Construct a 99% confidence interval for the the mean

CHAPTER 2

CONSUMER PACKAGING: CONDUCTIDJGAD

 USING HYPOTHESIS TESTSIn this chapter, you will learn about one of the most important and widely applied statistical techniques: hypothesis testing. Hypothesis testing is a basic tool ve will use hroughout the course when we want to convince ourselves or others that our dara provide evidence for some fact about the world. For example, we will use hypothesis testing to stury the effectiveness of our test marketing, identify political gender gaps, حnfirm stylized facts regarding stock market anomalies. We will also use it in later chapters as a central piece of the regression model.

2.1 Hypothesis Testing: How to Make Your Case with Data

In the first chapter, you learned some of the basics of how to use data to estimate importan features of the world. For example, by observing sales in test markets, you an form an estintate of average sales in a full product rollout by calculating the sample ave age in the test markets. Similarly, by collecting data on visitors to an e-commerce web site, you can form estimates of useful quantities, such as the proportion of visitors clicking on bainer ads and the proportion arriving at the site through links on third-party sites. You also learned har to use confidence interval estimates to help assess the accuracy of your/estimates.

One of the primary uses of statistical estimates is to convince others (or even ourselves) that something is true. Whether you are the one ooking for an advantage by using statistics to bolster your argument or you are the persenwiom the presenter wants to convince, you must understand how estimates can be used as proof or evidence. The method used to prove or support arguments with statistics is called hypethesis testing. In/his section, we will learn the fundamentals of hypothesis testing and see some applications with marketing and financial data using estimators you learned about in the previous chapter. As we move through this text and learn and apply new and more sophisticated estimetion techniques, hypothesis testing will continue to play a

A good, nen-iecknical way to understand much of the logic and terminology associated with hypothesi) testing is to think of a criminal trial in a court of law. Imagine for a moment that you are prosecuting attorney in a murder case. Your goal is to prove to the jury that the defendant is guilty of murder. In hypothesis testing, what you would like to prove is called the alternative hypothesis (often denoted $\mathbf{H}_{\mathbf{a}}$ or sometimes \mathbf{H}_{1}). All the possibilities that are not in the alternative
hypothesis are called the null hypothesis (denoted \mathbf{H}_{0}). For example, for the lawyer, the null hypothesis is that the defendant is not guilty of murder, and the alternative hypothesis is that the defendant is guilty of murder. The null and alternative hypotheses do not overlap and together, cover all possibilities. In other words, the null is true, or the alternative is true, but not ivoth. The null and alternative must always be set up so this is the case.

What are the possible outcomes of the trial? Either the jury will find the evidence convincing enough to declare the defendant guilty or it will not, in which case the defendant is declared not guilty. Similarly, in a hypothesis test, either the evidence (based on the dza) is strong enough for you to accept the alternative hypothesis as true, or it is not. For historical reasons, accepting the alternative is more commonly referred to as "rejecting the null hypothesis." Since at least one of the two hypotheses must be right, rejecting he hull hypothesis is the same as accepting the alternative hypothesis. (Ensure you understand bis.) Thus, the two possible outcomes of a hypothesis test are rejecting the null hypethesis and nor rejecting the null hypothesis. A hypothesis test can never resul/in/rejecting the alternative hypothesis or, equivalently, accepting the null hypothesis. If a jyy finds the defendant not guilty, that means the evidence was not strong enough to prove the defencient guilty. It does not mean the evidence proved the defendant was innocent. Standand criminat tizals are not set up to prove innocence. They can only prove or fail to prove guilt. The same is true of hypothesis tests. They can only reject the null or fail to reject the nall. This is why you must ensure when setting up a hypothesis test that the alternative hypothesis is what you hope to prove; it is impossible to prove a null hypothesis using a

What makes evidence strong or weak? In hypothesis testing, we say that evidence (in support of the alternative or, equivalently, against the null) is strong if, assuming the null hypothesis were
true, the evidence would be unlikely to have been found. Two examples from the trial should make this clear. Suppose the victim had been strangled and fingerprints found on the victim's neck matched the defendant's fingerprints. Is this strong or weak evidence? To evaluate his, we must ask ourselves what the probability of a matching fingerprint appearing on ne victm' neck would be if the defendant were not guilty. Assuming the defendant was not somesne who had some other reason to be close to the victim (e.g., assume they were not spouses), then this probability would be small. This is what it means to have strong eyidelice On the sther hand, suppose we discover the murderer was wearing blue jeans. Furthermore, we discover the defendant owns a pair of blue jeans. Is this strong evidence? Well, what is the probability, assuming that the defendant is not guilty, that he or she ould ownat least one pair of blue jeans? This probability is high as many people who are not rhurderers wear blue jeans. Therefore, this is weak evidence and would be insufficient to prove guilt. The statistical measure of strength of evidence, expressed in probability terms, is called the p-value. As in the above examples, low pvalues correspond to strong evidence against the nill/sapporting the alternative, and high pvalues correspond to weaker evidence.

So, strong evidence favors rejecting the null (finding the defendant guilty) and weak evidence does not, but how streng šouid we require the evidence to be before we reject (or declare guilt)? Statistics, like the courts, cannot deliver perfection. Just as a jury will sometimes come to the wrong yerdict, a kypothesis test will sometimes lead to an incorrect conclusion. A trial can have two types of errors: (1) The jury could find the defendant guilty when, in fact, he or she is innocent anci (2), the jury could fail to find the defendant guilty when, in fact, the defendant is gyilty. In hyp othesis testing terms, error (1) is rejecting the null hypothesis when the null hypothesis is true. This is called type I error. As you might guess, errors like (2) (i.e., not rejecting the null hypothesis when the null is false) are called type II errors. Ideally, we would like the probability of making each of these errors to be small (in the courtroom and in hypothesis
testing). In the court, we can control the probability of a type I error by setting the standard of proof required for a conviction. For example, many of you have probably heard the phrase "beyond any reasonable doubt" used in this regard. In many trials, the jury is not supposed to return a guilty verdict unless the evidence shows beyond any reasonable doubt the defendant is guilty. Of course, this verbal directive is vague and open to interpretation, bat it suggests the iw y should not convict unless it is convinced the probability of a type I errer is smal. Ir/hypothesis testing, as in the courtroom, we have to set a standard of proof. Wedo tis by choesing a level of significance (denoted by the Greek letter alpha, α) between 0% and 100% (0.00 and 1.00). The level of significance states the maximum probability of a type I arror that is acceptable. So, if you conduct a hypothesis test using a small level of significance, it wilh take strong evidence for you to reject the null hypothesis. If you do reject the null insuch a case, however, it is unlikely that you have done so in error. On the other hana, setting a higher level of significance allows you to prove your point (reject the null) morefter but with a higher probability of making the point in error.

We will not say much abrot the type II error jin this book, but you should know a few things about it. First, once the level of significance is set, the probability of making a type II error decreases as the sample size of you data increases. Therefore, the main tool in fighting against type II error is gathering more data. Second, the maximum probability of making a type II error is often deno by he creek letter beta (β) and $1-\beta$ is often called the power of a hypothesis test. So, if a test is said to be powerful, that means that the probability of a type II error is low. Comersely, a lest that lacks power is one that may quite often fail to reject the null (i.e., be ineonclus.ve) when the null is false. Again, increasing the sample size will make any test more powerful.

Now that you have learned the logic and terminology behind hypothesis testing, we turn to some examples to see how this works in practice. It may be helpful to refer back to this section if you find yourself getting confused at any point about what hypothesis tests are doing.

2.2 Test Marketing

Your company produces personal computers and is considering the introdecticn of new color options for the hardware in the hopes of boosting sales. Maintaning prodaction of more than one color of computer is costly. For introducing new colors to be proficable, the company has set a sales goal of 275 units per week. The marketing depatment intrd duced and advertised the new colors in a test marketing experiment over 36 yeeks. The weekly sales are given in the file testmarket. Based on the sales in the test narker, should the company adopt the new color options?

To answer this question let ens take alook at tree descriptive statistics for the sample data.
Loading testmarket dta into Stata and then clicking User>Core Statistics>Univariate
Statistics>Standard (ktanstat) resüts in the output in Figure 2.1.

Figure 2.1: Univariate statistics for sales.

The sample mean of weekly sales $\bar{x}=290.58$, the sample standard deviation of weekly sales is s = 53.157, and the estimated standard deviation of the sample mean (called the standard error of the mean) equals $s_{\bar{\chi}}=8.8594$. We are going to need these numbers later.

We can rephrase the posed question: Do the sales in the test market indicate that the average sales per week will exceed 275 units? We are going to answer this question using kypot/resis testing.

As a first step, determine the null hypothesis and the alternative hypothesis To formulate the two hypotheses, focus on what you want to prove. The statement you want to prove should always appear as the alternative hypothesis. The way this hypothesis is stalished is by rejecting another hypothesis, namely the null hypothesis. Therefore, the null ingothesis is the statement you want to reject. Recalling the courtroom analogy, yo\% prove that someone is guilty by showing that innocence can be rejected.

In our example, suppose we want to convince the management that the sales in the test market justify the introduction of the nev e colors. That is, we want to argue the average weekly sales if we go ahead with the color onn:ons will exceed 275 units. We define the alternative hypothesis as follows:

The opposite of the alternative hypothesis yields the null hypothesis.
H_{0} : Average sales per week will be less than or equal to 275 units.

Denote the average sales per week by μ. We can rewrite the hypotheses in formal terms:

The hypotheses concern the population average weekly sales, μ, rather than the szmple average sales, \bar{x}, because μ determines sales going forward. If all we desired were to prove something about the sample average from the test market, there would be no need for lyypothesis testing the sample average is known and may be directly compared yith 275 . Hypotheses will always be about an unknown value or values.

The second step of hypothesis testing relzes he sample data to the hypotheses. After all, we want to use the sample data to reject the nulibypotirsis. When would we do that? If the average sales of the new color PCs in the test narket were much higher than 275, we would start to doubt that the null hypothesis is correct. On the other hand, if the average weekly sales were barely above or maybe below 275 units, ve wovian not question the null hypothesis. By how much must sales exceed 275 units for us to reject the nill hypothesis? To answer this question, we tentatively assume the null hypothesis is sue with $\mu=275$. This value for μ will be the most difficult to reject of any in the pull hypothesis since it is closest to the values in the alternative hypothesis. If we car reject this assur 1ption, we can reject the null hypothesis.

We want to evaluate how far away the observed weekly sales in the test market are from the targe value of 275. To make a probability statement, it is convenient to measure this difference in units or estimated standard deviations of \bar{x} :

$$
\mathrm{t}=(\bar{x}-275) / s_{\bar{x}}
$$

This value measures the number of estimated standard deviations the sample mean, \bar{x}, is from the assumed mean, 275. This measure is called a test statistic. In our example, the test statistic takes on the following value:

$$
\mathrm{t}=(290.58-275) / 8.8594=1.7586
$$

The expression for the test statistic should look familizr to vou. In the previous chapter,

had a t-distribution with n-1 degrees of freedom, where n is the sample size. We are tentatively assuming $\mu=275$ and have a sample size of 35 . So, in our example, the test statistic has atdistribution with $n-1=35$ degrees of freedon. This tact is the reason we used t to denote the test statistic above.

The third step of hy pothesis testing usps the test statistic to find the p-value. Assuming that the null hypothesis is true, tie p-value is the probability of obtaining a sample result that is as least as unlikely as the one we have observed. In the context of our example, the p-value is the probability of obtaining a sample rhean of $\bar{x}=290.58$ or higher assuming the true mean is $\mu=275$. This probability is the are above 1.7586 in a t-distribution with 35 degrees of freedom as shown in Figure <2.

We can determine the p-value using the Stata ttail command. The probability of obtaining a sample mean of 290.58 or higher if $\mu=275$ equals $\operatorname{ttail}(35,1.7586)=0.0437$. Therefore, the $p-$ value equals 0.0437 .

Figure 2.2: t-distribution with 35 degrees of freedom.

When the p-value is small, it is unikely the sample results came from a population where the null hypothesis is true. The smaller the p-value, the stronger the evidence in favor of the alternative hypothesis.

The fourth step of hypothesis testing compares the calculated p-value to the level of significance (α, the maximum allowable probability of a type I error) that you have previously determined is appropriat for this test. In statistics, we can never be 100% sure when we make a conclusion based on sample dara. Therefore, we have to decide on the probability with which it is acceptable

The value for α will usually be given. So, choosing a value for α is not an issue, in particular when you perform a hypothesis test for someone else's use. Often, industry-specific standards
and product-specific standards exist for α. In general, the costlier it is to claim that you have proved your claim when it is wrong, the smaller the α you should choose. Typical levels of α seen in practice will be between 0.01 and 0.1 . For purposes of this text, if you need to spe cify α and have not been given any information to the contrary, you may assume $\alpha=0.05$. However, the level of the p-value has its own meaning even if α is unspecified. Typical $/ y$, a n-value will be clearly high or low; p -values over 0.3 would typically be considered hish (and thus weak evidence for the alternative) in any application, and p-values less than 0.05 would typically be considered low (and thus strong evidence for the alternative). n between, jlidg nent is needed.

The introduction of the color options entails much risk. If sales tirn put to be mediocre, your company might face significant losses. Therefore, company policy is to be conservative in the evaluation of test data. Typically, the marletivg department uses a level of significance of 5%, that is $\alpha=0.05$.

The final step of hypothesis testing reaches a conclusion about the null hypothesis. The straightforward decision rule is this: If the p value is smaller than or equal to the specified level of significance α, then we cantrject he null hypothesis. If the p-value is larger than α, then we cannot reject the null hypothesis.

The p-value of 0.0437 s less than $\alpha=0.05$. Therefore, we reject the null hypothesis. Based on the sales in the test market, we are convinced that the average weekly sales will exceed 275 units.

Your company should introduce the new color PCs, and the procedure of the hypothesis test is complete.

Suppose, based on new information about costs, you find the sales for the new colors must exceed 285 units per week to be profitable. What would your recommendation be in that case?

The resulting p-value is ttail(35.0.6298) $=02665$. We cannot reject the null hypothesis because the p -value is larger than α. Your company shculd not introduce the new colors yet. (A good strategy might be to collest more data on the test market, which might enable us to get a better idea about the poteritial sales or the nev color PCs.)

What woy your conclusion be if sales must exceed 300 units per week for the colors to be successful? The santple mean, $\bar{x}=290.58$, is smaller than 300 . So, obviously you cannot conclude sales are go\%gg to exceed 300 units. In such a case, we do not need to perform a hypothesis test. It is clear that there is insufficient evidence to prove sales will exceed 300 units.

Before marketing department started its test market campaign, it did extensive market research on the sales potential of the new colors. The research effort led to the projection that
average weekly sales of the new color PCs would be 280 units. What do you think about the accuracy of this estimate now that you have sales data available from the test market?

We have some doubts about marketing department's claim and will try to prove then wrong. The alternative hypothesis states that average weekly sales are not equal to 280. The opposite, namely that average weekly sales equal 280, is the null hypothesis. Mcre fermally, we define the hypotheses as follows:

The test statistic equals the following:

We are going to doubt the nuit hypothesis if he sample mean significantly deviates from the value of 280, i.e., wen the sample mean is considerably smaller or considerably larger than the prediction of the markeing denartment. The p-value for this test equals the sum of two probabilities, namely the sum of the probability of a deviation by at least 1.1942 standard deviations above the assumed mean and of the probability of a deviation by at least 1.1942 standard deviations below the assumed mean. This value is given by the shaded area in Figure

Figure 2.3: t-distribution and p-value fortwo-tailed test.

We can compute this p-value using the ttail ormmand:

Using the significance level $\alpha=005$, we conclude we cannot reject the null hypothesis that average monthly sales per district will equal $2 \beta 0$ units. Therefore, we cannot claim on the basis of the test market data that the marketing department's forecast was wrong.

This last test differs from the previous ones since the null hypothesis is not an inequality but an equatior. Tests of this form are called two-tailed hypothesis tests. Whenever the null hypothesis is an irequality, the hypothesis test is called one-tailed. The null hypothesis of a one-tailed test always contains the borderline case, that is, it contains $\mathrm{a} \leq$ or $\mathrm{a} \geq$ sign. The strict inequality sign (C or <) always appears in the alternative hypothesis.

The test statistics for one-tailed tests and two-tailed tests have the identical form. The main difference in the analysis is in the calculation of the p-value. For a one-tailed test, you can simply
use the $\mathbf{t t a i l}(\mathbf{n} \mathbf{- 1}, \mathbf{t})$ command (or 1-ttail(n-1, t) if you are calculating the area to the left of a test statistic). For a two-tailed test, you need to multiply the ttail value by 2 and use the absolute value of the test statistic, that is, 2^{*} tail($\left.n-1,|t|\right)$, because the p-value includes the area in both the upper and lower tails of the distribution.

We can conduct a one-tailed or two-tailed hypothesis test much more quick using, Stata's ttest command. Consider our previous example, where we want to test the marketing department's claim that average weekly sales are equal to 280 . To do this in Stra, click

Statistics>Summaries, tables, and tests>Classical tests of hy hotheses>On-sample mean-

 comparison test. ${ }^{1}$ This will open the following dialog box:

Choose sales from the "Variable name" list and enter $\mathbf{2 8 0}$ in the "Hypothesized mean" field. The default confidence level is 95%, and you can change it if you want, although it does not affect the

[^7]hypothesis test calculations that Stata does at all and simply determines which confidence interval for the mean Stata reports. Click OK, and Stata will return the following:

As you can see, Stata displays the sample mern (Mean), the standard error of the mean (Std. Err.), and the degrees of freedom from which you can manually calculate the test statistic and the appropriate p-value. However, Stata hasalready done this work for you. The test statistic is listed on the right-hand side of the output where $t=1.1946$ (the slight difference from our calculation is due to rounding). At the botiom of the oulpu., Stata lists the respective p-values for all possible alternative hypotheses of interest (1.2, $\mathrm{H}_{2} \cdot \mu<280, \mathrm{H}_{\mathrm{a}}: \mu \neq 280$, and $\mathrm{H}_{\mathrm{a}}: \mu>280$). Since, in this example, we are inferested in the alteryative hypothesis that average weekly sales are not equal to 280, we look to the middie colemn and find the p-value to be $\operatorname{Pr}(|T|>|t|)=0.2403$, which agrees with our hanual cairulation (up to rounding).

2.3 Hypothesis Testing: A Formal Analysis

Now let us see what goes on behind hypothesis testing, review the mechanical calculations, and see why they really work.

The first formal step in hypothesis testing is writing down the two hypotheses. For example, in the last test marketing example the hypotheses that we developed were the following.

$\mathrm{H}_{0}: \mu=280$

$\mathrm{H}_{\mathrm{a}}: \mu \neq 280$

Hypothesis tests are always stated in terms of the true parameters we are in erested in and not in terms of the estimators. Here, the parameter we are interestea in is μ, the true average sales.

The estimate we derived for the average sales was $\bar{x}=290.50$.

To evaluate the evidence in our data, we willinitialy assume the null hypothesis is correct. We then see if our observed result is/ikely or unslikely given the null. If it is likely, then it is not strong evidence in favor of the alternative, and we cannot reject the null. Conversely, if it is unlikely (less likely than the revel of significance that we have set up in advance), we will reject the null hypothesis

The null hypothesis determines the sampling distribution of our estimator, \bar{x}. What is this distribution? First, ve nake an assumption that this distribution is a normal distribution. (If our sample is large, this assumption is justified by the central limit theorem.) Any normal distribution tas a mean and a standard deviation. The mean is the one given by the null hypothesis, e.g., 280. As you learry in the first chapter, the standard deviation of \bar{x}, which we will denote by $\sigma_{\bar{x}}$, is given by σ / \sqrt{n}. Since we do not know σ, we must use the sample standard deviation, s , to
estimate it. Therefore, the estimated standard deviation of \bar{x} (which we will denote by $s_{\bar{x}}$, sometimes called the standard error of the mean) is given by s / \sqrt{n}.

To evaluate the strength of our evidence, we want to see how far away our observed ectimato is from the value we would expect if the null hypothesis were true. To do this, yook at the quantity: estimator minus the value given in the null hypothesis. Since we would /ake to use this difference to make a probability statement, it is convenient to crivert it into a nimber of standard deviations by dividing by the standard deviation of our estima or. Therefore, our test statistic will have the following form:

This test statistic has the following interpretation: Ovestimate is (insert value of test statistic) standard deviations away from the value gi en in the null hypothesis. In our example, our estimator is $\bar{x}=290.58$, the value in the nul $/$ hypothesis is 280, and the standard deviation of the estimator is $\sigma_{\bar{x}}$. Sice we art using $\varsigma_{\zeta}(=8.8594)$ to estimate $\sigma_{\bar{x}}$, our test statistic will have atdistribution instead of a standard normal (or z) distribution. Finally, the degrees of freedom for this t -disty bution I n n - 1 , where n is the sample size.

In sur example, the test statistic (often written t since it has a t-distribution) is $t=(290.58$ -
280)/8.0594 $=1.1942$, which means that our estimator \bar{x} is 1.1942 standard deviations above the value in he null hypothesis. We saw earlier that the corresponding p-value $=0.2404$, which means that if the null hypothesis were true, there is about a 24% chance of getting a value of our estimator as far away as 1.1942 standard deviations (or further).

ONE-TAILED TESTS

The example above was a two-tailed test because the alternative hypothesis included values both above and below the value in the null. In general, if the null hypothesis is equality, then the test is a two-tailed test. In other examples, we may want to prove that a paraneer is above a certain value or prove that it is below a certain value instead of showing it is simply different from a certain value. This requires a one-tailed test. Such a test is called one-tailed because the values in the alternative hypothesis are all on one side of the yales in the nul hypothesis. For example, if we want to prove that average sales are greater than $2 / 5$, we would use the following hypotheses:

Notice two things here. First, the "equals" va/ue appears in the null hypothesis as, by convention, it always will. Second, when lerming our test statistic we have to know what number to plug in for the value in the nuil hypethesis. The rule is we always use the equals value. In this example, the value of the test statistic is $t=(290.58-275) / 8.8594=1.7586$. We used the equals value of 275 for the value in the nul hypothesis. Since our alternative hypothesis has a greater than (>) sign, only positive values of the test statistic will provide evidence against the null hypothesis. Thus, the vee tail we care about when calculating the p-value in this example is the upper tail or the one with positive values. This p-value is the area above 1.7586 in a t-distribution with 35 (= $n-1$) degrees or freedom. As you saw in the test marketing example, we can find this area using Stata's
ttail command as follows:

$$
\text { p-value = ttail(35,1.7586) = } 0.0437
$$

Similarly, if we wanted to prove that average sales were less than 275 , we would use these hypotheses:

Here, the test statistic is again $t=(290.58-275) / 8.8594=1.758$ (the same as above!) Since the alternative hypothesis has a less than sign, however, only negative yalues of the test statistic will provide evidence against the null hypothesis. Therefore, when calculating the p -value, the one tail we care about is the lower tail, or the che with negative values. So, the corresponding p-value is the one which gives the area beloy 1.7505 in a t -distribution with $35(=\mathrm{n}-1)$ degrees of freedom. Since the ttail command always sfives the rea above a given number, we can find the area below 1.7586 by using p-value $<1 \operatorname{tal}(35,1.7586)=0.9563$. The p-value came out large, indicating weak evidence agairst the nuin (or in favor of the alternative). We could have seen this without any calculation. Whenever you do a one-tailed test and the estimated value is on the wrong side of the equals value in the nuli © i.e., above the null value if the alternative looks at the lower tail or below the Iull varue in the alternative looks at the upper tail), you automatically know the p-value is large than 0.5. Since this is higher than any level of significance you would ever want to use, ypalnow you cannot reject the null (or accept the alternative) using these data. In such a case, calculating the test statistic and exact p-value is not necessary.

Suppose we want to show that average sales are below 310. The appropriate hypotheses are the following:

The test statistic is $t=(290.58-310) / 8.8594=-2.192$. The corre p-value is the area to the left of -2.192 in a t-distribution with 35 degrees of freedom. Using S(ata to calculate the p-value for this example, you can either type display 1-ttail($\mathbf{3 5}, \mathbf{- 2 . 1 9 2}$) or use the symmetry of the t-distribution and type display ttail(35, 2.192). It may help you to drew a pict ire see Figure 2.4) to understand why these areas are the same. In either case the answel is p -value $=0.0176$.

MECMANICS OF TESTS CONCERNING A POPULATION MEAN

One-tailed tests
$\mathrm{H}_{0}: \mu \geq \mu_{0}$
$\mathrm{H}_{0}: \mu \leq \mu_{0}$
$\mathrm{H}_{0}: \mu=\mu_{0}$
$\mathrm{H}_{\mathrm{a}}: \mu<\mu_{0}$
$\mathrm{H}_{\mathrm{a}}: \mu>\mu_{0}$
$H_{a}: \mu \neq \mu_{0}$

Step 2: Calculate the test statistic:

We have the same test statistic whether we face a one-tailed test or a two-tailed test.

The test statistic is computed using the following formula:

It has a t-distribution with n-1 degrees of freedom. ${ }^{2}$

Step 3: Calculate the p-value:

One-tailed test, less than sign in altornative: p-varee $=1-\operatorname{ttail}(n-1$, test statistic $)$.
One-tailed test, greater than si $\%$ in alternative p-value $=$ ttail($n-1$, test statistic $)$.
Two-tailed test: p-value $=2 *$ ttail $(n-1, \mid$ test slatistic $\mid)$.
| test statistic \mid means the ahsolute value of the test statistic. That is, it is equal to the test statistic if the test statistic is positive, and it is equal to -test statistic if the test statistic is negative.

Step 4: Final decision:

Suppose dur designated level of significance is α (e.g. $0.05=5 \%$).
${ }^{2}$ Rarely, you may be given a value for σ, the population standard deviation. In this case, use $\sigma_{\bar{x}}$ in place of $s_{\bar{x}}$, and use the standard normal (z) distribution in place of t .

If p-value $\leq \alpha$, we reject the null hypothesis (and accept the alternative hypothesis).
If p-value $>\alpha$, we cannot reject the null hypothesis (and cannot accept the alternative).

TESTS CONCERNING THE POPULATION PROPORTION

Just as we have done hypothesis tests where the parameter is the popuietion nean we can do tests about the population proportion. We form the test statistic in the same way as above. However, in this case, since our estimator is the sample proportion, \bar{p}, insteac of the sa nple mean, we need a different formula for the standard deviation of the estimator. Ve vill not make use of tests concerning proportions until the next section on two population problems.

2.4 Consumer Packaging

The marketing department at a large consurher products firm is considering changing the packaging of one of its primay sales items. 7 wo alternatives are being considered. To assess the relative strengths of these two atternatives, the marketing research department is directed to test which package sells betıer. Accordingly, a collection of 72 sales districts (similar in terms of demographic characteristics) is selected; 36 are assigned for testing package 1, and the other 36 are used to test package 2. Sales figures for a one-month test period are collected (in the file package). The variables pack1 and pack2 contain the observations on sales for the districts assigned to packages 1 and 2, respectively. Each variable has 36 observations. First, we will look at the descriptive statistics.

User>Core Statistics>Univariate Statistics>Standard (ktabstat)

tabstat _all, s(mean sd semean min median max range skewness kurtosis count)		
stats	Pack1	Pack2
mean	290.5439	262.7467
sd	53.08559	47.84755
se(mean)	$\mathbf{8 . 8 4 7 5 9 8}$	7.974591
min	168.14	163.95
p50	296.825	265.115
max	411.65	350.13
range	243.51	186.18
skewness	-.0657883	-2580593
kurtosis	2.824849	$\mathbf{2 . 4 3 9 5 0 7}$
N	36	36

Figure 2.5: Univariate statistics for pack1 and pack?

Now think conceptually for a moment. What are our two populations here? Ore is any store where the product is sold in package 1 , now or in the utye, and the other is stores where it is sold in package 2, now or in the future. The variable of interest for each population is sales, and specifically we want to compare average montly sales from the iwo populations, i.e., average monthly sales if we adopt package 1 , to average monthly sales if we adopt package 2 . Call these numbers μ_{1} and μ_{2}, respectively. The first 36 districts in our experiment give us a sample from population 1, and the next 36 districts give us a sample from population 2 . We can use the sample from each population to estimate itspopulatior parameters. Mean sales from the first 36 stores (written $\bar{x}_{1}=290.54$) give our estimate of μ_{1}, and, using the other 36 stores, $\bar{x}_{2}=262.75$ is our estimate of μ_{2}.

Obviorsly our estimates suggest that sales will be higher on average with package 1 since we can estimate the difference $\mu_{1}-\mu_{2}$ by $\bar{x}_{1}-\bar{x}_{2}=27.79$. So, if you had to make the choice right now between the two packages, the rational decision (assuming that the packages cost the same to produce, etc/) would be to go with package 1. However, you have other options. You could choose to continue or expand the marketing experiment, postponing your final decision until you have more data. So, it is worth asking how confident you are that package 1 is the better of the
two. After all, a month is not a long time, and 36 stores might not be a big enough sample. In other words, it might be that package 1 is inferior, and unfortunately, you hit an atypical sample. Hypothesis testing can help by telling you how strong the evidence you have is for a particular proposition. In this case, since you have the option of continuing the experimen, you want to be fairly certain of the superiority of package 1 before concluding that it is the setter one. You nale the alternative hypothesis the statement that packaging 1 is better in terms of average monthly sales. (Recall that the alternative hypothesis is the one you want to prove - fiere you want to see if the data convincingly show that package 1 is better).

How do we perform this test? For the purposes of chis example, we will use Stata's ttest command to do it. (You can see i done "by hand" in ne next section, which explains the statistical theory of two-sample tests.)

After loading packqe.uta ins Stata click Statistics>Summaries, tables, and tests>Classical tests of hypotheses>Tvo-sample mean-comparison test to open the thest dialog box. Select Pack1 and Pach 2 from the "First variable" and "Second variable" lists, respectively. Check the box nekt to "Unequal variances." Your dialog box should look like this:

The analogous command is ttest Pack1 == Park2, unpaired unequal. ${ }^{3}$ Execute the command, and Stata will return the following:

- ttest Pack1 $=$ Pack2, unpaired urieoual

Two-sample t test wich unequal variances

variable		M	Std. Err.	Std. Dev.	[95\% con	Interval]
Pack1		0.5439	8.847598	53.08559	272.5823	308. 5055
Pack2		2.7467	7.974591	47.84755	246.5574	278.9359
combined	72	2ヶ5.6453	6.139193	52.09278	264.4041	288.8865
d		27.79722	11. 91109		4.036825	51.55762
$\begin{array}{rlrl}\text { diff } & =\text { mean (Pa/k1 })- \text { mean(Pack2) } & t & t \\ \text { diff } & =0\end{array} \quad \mathbf{2 . 3 3 3 7}$						

Ha: diff >0
$\operatorname{Pr}(T<L)=0.9887 \quad \operatorname{Pr}(|T|>|t|)=0.0225 \quad \operatorname{Pr}(T>t)=0.0113$
${ }^{3}$ Typing "Pack1 == Pack2" tells Stata that we are testing equality of means between the variables Pack1 and Pack2. "Unpaired" indicates that we are not assuming any special meaning to the order of the observations. In particular, the $\mathrm{k}^{\text {th }}$ observation of pack1 is not assumed to be any more or less related to the $\mathrm{k}^{\text {th }}$ observation of pack2 than to any other observation of pack2. Finally, we type in "unequal" since we do not assume equal variances for the two populations.

Since our alternative hypothesis is $\mathrm{H}_{\mathrm{a}}: \mu_{1}-\mu_{2}>0$, we will refer to the rightmost alternative hypothesis. Stata gives us the p -value $(\mathrm{p}=0.0113)$ associated with this one-tailed test. It tells us that if package 1 is no better than package 2 (i.e., if the null hypothesis is true), there is a most a probability of .0113 of seeing as big a difference favoring package 1 in the sample average: as we have obtained. Thus, we may be highly confident that package 1 is better than package 2. Fu- any significance level, α, above 1.13%, we can say that package 1 has (sta stically) significantly greater average sales than package 2 .
 A final important point here is that you should distinguish between statistical significance and economic significance. That the difference in average sales across the two kinds of packaging is statistically significant means we have strong evidence of a differene. It does not tell us how important that difference is, i.e., whether it/s eonomically significant. In this case, the estimated difference does seem economically significant: Gioing from package 2 to package 1 is estimated to increase sales on average by (290.54-262.75)/262.75 = 10.58 percent. However, think about the following scenario: Imagine you must choose between two alternative packages and suppose that you are currently usig ackage 1 , ss you will incur some costs if you switch to package 2. Suppose further you conduct a marketing experiment as above (but with a larger sample size), and find that sales with package 2 are higher by an estimated 0.3%, and this difference is statistically significant. In that case, you would likely choose not to change over (at least for the time being, because the estimated difference, though statistically significant, may not be economicaly significaht. It may be too small to justify incurring the costs of switching over.

2.5 Two Populations

This section expands on the example above and explains the statistical tech/iques used to compare two populations. This material follows from what you learner about one-yopulation testing though the formulas may look a little more complicated. Consider the following: We have a sample from population 1 , giving a sample mean of \bar{x}_{1}, and a simple from ppulation 2, giving a sample mean of \bar{x}_{2}. We will assume both samples are not too small (say n_{1} and n_{2} are at least 30). For small samples, some extra issues arise (see the note at the end of this section). If population 1 has a mean of μ_{1} and a standard deviation ef σ_{1} and population 2 has a mean of μ_{2} and a standard deviation of σ_{2}, then the fi/st sample mean, \bar{x}_{1}, is approximately normally distributed with a mean of μ_{1} and a stanard deviation of

The second sample mear, λ_{2}. is (approximately) normally distributed with a mean of μ_{2} and a standard deviation of

$$
\sigma_{\bar{x}_{2}}=\sigma_{2} / \sqrt{n_{2}} .
$$

Two properties of random variables are important to us here. If X and Y are independent random variables, the mean and variance of their difference, $X-Y$, are given by the following:

$$
\begin{aligned}
\mu_{X-Y} & =\mu_{X}-\mu_{Y} \\
\sigma_{X-Y}^{2} & =\sigma^{2}{ }_{X}+\sigma^{2}{ }_{Y}
\end{aligned}
$$

We apply these formulas to \bar{x}_{1} and \bar{x}_{2}, giving the following:

$$
\begin{aligned}
\mu_{\bar{x}_{1}-\bar{x}_{2}} & =\mu_{1}-\mu_{2} \\
\sigma_{\bar{x}_{1}-\bar{x}_{2}}^{2} & =\sigma_{\bar{x}_{1}}^{2}+\sigma_{\bar{x}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
\end{aligned}
$$

So, $\bar{x}_{1}-\bar{x}_{2}$ is (approximately) normally distributed with a mean of $\mu_{1}-\mu_{2}$ and a standard deviation of the following:

$$
\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\left(\sigma_{1}^{2} / n_{1}\right)+\left(\sigma_{2}^{2} / \eta_{2}\right)}
$$

As in the case of one population, because σ_{1} and σ_{2} are unknown, y e will need to estimate them using sample standard deviations s_{1} and s_{2} nstead. Thus, we use

$$
s_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\left(s_{1}{ }^{2} / \Lambda_{7} \iota_{1}\right)+\left(s_{2}^{2} / n_{2}\right)} \text { to estimate } \sigma_{\bar{x}_{1}-\bar{x}_{2}} .
$$

An approximate (1- α)(100)\% conidence irteryal for $\mu_{1}-\mu_{2}$ is given by the following: ${ }^{4}$

The test statistic for hypothesis tests concerning $\mu_{1}-\mu_{2}$ is the following:

4 The use of $\mathrm{n}_{1}+\mathrm{n}_{2}-2$ degrees of freedom for the t in the confidence interval formula is only strictly correct if the variances of the two samples are the same. If the variances differ, the approximate degrees of freedom to use is civer by Satterthwaite's formula:

$$
\text { [EQ] } d f=\frac{\left(s_{\bar{x}_{1}-\bar{x}_{2}}\right)^{4}}{\frac{\left(s_{\bar{x}_{1}}\right)^{4}}{n_{1}-1}+\frac{\left(s_{\bar{x}_{2}}\right)^{4}}{n_{2}-1}} .
$$

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)_{0}}{s_{\bar{x}_{1}-\bar{x}_{2}}}
$$

The equals value in the null hypothesis tells us what to insert for $\left(\mu_{1}-\mu_{2}\right)_{0}$.

Recall the consumer packaging example of the previous section. The urivariate statistics were the following:

Figure 2.6: Univaricte s atistics for pack1 and pack2.

So, we have $\bar{x}_{1}=290.54, s_{1}=3.086 \quad \bar{x}_{2}=262.75, \mathrm{~s}_{2}=47.848$. Our estimate for the difference in means $\mu_{1}-\mu_{2}$ is $290.54-262.75=27.79$. We estimate the standard deviation of $\bar{x}_{1}-\bar{x}_{2}$ by using the equation below.

$$
s_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\left((53.086)^{2} / 36\right)+\left((47.848)^{2} / 36\right)}=11.91
$$

You can rerify this value by checking the Stata ttest output from Section 2.4. Stata lists the standard deviation of $\bar{x}_{1}-\bar{x}_{2}$ in the $\mathbf{S t d}$. Err. column and the diff row. Now we may, for
example, construct an approximate 95% confidence interval for our point estimate. It is given by $\bar{x}_{1}-\bar{x}_{2} \pm t_{\alpha / 2, n_{1}+n_{2}-2} s_{\bar{x}_{1}-\bar{x}_{2}}=27.79 \pm \operatorname{invttail}\left(\mathrm{n}_{1}+\mathrm{n}_{2}-2, \alpha / 2\right)(11.91)=27.79 \pm(1.9944)(11.91)=(4.04$, 51.54). We also can do the hypothesis test that we had Stata perform for us previously. The null and alternative hypotheses were as listed below:

Calculating the area above 2.333 n a t-distribution with 70 degrees of freedom gives a p-value of $\operatorname{ttail}(70,2.333)=0.0112 \%$. How does tuis cor pare with the computer output? Stata's ttest command gave us ap-voluent 0113 . There are two reasons for the slight discrepancy. One is our use of $n_{1}+n_{2}-2=7$ as the number of degrees of freedom for the t-distribution. As explained in the footngte to the formula ior the confidence interval for $\mu_{1}-\mu_{2}$, when the variances of the populations are no equ al there is a more exact formula for degrees of freedom (called Satterthvaite's degrees of freedom in the Stata output). In this example, this formula gives 2pproximately 69 rather than 70 . The second reason is numerical round-off error, as we rounded the means arid standard deviations to fewer decimal places than Stata did.

POPULATION PROPORTIONS

Analogous formulas for differences in population proportions can be summarized briefly as follows. We will again assume the samples are large. (In practice, estimating population proportions from small samples is unusual.) Given sample proportions $\overline{\mathrm{p}}$. and $\overline{\mathrm{p}}_{2}$, we estimate the standard deviation of their difference using the following:

$$
S_{\bar{p}_{1}-\bar{p}_{2}}=\sqrt{\frac{\bar{p}_{1}\left(1-\bar{p}_{1}\right)}{n_{1}}+\frac{\bar{p}_{2}\left(1-\bar{p}_{2}\right.}{n_{2}}}
$$

A $(1-\alpha)(100) \%$ confidence interval for $p_{1}-p_{2}$ is given by tire following:

The test statistic for hypothesis tests concerning $p_{1}-p_{2}$ is the following:

The comparison of proportions is the only type of hypothesis test or confidence interval for which we will use a standard normal (z) distribution rather than a t-distribution.

In Stata, you can conduct a one-sided or two-sided hypothesis test on the equality of proportions by using the prtest command. As an example, we will use the file proportion, which contains two binary variables, var1 and var2, with 30 observations each. Var1 has thirteen observations
equal to 1 , and var2 has ten observations equal to 1 . Therefore, $\overline{\mathrm{p}}_{1}=13 / 30=0.433$, and $\overline{\mathrm{p}}_{2}=$ $10 / 30=0.333$. Suppose we want to conduct the following hypothesis test:

$$
\mathrm{H}_{0}: \mathrm{p}_{1}-\mathrm{p}_{2} \leq 0
$$

$\mathrm{H}_{\mathrm{a}}: \mathrm{p}_{1}-\mathrm{p}_{2}>0$

To do this in Stata, click Statistics>Summaries, tables, and tests>Classical testsof hypotheses>Two-sample proportion test. Select var1 for the first variable and var2 for the second variable, as shown in the following:

圄 prtest - Two-sample test of proportions

95 - Confidence level

generate the following result:

Given our alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \mathrm{p}_{1}-\mathrm{P}_{2}>0$, we see that the p -value is $\operatorname{Pr}(\mathrm{Z}>\mathrm{z})=0.2128$, or 21.28%. Therefore, we do not have strong enough evidence to show that $\mathrm{p}_{1}-\mathrm{p}_{2}>0$ if we are using a significance level below 21.28%.

There are two things to note when using Stata's ptest command. First, the standard errors of the proportion for var1 and var2 can found in he first two rows under the Std. Err. column (which are 0.0905 and 0.0661 , lespectively). The value for $\bar{p}_{1}-\bar{p}_{2}$ is shown in the Mean column and the diff row $(=0.1)$. The value for $s_{\bar{p}_{1}-\bar{p}_{2}}$ is shown in the $\mathbf{S t d}$. Err. column and the diff row (= 0.1249). Using these reported values, you can manually calculate the test statistic and the pvalues. The 95% eanfidence interval for $\mathrm{p}_{1}-\mathrm{p}_{2}$ is automatically calculated as $(-0.145,0.345)$.

Second. note tinat Stata reports an additional standard error in the Std. Err. column and the under Ho: row $=0.1255$). In fact, this is the value that Stata uses in place of $s_{\bar{p}_{1}-\bar{p}_{2}}$ in calculating the test statisti and the p-values. This standard error is calculated using the following formula:

Std. Err. under $\mathrm{H}_{0}=\sqrt{p_{c} *\left(1-p_{c}\right) *\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$

Here, n_{1} and n_{2} denote the number of observations for var and var, respectively, And the pooled estimate of proportion, p_{c}, is calculated as:

$$
p_{c}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}},
$$

where x_{1} and x_{2} denote the number of 1 's in var and var, respectively. State uses this pooled estimator because if, in fact, the two proportions are equal. it is the best estimator of the common proportion. If you calculated the p-value for the alter at ie hypothesis H_{a} : $\mathrm{p}_{1}-\mathrm{p}_{2}>0$ using the original standard error of the difference in proportions, $S_{\bar{p}_{1}-\overline{p_{2}}}=0.12 .49$, you would get a test statistic of $\mathrm{z}=\frac{0.1-0}{0.1249}=0.8006$ and a corresponding p-value of 1 -normal $(1.2085)=0.2117$, which is slightly smaller than the p-value calculated by State's pretest command.

Note that to use Stata's pretest command, you need to have an actual dataset containing binary variables of interest. Sometimes your may only be given the respective sample sizes and sample proportions from two populations. III this case, you can still conduct a hypothesis test concerning two population proportions by using State's prtesti command. To do this, click

Statistics>Summarie: , tables, and tests>Classical tests of hypotheses>Two-sample

proportion calculator. In the ensuing prtesti dialog box, enter the respective sample sizes and sample proportions for your two populations and specify a confidence level. ${ }^{5}$ Click OK, and Stata will display an output very similar to the pretest output shown above. In the diff row, you will

[^8]find $\bar{p}_{1}-\bar{p}_{2}$ and $s_{\bar{p}_{1}-\bar{p}_{2}}$ in the Mean and Std.Err. columns, respectively, with which you can calculate the appropriate test statistic and p-values.

NOTE ON SMALL SAMPLE SIZES

When doing two population statistics when one or both samples are smal (fever han 30, say), some additional issues arise. First, as in the single population case, wre cannet assume that our estimators (the sample means) are normally distributed unless we think the populations follow distributions close to normal. Second, if for some reascn we belie ve that the two populations have the same standard deviation, then we can make use of that fact to ob ain estimates that (in the case of small samples) are significantly more efficient. Though we will not cover techniques for dealing with these special cases, you shova te aware these issues arise when you have small sample sizes.

Example: Political Gender Gaps

Men and women may have significantly different opinions on political candidates. One month before the 2003 California Governor's recall ballot, a Field Poll ${ }^{6}$ noted several gender gaps among the top candidates including Cruz Bustamante, Arnold Schwar¿enegger, and Tom McClintock. According to their press release, we are told that Cry Bustamante is the first choice to replace Governor Gray Davis by 26 percent of likely male vott rs and 35 percent of likely female voters. Is this gender difference in support for Bustampnie statistically significant? A difference is statistically significant only if we can pove it is no equal to zero using a hypothesis test. To try to do so, we use the following hypotheses (wheren and p_{w} are the true proportions of men and women, respectively, supporting Bustamante):

To carry out this test, we neer :o know the sample sizes. The last page of the press release tells us that the total sample sise was 505 , so assume 252.5 men and 252.5 women. (This should be approximately right since they were sampled randomly.) Then we get an estimated standard deviation of the differtnce in proportions:

$$
s_{\bar{p}_{\mathrm{m}}-\bar{p}_{\mathrm{w}}}=\sqrt{\frac{.26(1-.26)}{252.5}+\frac{.35(1-.35)}{252.5}}=0.041
$$

and a test statistic:

[^9]$$
z=\frac{.26-.35-0}{.041}=-2.207
$$

The above test statistic gives a p-value of $0.027\left(=2^{*}\right.$ normal(-2.207)), i.e., there is nnlva 2.7% chance that a difference this large could be due to sampling error rather than a genuine diiference in the proportions of men and women supporting Bustamante. If we we e uing 15% level of significance, we would conclude that the gender gap in support for Bustantente was significant.

The exercises at the end of this chapter should give you plenty of practice in using these techniques.

Further information from the Field Poll, Tue ${ }^{\text {äs }}$ y, Sept 9 th, 2003 .

Replacement candidate preferences by subgroup

...There is a significant gender gap in voter preferences in the replacement election. Bustamante holds a thirteen-point advantage over Scitwarzenegger among women voters, 35% to 22%, while men are slightly favaring Schwarzenesger (29% to 26%)....
[table 3 reports that 16% of mes and 10% of women voters prefer Tom McClintock. while table 7 shows hat in the vete to recall Governor Davis, 38% of men and 41% of women support the governor and would voee against the recall.]

About the Survey Sample Details

The findings in this report are based on a telephone survey conducted September 3-7, 2003, in English and Spanish among a random sample of likely voters in California. A representative sample of [505 likely voters was selected].... According to statistical theory, results from the
overall likely voter sample have sampling error of ± 4.5 percentage points at the 95 percent confidence level. Results from subgroups have somewhat larger sampling error ranges. There are other possible sources of error in any survey in addition to sampling variability. Different results could occur because of differences in question wording, sampling, sequencing, fr tirough omissions or errors in interviewing or data processing. Extensive efforts were made to minnmize such potential errors.

2.6 Asset Returns

Another interesting application comes from finance. The date set here consists of 20 years of monthly data (1926-1945) on the returns for various different asset classes: the S\&P500, portfolios of small stocks (the bottom 20% of manket capitalization of the New York Stock Exchange (NYSE)), of corporate bonds, of governinert bonds, and of Treasury bills. (The data can be found in the file capm. Investment decisions are often based in part on past performance, so a natural question to ask is wisther perfornance has been stable over time. In this example, we will try to determine if the average ¡eturn on an asset class changed over the period.

This will be a hard question to answer. For example, could one ever reject a theory that said that every rhonth is unique with a different average return? Furthermore, if you define the asset class closely enough, it is highly likely that the characteristics of the return distribution change across tinge due to for example, industry-specific changes in regulations or technical innovations.

Because of this, we will start with a simpler idea. We take our 20-year sample and ask if the data suggest that average returns are stable over the period for the broad asset classes about which we
have data, by comparing average returns in the first 10 years with average returns in the second 10 years.

We begin by taking a closer look at the data set. We can graphically examine the periomance of one of these portfolios, the S\&P500:

Figure 2.7: S\&P 500 monthly returns ($0.1=10 \%$).

To sarry out/our test, we first need to create two new variables, sp500_1 and sp500_2, where $\mathbf{s p 5 0} \mathbf{1}$ contains the returns for the S\&P500 in the first 10 years, while $\mathbf{s p 5 0 0}$ _2 contains the returns for the S\&P500 in the second 10 years. To do this in Stata, you can open the Data Editor
and directly copy the first 120 observations from the sp500 column to the sp500_1 column. Then, copy the next 120 observations from the sp500 column to the $\mathbf{5 p 5 0 0} 2$ column. Your dataset should look like this:

\# Data Editor (Edit) - [capm]									
File Edit Data Tools									
sp500_1[1]									
0		date	sp500	smstk	crpbon	govtbor	- 11	51.500	sp500_2
\bigcirc	1	2601	0	. 069863	. 0072	. 013756	. 003384	0	. 067014
$\frac{\mathrm{O}}{\mathrm{~S}}$	2	2602	-. 034737	-. 060187	. 008224	. 010037	. 00640;	-. 034737	. 027193
$\frac{0}{\infty}$	3	2603	-. 051864	-. 101712	. 014007	00973	0 0es0	-. 051864	. 031658
	4	2604	. 015907	. 008508	. 000301	. 0 \% 181	00597	. 015907	-. 075067
	5	2605	. 023505	-. 001029	. 009987	. 006998	005715	. 023505	. 054466
	6	2606	. 053215	. 045285	. 00789	. 011303	. 01095	. 053215	. 023577
	7	2607	. 057324	. 020622	. 015134	. 609869	. 011677	. 057324	. 06525
	8	2608	. 030559	. 031335	010114	0057	. 00825	. 030559	. 00793
	9	2609	. 019444	-. 0005799	000047	-. 001984	-. 003474	. 019444	. 00074
	10	2610	-. 032168	-. 02650	. 00589	. 006364	-. 000615	-. 032168	. 079833

Now that we have created the new varlakles, we can conduct our test by clicking
Statistics>Summaries, tables and tests>Classical tests of hypotheses> Two-sample mean-
comparison test. Choose sn50@ 1 and sn500_2 as your first and second variable, and check the box next to "Unequal variances." ${ }^{7}$ Click OK, and Stata will return the following:

[^10]| Variable | obs | Mean | std. Err. | Std. Dev. | [95\% Con | Anterval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sp500_1 | 120 | . 0118973 | . 0093001 | . 1018772 | -. 0065178 | . 0303124 |
| sp500_2 | 120 | . 0065677 | . 0058552 | . 06414 | -. 0050261 | . $0: 81615$ |
| combined | 240 | . 0092325 | . 0054861 | . 0849898 | -. 001547 | 0200397 |
| diff | | . 0053296 | . 0109897 | | $-.0163407$ | 0265298 |
| ```diff =mean(sp500_1) - mean(sp500_2) Ho: diff = 0 Satterthwaite's degrees of freedom = 200.528 Ha: diff < 0 на: diff != 0 на: diff > 0 Pr}(\textrm{T}< <) = 0.6859 Pr}(\|T|>|t|)=0.628 PK}(T>>t)=0.314``` | | | | | | |
| | | | | | | |

As shown in the output, the average monthly return for the fi st 10 yearc-si the S\&P500 is 1.19%, and the average monthly return for the last 10 years is 0.66%. No ice the substantial difference between the two sample average returns. A manthly return of 1.19% gives 15.25% annually, and 0.66% per month gives 8.21% a year. Nonetheless, since the p-value for the test with the null hypothesis that the two means are identical is large ($p=0.6282$), we cannot reject the hypothesis that the mean monthly return is he same in both halves of the sample. That may seem like a surprising conclusion, but the lesson is that with so much variation in the month-to-month performance, as shown in the graph ahove, drawing any conclusions is difficult. Mathematically, the variation in returns makes the standard error, $s_{\bar{x}_{1}-\bar{x}_{2}}$, larger, which, in turn, makes the test statistic closer to zero and tie p -yalue larger.

If we do the same hypothesis test for the small stock portfolio, we get a p-value of 0.6694 . The average monethly reiurn for the first 10 years of the small stock portfolio is 1.2%, and the average monthly 1eturn for the last 10 years is 2.0%. Again, despite our large estimate of the difference, we concluade that it is not statistically significant. That is, though the average returns in the first decade seemed to be lower, there is no strong evidence that this difference was real, so you would not want to rely on this difference as a basis for decision making.

SUMMARY

In this chapter, we learned how to support or reject a claim with data. Hypothesis eesting allows us to ascertain the strength of the evidence provided by our data in support of an a/ernative hypothesis (against a null hypothesis). After learning how to strycture and condect one-tailed and two-tailed tests for a population mean or proportion, we learned t . ow to cor duct the same types of tests for the difference between two means or proportions. We learned now to use Stata to handle much if not all of the computational aspects of hypothes is testing. When we apply hypothesis testing to regression analysis later on, the computer will anticipate pur interest in conducting certain important tests and will report back/information about these tests making the computational aspects of testing almore eforless. Therefore, understanding how to interpret key numbers such as test statistics and p-values and how to choose appropriate hypothesis tests will be central to our study.

NEW TERMS

Hypothesis testing Noll hypethesis $\left(H_{0}\right)$ The default assumption; the opposite of the alternative hypothesis Alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right) \quad$ The statement you are trying to prove or show is true Rejecting the null hypothesis when it is true Type 1 error Failing to reject the null hypothesis when it is false

Level of significance (α) The maximum acceptable probability of making a type I error

Test statistic The number of standard deviations that our estimator is away from the equals value in the null hypothesis

P-value The maximum probability of obtaining a test statistic value that is at least as unlikely as the observed one if the null hypothesis is true; used to determine the strengat of the data's support for the alternative hypothesis

One-tailed test A hypothesis test where the alternative hypothesis use a $<$ or $<$ sign.
Two-tailed test A hypothesis test where the alternative hypothesis uses $\overrightarrow{b e} \boldsymbol{e}=$ sign

NEW FORMULAS

Generically, the test statistic is computed using this formula:

Specifically, we learned the test statistics for the following circymstances:

Test statistics having a t-distribution

For a test concerning a population mean when the standard deviation must be estimated:

follows at-distribution with $n-1$ egrees of freedom $\% \mu=\mu_{0}$

For a test concerning the difference of two population means when the standard deviations must be estimated:

follows a -distribukion with approximately $\mathrm{n}_{1}+\mathrm{n}_{2}-2$ degrees of freedom if

$$
\mu_{1}-\mu_{2}=\left(\mu_{1}-\mu_{2}\right)_{0}
$$

Test statisics having a standard normal distribution (assuming a large sample size)
-

For a test concerning a population proportion:

$$
\mathrm{z}=\frac{\bar{p}-p_{0}}{s_{\bar{p}}}
$$

where

$$
s_{\bar{p}}=\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}
$$

NEW STATA FUNCTIONS

Statistics>Summaries, tables, and tests>Classical tests of hypotheses>One-sample mean-

 comparison testThis opens the ttest - Mean-comparison test dialog box, where you car choose the variable for which you want to conduct a one- or two-tailed test for the population mean. Sta a will return the test statistic as well as the p-values. The leftmost p-value correppords to the alternazive hypothesis that the population mean is less than the hypothesized nean; the middle p-value corresponds to the alternative hypothesis that population means is not equal to the hypothesized mean; the rightmost p-value corresponds to the alterr ative hypotl esi; that the population mean is greater than the hypothesized mean.

Alternatively, you can directly type the command ttest varname $==$ \#, level(\#). Omitting the level(\#) option will tell Stata to use the defaut 95\% confidence level for calculating the confidence intervals in the output.

Statistics $>$ Summaries, tables, and tests $>$ Classical tests of hypotheses $>$ Two-sample mean-

 comparison testThis opers the ttest Two-sample mean-comparison test dialog box, where you can choose the two variat les for which you want to conduct a one- or two-tailed test with the null hypothesis that the popilation mean are equal. Checking the box next to "Unequal variances" specifies that the two populations are not assumed to have equal variances. Stata will return the test statistic as well as the n-values corresponding to the alternative hypotheses that the difference in population means is less than, not equal to, or greater than 0 . Stata also lists the standard deviation of $\bar{x}_{1}-\bar{x}_{2}$ in the Std. Err. column and the diff row. Note that Stata's p-values, which are calculated
using Satterthwaite's degrees of freedom, may be slightly different from p -values calculated manually using $n_{1}+n_{2}-2$ degrees of freedom.

Alternatively, you can directly type the command ttest varname1 == varname2, unpatred unequal level(\#).

Statistics>Summaries, tables, and tests>Classical tests of hypotheses>Two-sanple proportion test
 This opens the prtest - Two-sample proportion test dialog box. where you gan choose the two

 variables for which you want to conduct a one- or two-tailed test vith the null hypothesis that the population proportions are the same. Note that in conducting such a est, Stata calculates $s_{\bar{P}_{1}-\bar{p}_{2}}$ differently from the formula specified in his textbook, as under the null hypothesis the variances of the two populations shou be equal and Stata takes this into account in its calculation. This is the reason for/slightly different test statistic and p-values than the ones you would get using the formulas in the text. Hywever, you can find the value for $s_{\overline{\overline{1}}_{1}-\bar{p}_{2}}$ as in the text in the $\mathbf{S t d}$. Err. column and the diff row.

Alternatively, you can directly type the command prtest varname1 == varname2. To specify the confidence level to use for confidence intervals, add the command, level(\#).

Statistics>Summaries, tables, and tests>Classical tests of hypotheses>Two-sample

proportion calculator

This apens the prtesti - Two-sample proportion test calculator dialog box, where you can enter the respective sample sizes and sample proportions of two populations of interest to conduct a one- or two-tailed test with the null hypothesis that the population proportions are the same. The
prtesti command is useful when you do not have an actual dataset. Note that you must enter integer values for sample sizes.

Alternatively, you can type the direct command prtesti size1 p1 size2 p2, where size"t and ${ }^{2}$ \# correspond to the sample size and the sample proportion of population \#.

CASE EXERCISES

1: The gender gap

Look at the Field poll numbers in the Gender Gap example of Section 2.5.
a. Justify the claim in the last parag.aph that "According to statistical theory, results from the overall likely voter sample have sampling error of ± 4.5 percentage points at the 95 percent confidence level."
b. The last paragraph notes that "Results for subgroups have somewhat larger sampling error ranges." Estimate the "larger sampling error range" for the approval ratings of Arnold Schiwarzenegger among likely women voters.
c. Test using a 5% lover of significance if a gender gap exists in the approval ratings of A. nold Schwarzenegger.
d. Test using a 5% level of significance if a gender gap exists in the approval ratings of Tom
e. Do the same for Gray Davis. In his case, would the gap have been significant if the sample proportions were the same but the sample had included 1,000 likely voters? What about if it had included 10,000 likely voters? What lesson do your answers suggest?

2. The January effect

To carry out this exercise, you need to access the capm dataset. Look for a "January effect" in small stocks, i.e., test if the average returns on a portfolio of small capitalizatio companies are different in January than in the rest of the year. Finance experts are particularly interested in looking for this kind of effect. (In finance, the efficient markets hypotlesis suggests that any such anomaly is a profit opportunity.) To carry out this test you can use trest cemmand in Stata. An easy way to do this is to first create a "dummy variable" for January, i.e., hin the data editor, you will need to make a new column that contains a 1 whenever the rell is an a row which corresponds to January (look for the date in column f) and a 0 fer any other month. One way to do this is to type the 1 and the eleven zeros for the first yeat and then cut and paste all the other years. ${ }^{8}$ After creating the dummy variable (yov can call it January), click

Statistics>Summaries, tables, and tests>Classical tests of hypotheses>Two-group mean-

 comparison test. Choose smstk as your variable name, choose January as your group variable name, and check the box next o "Unequal var ances." ${ }^{9}$ This tells Stata to conduct a hypothesis test with the null hypothesis that the average veturns in January (i.e., January = 1) are the same as the average returns in the rest of the year (i.e., January = 0) for small stocks. Report the pvalue and explain what it suggests avout the existence of a January effect for small stocks. Repeat the exercise for the S\&P500. Firyally, test to see if the return on T-bills was different in U.S. presideatiz election ygars than in other years. To do this in Stata, you need to create a new dummy variable for the election years, and conduct your hypothesis test using the new dummy```
variable as yoū̆ group variable.
```


## 3: Fast food nation

[^11]A recent Gallup Poll (July 7-9, 2003) addressed the idea of holding the fast food industry responsible for the social costs of obesity in the United States. One question divided those surveyed into people who thought that fast food was good for you and those wh disagreed. Two hundred thirty-six of the 1,006 people surveyed believed that fast food was sood for you, and $7 \geqslant 0$ of the 1006 surveyed thought that fast food was not good for you.

The survey examines if people should accept responsibility fo their dietary behavior. The poll asked people how frequently they ate at fast food restaurants. Hialf of those who believed that fast food was not good for them ate fast food at least once a week. Th 4 is, $50 \%$ of the "not good for you" group ate fast food at least once per week. This compares with $62 \%$ for those who think that fast food is good for them.

a. Does this data show that people who believe ty at fast food is good eat fast food more often than those who believe that it is hot good? Justify your answer.

The same survey asked infrequent fast food diners (less than once per month) if they would be more likely to eat at frst fora restürents if the restaurants offered new healthier menu options. A major fast food company has derided to go ahead with such a plan because it believes at least half of the iyfrequent diners would respond Yes to that question. In the Gallup Poll, only 84 of the 204 infrequent fast food dirers surveyed answered Yes.
b. Is this enough evidence to convince the company to change its mind? Justify your

## 4: Pro bowling for dollars

Each year, the Hawaiian State Government pays the NFL about $\$ 5$ million for the rights to host the Pro Bowl. ${ }^{10}$ In return, the state gets to showcase its warm weather to about six mi lio viewers in the depth of winter. Additionally, about 18,000 mainlanders who come to Hawail to watch the game help boost the local economy. Assessing the impact of their spending is critical for the government that spends almost $10 \%$ of its annual tourism budget on the event. One important question is if these Pro Bowl tourists spend more or less time in the state duing their stay than typical mainlanders who spend an average of 10.1 days per visit.

In 2003, the Hawaiian Tourism Authority conducted a poll of 260 Rro Bowl visitors and learned that the average stay was only 8.6 days. The sample standard deyiation, s , was 5.7 days. Is this strong evidence that the average Pro Bowl /isitor stays fewer than 10.1 days?

## PROBLEMS



For problems 1-3, you will need to access the file bigmovies ${ }^{11}$ that contains data on major films released in 1998.


1. Studioc believe that one important predictor of movie revenues is the release date. Since many young pecple have nore free time when school lets out for the summer, more big films might be relcased during the symmer months to take advantage of the surge in demand. Of course, studios thight choose to release their movies at other times when there might be less competition.

Anoker good time might be the holidays when more people have time off to go to the movies.

[^12]a. If summer months are more popular for film releases than the rest of the year, then the proportion of films released during the three months of summer should be more than 3/12 or 0.25 . Define $p_{s}$ to be the true proportion of films released during the sumner inonths. Set up a hypothesis test to prove that summer months are more popular/as reiease dates for big movies.
b. Use the data in the column titled "Summer Release" to carry oat the tes ycu set up in part a.
c. Conventional wisdom states that about $10 \%$ of all moyies are reles during the holidays, but you disagree. Define $\mathrm{p}_{\mathrm{h}}$ to be the proportien of films released during the holidays. Set up a hypothesis test to show the convention wisdom is untrue.
d. Use the data in the column "Holiday Release'to carry ort the test you set up in part c.
2. Another variable to consider is a movie's Motion Picture Association of America (MPAA) rating. An R rating, for instance, might prevent many younger moviegoers from seeing the film which can reduce its revenue potential.

a. Calculate the sample average Total Domestic Gross (TDG) for each of the four MPAA rating categories (R, PG-13, PG, and G.) To do this in Stata, yeu can use the command tabstat TotalDomesticGross, statistics(mean) by(MPAArating) directy or build it through the tabstat dialog box (type db tabstat or use a nenu).
b. Calculate the sample standard deviation of TDG for each MRAA ratirg category.
c. Set up hypothesis tests to determine if a statistically significant difference in population average TDG exists between each pair of categorres. You will need to set up six separate tests (R vs. PG-13, R vs. PG, R vs. G, etc).
d. Use the formulas from Section 2.5 to calculate the test statistic for each of the six tests.
e. Use the test statistics from patid to compte p values for each of the six tests.
f. Repeat the calculation, for each test directly using Stata's ttest command. Ensure your answers resemble/the ones yeu found in part e. Some rounding in the hand calculations will give you slightly difterent answers.
3. Another important factor in determining movie revenues is genre. Certain film types like comedies might have a broader appeal than other types, e.g., horror films.
c. Set up hypothesis tests to determine if a statistically significant difference in population average TDG exists between each pair of categories. You will need to set up six separate tests.
d. Use the formulas from Section 2.5 to calculate the test statistic for each of tue six tests.
e. Use the test statistics from part d to compute p-values for each of the six tests.
f. Repeat the p-value calculations for each test directly using Stała's test conmand. Ensure your answers resemble the ones you found in part e. Somerounding vised in the hand calculations will give you slightly different answers.

4. The file Hawaiipercapita ${ }^{12}$ contains information aboat the annail per capita income for Hawaii's four county governments. This information, colfected by the Hawaii Department of Business Economic Development and Tourism, is used to allocate state funds for many social services.
a. Calculate the sample mean añustandard dंeviation for each county.
b. Set up hypothesis tests to determine if a statistically significant difference exists between each pair of countries. You will need to set up six separate tests.
c. Use the formulas from Seetion 2.5 to calculate the test statistic for each of the six tests.
d. Use the test statisiris fiom part c to compute p-values for each of the six tests.
e. Repeat the p-value calcyiations for each test directly using Stata's ttest command. Ensure your answers resemble the ones you found in part d. Some rounding in the hand carculations will give you slightly different answers.
5. The file bank has data from a mid-sized local bank. The bank has recently begun offering onine bayking services to its clients and is curious about the level of interest in the new product. The two columns contain data on the number of online banking brochures distributed on a sample

[^13]of weekdays and Saturdays. Management has claimed that about 330 people are taking brochures about the new service every day.
a. Calculate the sample mean and standard deviation for each column of data.
b. Test the management's claim for Weekdays using $\alpha=0.05$.
c. Test the management's claim for Saturdays using $\alpha=0.05$.
d. Use Stata's ttest command to test if a difference exists in the rumber oi brochures distributed on weekday and Saturdays using $\alpha=0.05$. Do these results mane sense given your answers to parts b and c?

6. The file restaurantstocks contains monthly data on the exces returns of five publicly traded restaurant stocks from 1984-1994. The excess returns measure the difference between the stock's performance and the government T-bill rate. We would like to know if each stock performs significantly better, on average, than the government T-bill rate over time. This would be true if their average excess returns were positive.
a. Calculate the sample rnean and standard deviation of excess returns for each stock.
b. Calculate the testatistir for each stock appropriate for proving average excess returns are positive
c. Test if each restaurant stock performs better on average than the government T-bill rate (i.e, has nositive average excess return) using an $\alpha=0.05$.
d. Which of the ive stocks has performed the best over the 11-year period?
e. Which stock bas the smallest p-value in the tests from Part c?

1. Given that the sample size is the same for each stock, how can the stock which has the h/ghest average return be different from the one with the smallest p-value?
2. The file forbeswealth ${ }^{13}$ contains data on the wealthiest 100 Americans in 2001 and 2002 from a list compiled by Forbes magazine. Due to the sagging stock market, the wealth of many Americans declined between 2001 and 2002. We would like to know if the decline was experienced by the wealthiest Americans.
a. Compute the mean and standard deviation of the net worth of the wealthiest Americans in both years.
b. Did the average value of the net worth of the top 100 Americans decine inom 2001 to 2002?
c. Was the change you observed in part b statistically significant? Use $g=0.05$.
3. The file forbeswealth from problem 7 contains data on the age of the 100 wealthiest Americans. An interesting question is if the average age of the wealthy is increasing, decreasing, or remaining constant. A decrease in the ayerage age tends to correlate with new wealth being created, whereas an increasing age tenus to be asseciated with less turnover and fewer new members on the list.

a. Compute the mean and standard deviation of the age of the top 100 wealthiest Americans in 2001 and 2002.
b. Did the mean age ricrease, decrease, or stay the same?
c. Was the change you observed in part b statistically significant?

[^14]
## CHAPTER 3

## THE AUTORAMA: INTRODUCTIONTO

## REGRESSION THROUGH INVENTORY P1.ANNING

In this chapter, we will introduce linear regression. The Autorami case presents a situation where a manager is planning how to allocate a limited amount of inventory space in a new car dealership. The manager has access to data from ano dealershp, which allow us to explore the relationship between car buyers' income and the anourt of noney they pay for their cars. Since the income levels in the two areas where the dealerships are located are different, the optimal number of each type of car to stocin might be different as well. Projecting the relationship between income and price that exists in the first dealership onto the new one using the technique of regression analysis will allow the manager tp plan the best mix of inventory. The theory of regression is mostly left to the final subsection of this chapter. The next chapter will elaborate on the technique and extend its applicability.


### 3.1 Introduction

Imagine that you work for a chain of auto dealerships. Your company is opening a nev dealership, and you are in charge of choosing inventory. To do this, you need to predict what product mix is appropriate, i.e., what kinds of cars your customers will bay. The total number of cars you may stock is fixed at 200 (owing to considerations of space), and your j $\curvearrowleft b$ is to decide how to break those 200 cars down by price bracket. You have two time of data te belp you. One dataset consists of a sample of (accepted) credit applications for fluancing rew car purchases. These data come from another dealership (in the file atorania). The credi application tells you the income of the applicant, and the price of the car eacl is buying. A second set of data shows the neighborhoods served by each dealership; specificaliy you have obtained estimates of the income distributions in each neighborhooa, i.e., for each neighborhood you know the percentage of people in each income bracket. You also knew something about the auto purchase habits of the public. (Specifically, you know/he persentage of people in each income bracket who buy a new car in any given year.) The data for the new ne ghborhood (which is the data relevant to you) are presented in Figure 3.1. The total atult ponalation of the new neighborhood is 10,000 people.


Figure 3.1: Income distribution and expected number of customers by income for the new neighborhood.

How was this table constructed? We divided the population up into income brackets using known information on the income distribution in the new neighborhood. This information is summarized in the first two table rows. In the third row, we state the historical percentage of peop e in each income bracket (nationally) who buy new cars in a given year. This enables us th caicunate our expected customer base in each income bracket as a proportion of the total poputation. Recall. this neighborhood has a population of 10,000 adults. For example, since $1610 \%$ of these adults fall into the $\$ 15,000-\$ 25,000$ income bracket, and each year 3\% will iny a car, we arrive at the number $10,000 *(16.10 / 100) *(3 / 100)=48.3$ customers.

A first approach might be to examine the mix of cars/being purchased in the sample from the existing dealership (and shown in the histogram in Figure 3.2) ard use that as an estimate of the percentage of cars that will be sold in each price bracket at the new dealership.


Figure 3.2: Frequency of purchases by price.

However, this approach has a problem, which is that you know the two neighborhoods have quite different income distributions. Though the average income in the new neighborhood is about $\$ 35,000$, in the old one it is about $\$ 60,000$. This suggests that your new customer base will be more interested in less expensive cars, so copying the product mix that is approprate for the other dealership would be a mistake. You, therefore, decide to do something better: You will use de data from the first dealership to predict the car prices that people in a giver income bracket will be interested in. You will combine this with what you know (from Figuie 3.1) abcott the income distribution of your new customer base to get a more accurate prediction of what they will want.

### 3.2 Regressing Price on Income

The first thing you need to do is understan de relationship between people's income and the amount they will spend on a car. 70 do this, you wilvase the technique called regression.


Look at the data (in the futoramg file). The fata consist of 100 data points, i.e., 100 credit applications. The variable income stands for the annual income of each applicant and the variable price stands for the prree of the car each is buying. Both variables are measured in dollars.

| stats | Income | Price |
| ---: | ---: | ---: |
| mean | $\mathbf{6 0 3 5 9}$ | $\mathbf{1 9 5 2 2}$ |
| sd | $\mathbf{1 7 1 0 4 . 8 8}$ | 5759.359 |
| se(mean) | $\mathbf{1 7 1 0 . 4 8 8}$ | 575.9359 |
| min | $\mathbf{1 8 9 0 0}$ | 5100 |
| p50 | 59800 | $\mathbf{1 9 6 5 0}$ |
| max | $\mathbf{1 0 1 3 0 0}$ | $\mathbf{3 2 5 0 0}$ |
| range | $\mathbf{8 2 4 0 0}$ | $\mathbf{2 7 4 0 0}$ |
| skewness | $\mathbf{0 6 9 1 3 3 1}$ | $\mathbf{0 4 0 1 3 5 9}$ |
| kurtosis | $\mathbf{3 . 0 1 7 1 6 6}$ | $\mathbf{2 . 3 7 2 1 8 7}$ |
| N | $\mathbf{1 0 0}$ | $\mathbf{1 0 0}$ |

Figure 3.3: Univariate statistics of income an price.
As you can see, the average income of applicants in our sample is $\$ 60,359$ and the average price of the auto they are buying is $\$ 19,522$. We get a better sense of vhat is in the data set by looking at a scatterplot of Price vs. Income (see Figure 3.4). You can gererate this graph in Stata by clicking User>Core Statistics>Bivariate Statistics>EivariatePlos (twoway) or typing db twoway. This will open the twoway dialoo box. Click Create... and fill in the Plot 1 dialog box


Click Accept and OK, and Stata will generate the following scatterplot: ${ }^{1}$


People seem to spend more on cars as their income rises, which is not surprising. More usefully, the relationshin seems to be inpear, i.e., you could draw a straight line through the scatterplot that would yepresent be data fairly well. But how should we choose the line, i.e., what line is going to give us the "best fit" to the data? The answer is provided by regression. We will ask Stata to produce the Dest-ifit line by using the regression command. To do this, click User>Core Suatistics $>$ Regression (regress) or type db regress. Choose Price as your dependent variable

[^15]and choose Income as your independent variable. You should have a dialog box that looks like this:


Click O/, and Stata will generate the following output: ${ }^{2}$


[^16]| - regress Price Income |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df |  |  |  | Number of obs <br> F (1, 98) <br> Prob $>$ F <br> R-squared <br> Adj R-squared <br> Root MSE | $\begin{array}{lr} = & 100 \\ = & 82.37 \\ = & 0.0000 \\ = & 0.4567 \\ = & 0.4511 \\ = & 266.9 \end{array}$ |
| Mode1 | $1.4997 \mathrm{e}+09$ | 1 | 1.4 | e+09 |  |  |  |
| Residual | 1.7842e+09 | 98 | 182 | 75.5 |  |  |  |
| Total | 3.2839e+09 | 99 | 331 | 18.2 |  |  |  |
| Price | Coef. | std. | Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Lenf. | terval] |
| Income | . 2275402 | . 0250 | 709 | 9.08 | 0.000 | $17 / 7878$ | . 2772927 |
| _cons | 5787.9 | 1572. | 261 | 3.68 | 0.000 | 2667.798 | 8908.001 |

Figure 3.5: Regression of price vs. income.

What does all this mean? First, we can write the estimated reoression enuation using the regression output table. In the regression we ran, Price is the variade on the left-hand side. On the right-hand side, we have the constant coefficient (5787.9) plus the coefficient on Income (0.2275) times Income. By equating left-had side to right-hand side, we obtain the following equation:


This equation represents what Stata has determined to be the best-fit line, as shown in the following diagram:

${ }^{3}$ This greph can be generated in Stata by clicking User>Core Statistics>Bivariate Statistics>Bivariate Plots (twoway) or typing db twoway and creating two plots - a scatterplot as above and a "Fit plot" using "Linear prediction" of Price using Income and then clicking OK. This is equivalent to typing the command twoway (scatter Price Income) (lfit Price Income). See the list of new Stata commands at the end of the chapter for more details.


Figure 3.6: Scatte plot of rice is income with regression line.

What it says is that the average ar iount spent on a new car by people with a given income is equal to, or best estimated by, \$5,787.9 plus 0 2275/imes their income. So, for someone earning $\$ 20,000$, this estimate is $\$(5 \% 97.9+0.2275 * 20000)=\$ 10,337.90$, and for someone earning $\$ 80,000$, it comes to $\$(57879+0.2275 * 80000)=\$ 23,987.90$.

All we haye done is piess a few buttons on the computer, so this may seem like magic. Before going on to we this equation, we will attempt to answer the two important questions that will


1. Where does this equation come from?
2. Why should we believe it provides a good estimate?

### 3.3 Method of Least Squares

Given any scatterplot, we would like to draw the best-fit line through the points in the/agram. To do so, we need to have some criterion for measuring what is a good fit. Intuitively, a line is a good fit if it is as close to the points as possible. So start off with a line, and see how fä it is frem each point. We call this distance the error, and we would like to make the er ors as mall as possible. We can see these errors more easily on a scatterplot with fewer points, as in Figure 3.7.


Figure 3.7: Generic scatterplot.

In this picure, we have drawn a straight line through a set of five points. The error associated with each point is the vertical distance from the line to that point. (We have marked the first two crrors in the picture.) We define the sum of squared errors as the number obtained by calculating each of these distances in turn, squaring each one, and then adding all these squares. Intuitively, the number we get this way will be small if the line is close to the points, and large if it is far from them.

We can use this procedure to compare two different lines for goodness of fit. Do the calculation for each line, and then say that the one with the smaller sum of squared errors is a beter fit. This suggests that we define the best-fit line as follows:

The best-fit line is the line that produces the smallest possible sum of squaied errors.

Now, we can answer our first question. The equation that Stata spits out from the dataset is the equation of the best-fit line. Examine the following equation of the Dest-f: line:

If we take this line, calculate the sum of squared errors, and take any other line at all and repeat the calculation, we will get a bigger number the saconc time.


How does Stata do this? Far our purnoses ye yeally do not need to know. That is not to say that we will be using regression in a mindless or mechanical way, but what we need to understand are the underlying statistics and internretation and not the mechanics of selecting the best-fit line. In practice and in this text, the nechanics of regression are always carried out by computer.

This ap proach also provides a partial answer to our second question. For example, if you look back at tresummary statistics, you will see that the average price of a car $(\$ 19,522)$ is about one hird of the average income of the people in our sample $(\$ 60,359)$. So, rather than running a regression, someone might suggest using the simple rule of thumb that people will buy a car whose price is about one third of their annual income. We will need to justify why the regression equation is considered a better way of estimating than this rule. One argument is that the
regression equation is better than the one-third rule in the sense that it provides a better fit. We can represent the one-third rule by the following line, depicted as the 'rule of thumb' line in

Figure 3.8. ${ }^{4}$


Using this ine, the sum of squared errors is larger than the sum of squared errors from the


[^17]will be more precise (i.e., have a smaller variance) than estimates from the rule of thumb or any other line.

Now we will examine how to use the regression equation to predict demand for cars at bur dealership.

### 3.4 Predicting Spending from the Regression Equation

Think about the people in our customer base (in statistics jargon hic population) who earn $\$ 30,000$ a year. Not all of them will want to spend the same amount on a car, so what we would like to find is a distribution of their spending levels. We will make two assumptions about the distribution of spending levels for a given/income.

ASSUMPTIONS


1. For each income level spending an a car purchase is approximately normally distributed.
2. The distribution for different income levels need not have the same mean, but it does have to have the same standard deviaich.


Later in this text, we will discuss the second of these assumptions in some detail. For the time beiñ we will ask you to take their validity on trust. They can both be tested, and in this case, the tests suggest they are reasonably correct.

Starting with our \$30,000 income group, the first assumption implies we only need to know two things about the distribution of spending for this group: its mean and its standard deviation. The regression output gives us estimates of both. The mean is estimated by setting income $=\$ 30,000$ in the regression equation, so it is $\$(5,787.9+0.2275 * 30,000)=\$ 12,612.90$. Yo call find an estimate of the standard deviation in the regression output from Figure 3.5 the row labeled

Root MSE. It is estimated by s = 4266.9, i.e., it is $\$ 4,266.90$. So, our test guess is that, among people with annual income of $\$ 30,000$, spending on a car purchase is normaly distributed with a mean of $\$ 12,612.90$ and a standard deviation of $\$ 4,266.90$, as shown in the histogram in Figure 3.9. The estimate of the mean depends on these people having an inceme of $\$ 30,000$, but the estimate of the standard deviation does not, which fits assumption 2 above.


Figure 3.9: Price distribution for income level of \$30,000.

What we will do now is divide our cars into a series of price brackets and use our knowledge of the normal distribution to say what proportion of these people will buy autos in eash bracket. For example, we know that the proportion of prices paid by this income group, ytich are below $\$ 16,000$, is the same as the area to the left of 16,000 in a normal distrib/tion with a mean of $12,612.90$ and a standard deviation of $4,266.9$. One way to calculate this area is to use the standard normal distribution. Standardizing the value 16,000 by slibtracting the mean and dividing by the standard deviation yields the following:

Therefore, for this income group, the proportion of arices paid that are less than $\$ 16,000$ is the area to the left of 0.7938 in a standard normal distribution. Using Stata, you can calculate this area by typing display norma. $(\mathbf{0} .7938)$ in the Command box. This area is 0.7863 . So, this tells us that an estimated 78.63\% of the porulation in the \$30,000 income group buys cars priced below $\$ 16,000$. By a simiar analysis, tue proportion buying cars priced below $\$ 14,000$ is $62.74 \%$, so this tells us that $(.7863-.6274) * 100=15.89 \%$ of these customers will buy in the $\$ 14,000-\$ 16,000$ price bracket. We can do the same calculations for $\$ 10,000-\$ 12,000, \$ 12,000-\$ 14,000$, and every other price bracket, giving a complete picture of the demand for customers with an income of $\$ 30000$. (Fur conyenience, we have divided car prices into $\$ 2,000$ price brackets.)

We now/know something about the price preferences of the customers with a given income. How do we ese this information to get a picture of the overall spending distribution? Well, there are several steps.

For each income bracket in the table giving the income distribution for the new neighborhood, we will assume that all individuals in a bracket behave as if they had the median income for that bracket. The median for this neighborhood happens to be the mid-point of each/ncome range, with the exception of the lowest income bracket, for which the median is $\$ 10,000$. Also, the median for the highest bracket is $\$ 120,000$. Now, for each income brarket, we we regression estimates to calculate the number of customers we expect to fall inside each price bracket.


For example, if we want to predict the number of customers in the $\$ 35,009-\$ 45,000$ income bracket who will buy a car in the $\$ 12,000-14,000 \mathrm{ca}$ bracket, we proceed as follows: First, we calculate, using the regression estimates and the median income for he bracket, that purchases of cars by that income bracket are normally distributed with a mean of $\$(5,787.9+.2275 * 40,000)=$ $\$ 14,887.90$ and a standard deviation of $\$ 4,266.90$. Then, we use the normal distribution to find what proportion of that demand lies between $\$ 12, \mathrm{e} 00$ and $\$ 14,000$. You can work this out by the same technique as above. You should get an answer of about 0.1683 (or 16.83\%). Then, multiply this proportion by the nurier of customers in that income bracket (131, from Figure 3.1) to get the number who are expecteato bay in that price bracket $\left(\left(131^{*} 0.1683\right)=22.05\right.$, or about 22 people).


For any/paricular. price bracket, add the number of customers from each income bracket who will want to buy a car in thet price bracket. This gives the total number of cars in that bracket that would be soid in a year, given our neighborhood of 10,000 people. This gives you the demand information you need to make your decision on what mix of cars to stock.

## WARNING:

This procedure is reasonably good. However, we have made one dubious approximation. For the purposes of our prediction, we are acting as if the estimates of the mean and standard deviakions of prices for each income level were exact; they are not. The mean and standard deviations àe estimates from our sample and, therefore, subject to sampling error. Tlis cold be aken into account by using slightly more sophisticated statistical techniques, which we vill learn when we talk about prediction intervals. Meanwhile, you should be aware that we have used this shortcut. Of course, some other approximations are present as well, dua to income bradketing. Additionally, you should worry about whether the samping techiique is genuinely unbiased since people who buy cars on credit are not necessarily a representakive sample of all car buyers. The problem with income bracketing is not too serious since we can always use smaller brackets to reduce the degree of approximation, butwe can do nothing about the sampling problem short of collecting more data from a different suurce.

### 3.5 The Regression Modè



Remember the basic ideas betrind statistical inference: We have a population of interest, and this population is charafterized by some population parameters that we would like to know. We take a s.mple from the population, and estimate the parameters. Since any estimate is based on a sampre, it vill contain some sampling error, and we use probability theory to quantify that error, so we are able to produce confidence and prediction intervals and carry out hypothesis tests. For example, our population might be the adults living in Texas, and we may want to know the average amount they spend on dining out each year. The relevant population parameter is,
therefore, the population mean, and we would estimate it from a sample by looking at the sample mean. For reasonable sample sizes, we know the sampling error is normally distributed around the true value, with standard deviation equal to

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}},
$$

where $\sigma$ is the population standard deviation.

Regression analysis involves the same concepts; however, the population parameters are different, and we must be certain we understand exactly what they are. We will illustrate them using the Autorama example.


## DIVIDING THE POPULATION BY KNCOME LEVEL



When predicting auto purchases, we livided the pepulation (our customers) into many subpopulations according to incorie. in other words, we did not think about the distribution of demand for all our custoryers bet abeut the distribution for all customers with a given annual income.


Each of these sub-populations has different auto purchase patterns. For any given sub-population, a mean/pripe exists that people in that population pay for a car. If we knew these means, we could see hor the mean price varies across the different income brackets. A nice way to do so is by drawing a graph of mean price against income.

Regression Assumption 1. This graph would be a straight line.

Of course, this assumption may not be true. Later on, we will talk about how you can check the data to see whether this is a reasonable assumption for any particular data set, and what you can do if it is not.


Returning to our example, as a consequence of Regression Assumption 1, ye may assume there are some constants, $\beta_{0}$ and $\beta_{1}$, such that for any given income level, the average price paid by people in that income level satisfies the following equation:

$\beta_{0}$ is the intercept and $\beta_{1}$ the slope of the graph of average price aganst income as shown in
Figure 3.10 below.


Figure 3.10: Regression line for price and income.

## WHAT REGRESSION ESTIMATES

We can now talk about two of the population parameters regression estimates: They are the intercept and slope of this line, i.e., the constants $\beta_{0}$ and $\beta_{1}$. Look at the regression output in

Figure 3.11.

|  | Income SS | df | MS |  | ber of | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode1 | $1.4997 e+09$ | 1 | $1.4997 \mathrm{e}+09$ |  | ob > | $=0.0000$ |
| Residual | 1.7842e+09 | 98 | 18206075.5 |  | squared | 0.4567 |
| Total | 3.2839e+09 | 99 | 33170218 |  | $t$ MSE | $=4266.9$ |
| Price | coef. | std. | Err. | >1t | [95\% Conf | Interval] |
| Income cons | $\begin{array}{r} .2275402 \\ 5787.9 \end{array}$ | $\begin{aligned} & \text { ing } \\ & \text { ing } \end{aligned}$ | $\begin{array}{ll} 709 & 9.08 \\ 261 & 3.68 \end{array}$ | $\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$ | $\begin{array}{r} 1777878 \\ 2667.798 \end{array}$ | $\begin{array}{r} .2772927 \\ 8908.001 \end{array}$ |

Figure 3.11. Regression of price vs. income.

What is Stata providing here? Based on ou sample, 5787.9 is the best estimate of the intercept $\beta_{0}$, and 0.2275 is the bes estimate of the slope $\beta_{1}$. The constants $\beta_{0}$ and $\beta_{1}$ are the population parameters we would like tu kinw, and the regression formulas that Stata implements give us estimates (often written $b_{0}=-787.9$ and $b_{1}=0.2275$ ) of the parameters. We can use these to estimate the average expenditure for any income group by substituting for income in the regression equation provided by Stata. This estimate is often written $\hat{y}$ and is referred to as a predicted value or a fitted value.

## QUANTIEYING THE SAMPLING ERROR

These estimates are based on our sample, and if we had a different sample, we would get different estimates. Remember from Chapter 1, by thinking about the sample mean obtained from each
possible sample we may obtain a sampling distribution, i.e., something like a histogram of all the possible sample means one would obtain from different random samples of the population. The same concept applies here, so we can talk about the sampling distributions of $b_{0}$ and $b_{1}$. We are less often interested in $b_{0}$, so we'll focus on $b_{1}$ and summarize what we have lezned' so far

The idea is that when we compare two different groups of people, one whom has an average income (say) $\$ 1,000$ higher than the other, the difference between the average amount that the higher-income group will spend on an automobile and the ave ag amount tha the lower-income group will spend on an automobile is equal to $\$ 1,000$ times some constant $\beta_{1}$ (This conclusion follows from the straight-line equation.) We do not know this constant, but we can use our sample to estimate it, which we do by taking the slope of State's best-fit iine through our sample points. The estimate this produces is called $b_{1}$, and is a random variable, i.e., the outcome of an experiment. If we repeated the experiment by taking a different sample, we would get a new estimate, and if we did this many times, we wouldget a distribution of estimates. The important things about this distribution a e the following

1. On average $b_{1}$ is righ, i.e., $E\left(b_{1}\right)=\beta_{1}$ ( $b_{1}$ is called an unbiased estimator).
2. The distribution of $\mathrm{b}_{\text {, }}$ has a standard deviation, written $\sigma_{b_{1}}$, which is estimated by Stata. We cail his estimate $s_{b_{1}}$, and in this example, $s_{b_{1}}=0.02507$. Stata reports this number in the Std. Err. cplumn as seen in Figure 3.11.

We can generally assume that the distribution of $b_{1}$ is normal.

Regression analysis usually makes a number of other assumptions of varying importance in addition to the straight-line assumption. Later, we will discuss some of these other assumptions and talk about what happens when they are not satisfied. Nothing we have said so far in this
section depends on the other assumptions, with one exception, noted below. For the time being, we will mention one of these assumptions, which you have seen in the previous section:


Of course, $\sigma$ is another unknown population parameter. Stata prccuces an estinate of $\sigma$ in the regression output, which is denoted by s. Stata prints the valut of $s$ in the row labeled Root MSE (here, $s=4266.9$ ). The units for this estimate are the sane as he units for your dependent (y) variable. Here, $\mathrm{s}=\$ 4266.90$. The formula Stata uses to get $s_{b_{1}}(=.02507$ here) makes use of this s , so point 2 in the box above does depend on this assumption.

Do not confuse $\sigma$, the standard deviation of price for each income group, with $\sigma_{b_{1}}$, the standard deviation of our estimate of $\beta_{1}$. in Chapter 1 , we made the same distinction between the population standard deviation, $\sigma$, and the standard deviation of the sample mean, $\sigma_{\bar{x}}$.

## CONFIDENCE FNTERVALS ON THE REGRESSION COEFFICIENTS

We can use our knowledge of the sampling distributions to make statistical inferences, i.e., to form confidence and rediction intervals and carry out hypothesis tests with our regression results.

has the standard normal distribution. So, for example, we can be $95 \%$ confident that $\beta_{1}$ is within $\pm 1.96$ standard deviations of $b_{1}$. In other words, $\mathrm{b}_{1} \pm(1.96) \sigma_{b_{1}}$ forms a $95 \%$ confidence interval for
$\beta_{1}$. We do not know $\sigma_{b_{1}}$, so we use our estimate $s_{b_{1}}$ instead and must use a t-distribution instead of the standard normal. The general formula for a $100(1-\alpha) \%$ confidence interval for $\beta_{1}$ is the following:

$$
\mathrm{b}_{1} \pm \mathrm{t}_{\alpha / 2, \mathrm{n}-2} s_{b_{1}}
$$

$\mathrm{t}_{\alpha / 2, \mathrm{n}-2}$ is the $\alpha / 2 \mathrm{t}$-value with $\mathrm{n}-2$ degrees of freedom (where n is the sample size) (display
invttail(n-2, $\alpha / 2$ )). Later, you will see that Stata output tells you fow many degrees of freedom to use, so you have one less thing to worry about.


For example, try to produce a $90 \%$ confidence interval fon $\beta_{1}$. If $\% \mathrm{ou}$ look at the last regression output, you will see the sample size was 100, s\% we have 98 degrees of freedom. (This value is given directly in the Residual row and he df column.) The 90\% confidence interval is $.2275 \pm \mathrm{t} .05,98(.02507)=.2275 \pm \mathrm{invtt} 2 \mathrm{I}\left(9 \delta, \frac{n .05)(.02507)}{}=.2275 \pm(1.6606)(.02507)=.2275 \pm .0416\right.$ $=(.1859, .2691)$. The interpretation is that $90 \%$ of the time we take a sample of size 100 and use it to calculate an intervalactoraing to the oryula, the interval will contain the true slope, $\beta_{1}$. We are therefore $90 \%$ confidont (.1859, 2691) contains the true slope, $\beta_{1}$.

## HYPOTHESIS TESTS ON THE REGRESSION COEFFICIENTS



Suppose the common industry wisdom is people will spend on average an extra $\$ 180$ on their new acto for every extra $\$ 1,000$ in income. In terms of our regression model, this says that the true slope, $\beta_{1}$, of the regression line is 0.180 . (Make sure you understand why.) Our estimate seems to be higher than this, but is the difference large enough to indicate strong evidence that the true slope is higher than 0.180 ? If it is, then we might want to re-evaluate the common wisdom.

Therefore, we would like to know if our estimate is statistically significantly greater than 0.180 .
We test this by the following hypothesis test:


We will follow the usual hypothesis-testing procedure. Give the benefit of he doubs to the null hypothesis by assuming that $\beta_{1}=.180$. Under this assumption we know our test statistic, t , follows the t-distribution with 98 degrees of freedom:


Using Stata's numbers, we have $t-(.2275-180) / .02597=1.895$. To determine the $p$-value, use Stata's ttail command remembering that we are conducting a one-tailed test and want the area in the upper tail. This comrand (display tal(93, 1.895)) yields a p-value of 0.0305 . This tells us that if the null hypothesis were true, there would only be about a $3 \%$ chance that a sample of size 100 would give an estimated slope as large as ours here. So, unless we want to be particularly careful about making a type 1erfor (i.e., unless we want to set our level of significance, $\alpha$, at less than .0 ), we will reject the null and conclude that our results do shed doubt on the conventional wisdom and strongly suggest that for every additional $\$ 1,000$ of income, people spend more than an aciditionl $\$ 180$ when they buy a new car.

## READING SIGNIFICANCE IN THE REGRESSION OUTPUT

We can now explain the $\mathbf{t}$ and $\mathbf{P}>|\mathbf{t}|$ columns of Stata's regression output. Consider the following (two-tailed) hypothesis test:


The relevant test statistic would be $t=\frac{b_{1}-0}{s_{b_{1}}}=.2275 / 02507 /=9.075$. T1. 1 is is so large that the corresponding $p$-value is 0.000 . If you look back at the regression output in Figure 3.11, you will see Stata has done this calculation for us: Th the Income row that tells us about $\mathrm{b}_{1}$, the column labeled $\mathbf{t}$ contains the test statistic, and the next column labeled $\mathbf{P}>|\mathbf{t}|$ contains the p-value. Similarly, if we wanted to test whether or not the true intercept, $\beta_{0}$, is equal to 0 , we can look in the _cons row to find the p-value for the test where $\beta_{0}=0$ is the null hypothesis (which we reject since $p=0.000$ ).


Traditionally, people have been especially interested in testing coefficients against zero because they often ase regession to test if one variable has any effect on another. In this case, saying that $\beta_{1}=0$ neans that incone has no effect on the price people pay for cars. Since the test is so commonly used, Stata and any other standard statistical package reports it automatically. Typicaly, we will be able to determine what affects what but we also need to know the effect's size. The example here illustrates that nicely. Rejecting the null in this automatic hypothesis test allowsuis to conclude that your income affects how much you spend on a car. This is not very profound. However, we do care that the extent of this effect is larger than the conventional
wisdom. In other situations, we may be interested in small non-zero effects. (For example, in finance, tiny effects can provide arbitrage opportunities that are important.)

The usual terminology is to say that the estimate $\mathrm{b}_{1}$ (or the variable income) is s\%atistically significant at the $\alpha$ level if the two-tailed test of $\beta_{1}$ against zero leads to a rojection of the nul hypothesis (at the $\alpha$ level of significance). Remember that all this indicates is that ve have evidence that we have a non-zero coefficient. If we want to test aganst any ober velue as we did earlier with 0.18 , we will have to calculate the test statistic anc $p$-value for purselves, as in the previous section.


Finally, you may wonder why Stata reports both the test statistic and the p-value for the test. The answer is that some people like to know the tes statistic. However, the p-value contains all the information you need.


## OVERVIEW OF THE REGIRESSION OUTPUT TABLE

It may help you to go through part of the regression output again. After running a regression, Stata produces a table as shownin piepure 3.12. ${ }^{5}$

${ }^{5}$ We have included an option to generate an additional column labeled Beta so that we may explain what it means. As you can see from the output, the Beta column is obtained by typing the command regress Price Income, beta. Alternatively, navigate to Users>Core Statistics>Regression(regress), click on the Reporting tab, and check the box next to Standardized beta coefficients.


Figure 3.12: Partial regression output.

We will go through this table now. Recall that the regression estimates the coefficients of a straight line. These coefficients are the intercept $\beta_{0}$, and re coefficient on the income variable, $\beta_{1}$. The row labels tell us which of these coefficients dach row cencerns. Thus, the _cons row is concerned with the constant coefficient or intercept, $\beta_{0}$, and the Income row is concerned with the coefficient on the income variable. $\beta_{1}$. The Ceef. column contains the actual estimates of these coefficients ( $\left.\mathrm{b}_{0}=5787.9, \mathrm{~b}_{2}-0.22,5\right)$. The std , Err. column is more interesting. Each of the coefficient estimates is subjec to sampling error and has a distribution whose standard deviation we can estimate. Fhose estimates are found in this column. For example, we know that $b_{1}$ is normally distribeted its expected value is the true slope $\beta_{1}$, and we can estimate its standard deviation to be $s_{b_{1}}=.0250 \%$. Similarly, the estimated standard deviation of $\mathrm{b}_{0}$ is denoted by $s_{b_{0}}(=$ 1572.261. The next two columns tell us the results of specific hypothesis tests. There is one test for each eftimator. The null hypothesis is that the true value of the parameter we want to estimate is zorn. The $\mathbf{t}$ colamn ells us the test statistic value we obtain from this test, and the $\mathbf{P}>|\mathbf{t}|$ column tells us the corresponding p-value. The Beta column tells us the beta weight corresponding to income. The beta weights are coefficients of a regression where, instead of the variables themselves, standardized versions of the variables are used. Looking at the regression output table in Figure 3.12, we see the beta weight on income is 0.6758 . This tells us that, on average, for a
one standard deviation increase in the income, price will increase by 0.6758 standard deviations of price.

## SUMMARY



We looked at how Stata chose the best-fit line through a scatterplot and how to use the equation of that line to make predictions. We applied this to predict the average price of a car bought by customers with a given income.


We assumed that, for any given income level, the ampun spent on a car is normally distributed and the standard deviation of that distribution 1sy the same for each income level. The mean of that distribution is the estimate provided by ne regression equation, and the regression also provides the estimated standard deviation.


We used this information, toge her vith sone demographic data on our customer base, to predict the overall distribution of car purchases. We divided our customers into income brackets and our cars into price brachats. Freach income bracket, we worked out how many of our customers would come from that bracket ald how their purchases of cars would fall among the different price brackets. This told us how many cars would be sold in each price bracket by adding up how many cars would be so d in that bracket to people in the lowest income bracket, the second

We examined the regression model and learned that regression studies how one variable (e.g., auto price) varies across different populations indexed by another variable (e.g., income). It assumes that this relationship is linear on average and estimates the linear relationship. We can
use this estimate to make predictions and use statistical theory to perform inferences about those estimates, including confidence intervals and hypothesis tests.

## NEW TERMS



Best-fit line The line generated by the least squares method that produces the smallest possible sum of squared errors

Unbiased estimator An estimator whose expected value is equal to the parameter it estimates Residual degrees of freedom The number of data points in a regressisin minus the number of coefficients (including the constant). This is used to calculate the proper t-statistic to use in confidence intervals and is used in calculating p-values of hypothesis tests

Standard error of the regression (s) An estimate of $\sigma$, the standard deviation of the dependent variable (y) given (or conditional on, a fixed value of the independent variable (x)

NEW FORMULAS

$100(1-\alpha) \%$ confidence interval for $\beta_{1}: \mathrm{b}_{1} \pm$ invttail $(\mathrm{n}-2, \alpha / 2)^{*} s_{b_{1}}$
$100(1-\alpha) \%$ confidense interval for $\beta_{0}: \mathrm{b}_{0} \pm$ invttail(n-2, $\left.\alpha / 2\right)^{*} s_{b_{0}}$
Hypoth esis test to see ik coefficient k is statistically significant:


$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{\mathrm{k}}=0, \\
& \mathrm{H}_{\mathrm{a}}: \beta_{\mathrm{k}} \neq 0 .
\end{aligned}
$$

## NEW STATA FUNCTIONS

## User>Core Statistics>Bivariate Statistics>Bivariate Plots (twoway)

Equivalently, you may type db twoway. This command opens the Stata twow dialog box, where you can create various types of graphs including scatterplots and best-fit lines.

To generate a scatterplot, click Create.... Choose Basic plots as your plot -ategory and choose Scatter as your plot type. Select the appropriate X and Y variables and click Accept>OK. Once Stata generates the graph, you can open Stata's Graph F\%itor foake revisigns to your graph.


Alternatively, you can directly type the command two vay seatter tarY varX.

To graph a best-fit line, click Create. .. Cnoose rit plots as your plot category and choose Linear prediction as your plot type. Select the appiopriate X and Y variables and click Accept>OK.


Alternatively, you can directlv type the command twoway lfit varY varX.


If you want ts add a best-fit here on top of a scatterplot for variables X and Y , you can click
Create... again to crecte Plot 2 (Plot 1 is your scatterplot) for your best-fit line by following the steps above. The dieet command is twoway (scatter varY $\operatorname{varX}$ ) (lfit $\operatorname{var} Y \boldsymbol{v a r X}$ ). For more grapising ortions, type help graph into the Command box.

User $>$ Core Statistics $>$ Regression (regress)

Equivalently, you may type db regress. This command opens the regression dialog box asking you to select a dependent variable from a list of all variables in the current data worksheet. You are asked to choose one (or more) independent variables from the "Independent variable' list. Clicking OK will produce the regression output. Stata reports the estimated coefificients (under the Coef. column), estimated standard deviations of the coefficients (Std. F.rr.), test statistics for the coefficients $(\mathbf{t})$, and p-values $(\mathbf{P}>|\mathbf{t}|)$ for a two-tailed test with the n_(ll hypothesis that the true value of the parameter of interest is zero. You can find the appropriate degress of freedom with which to manually calculate confidence intervals for the paraneter of interest in the Residual row and the df column. In addition, you can find the standard erro of the regression in Root MSE.

Alternatively, you can directly type the direct command regress depvar indepvars, where depvar corresponds to the name of the dependent variable, and indepvars correspond to the name(s) of the independent variable(s).

If you want Stata to report the bet a-weights(s) ior independent variable(s), you can either check the "Standardized beta cocficients" box vide the Reporting tab in the regress dialog box, or you can type the direct commana regress depvar indepvars, beta.

## CASE FXERCNSS


probability that someone in this group would buy a car in each price bracket. You may wish to do your calculations in a spreadsheet.

## 2. Autorama: The big picture



Take the entire set of potential car buyers at the Autorama described ir Figure 3. 1 nd complete the objectives of the case. That is, using a spreadsheet, determine ne number of cars to stock in each price bracket at your new dealership to match demand. You can do this ii three steps:
a. For each income group, determine the expected number of sates with in each price bracket.
b. Sum the expected sales with each price bracket to determine the total expected sales within each price bracket.
c. Multiply the fraction of total expect sales in each price bracket times 200 to determine how many of each type of ear to stock in your /inventory.

## 3. Shore Realty



Shore Realty sells real estate in Oklahoma. The company would like to be able to predict the selling price of new homes based on the home's size. It has collected data on size ("sqfoot" in square feet) and selling price ("price" in dollars) which are stored in the file shore. Use the data in una file to answer the following questions:
2. Vie a computer to construct a scatterplot for these data with size on the horizontal axis.
b. Determine the estimated regression equation.
c. Predict the selling price for a home with 2,600 square feet.

## PROBLEMS



For problems 1-3, you will need to access the bschools2002 file, which fontans deta regarding the top 30 business schools based on the 2002 Business Week ratings.

1. Many business school surveys including this one report mean base salaties and median base salaries. These two statistics tend to be similar. Stata an he/p us find a relationship between the two for this dataset.
a. Construct a scatterplot with mean base salary ont the vertical axis and median base salary on the horizontal axis.
b. Does this relationship appear linear?
c. Perform a regression of mear base selary vs. median base salary. Write out the estimated regression equation.
d. Use your regressien equation to estimate the mean base salary for a school with a median base salary of \$77,000.
e. Use your regression equation to estimate the mean base salary for a school with a median b/se salary of $\$ 88,000$.


2 Stedents from oetter schools might command a higher salary. Comparing a school's mean base
salary to its ank might help us understand this relationship.
Deyelop a scatterplot for these variables with mean base salary as the dependent variable.
b. Does this relationship appear linear?
c. Perform a regression of mean base salary vs. rank. Write the estimated regression equation.
d. Use your regression equation to estimate the mean base salary for a school ranked eighth.
e. Use your regression equation to estimate the mean base salary for a sch soir ranked 25th.
f. Use the coefficient on the rank variable to estimate the expected infrease in mean base salary from a one-unit improvement in a school's rank. Provide a $55 \%$ on/idence interval for your estimate.
g. How confident are you that the true slope, $\beta_{1}$, is significantly different from zero?
3. Schools with larger enrollments might have more esrurces, making their students better prepared and more valuable to employers and, subseqsentiy conmanding a higher salary. Of course, smaller schools may give students more personal attention, which develops better skills and could yield a higher salary for smaler schoo's. Studying the relationship between mean base salary and enrollment might help us understand this relationship better.
a. Develop a scatterplot for hese variables with mean base salary as the dependent variable.
b. Perform a regression of mean hase sa/ary vs. enrollment. Write the estimated regression equation.
c. Use your regiession equation to estimate the mean base salary for a school that enrolls 800 students.
d. Use your regression equation to estimate the mean base salary for a school that enrolls 1,800 students

Use the coefficient on the enrollment variable to estimate the expected increase in mean base salary as enrollment increases by one. Provide a 95\% confidence interval for your estimate.
f. Is the true slope, $\beta_{1}$, significantly different from zero? Use a $5 \%$ level of significance.
g. Is the true slope, $\beta_{1}$, significantly greater than zero? Use a $5 \%$ level of significance.
4. The top-selling beer in the world is Budweiser, which is produced by Anheuser-Busch The company's annual reports provide the data in the file budsales, which presents 12 years of combined sales (in 31-gallon barrels) of all Anheuser-Busch beers. The file also centains information on the U.S. population (US Pop) based on census estimates.
a. Develop a scatterplot for these data with barrels sold as the dependent variable and US

Pop as the independent variable.

b. Perform a regression of barrels sold vs. US Pop. Write the estimated regression equation.
c. What does the coefficient of the variable US/Pop represenin this regression equation? Be specific and clear in your answer.
5. Access the file taxfranchise. The data fome from a regional tax preparation company with 19 locations across the Midwest. The first variable measue es the Output per Worker in terms of customers' tax forms complete d per month and the second is the annual Computer Budget per employee at that location.
a. Construct a sratterplot of Qutput per Worker vs. Computer Budget.
b. Perform a regessien of Outut per Worker vs. Computer Budget and write the estimated regression equation.
c. Use the regression equation to estimate the Output per Worker at a location with a Computer Fudget of \$2,500 per employee.

Use the regression equation to estimate the Output per Worker at a location with a C omputer Budget of \$3,500 per employee.

Use the coefficient on the Computer Budget variable to estimate the additional number of tax forms completed per month for each one-dollar increase per employee in the Computer Budget.
f. Provide a $90 \%$ confidence interval for your answer to part e.
g. Using $\alpha=0.05$, determine if the Computer Budget is significantly related to Output per Worker.


## CHAPTER 4

## BETAS AND THE NEWSPAPER CASE: USINO THE

 REGRESSION EQUATIONIn this chapter, we will learn more about regression and how to use it to make predictions. We will see one of the major applications of regression in firance; the estimation of asset betas, which are numbers measuring the riskiness of different nvestments. Then, we will explore a new product start-up problem in the newspaper industry. Along the way, we will learn to do statistical inference with regression: In addition to prodvcing estimates, we will be able to say something about the accuracy of our predictions through the ise of confidence and prediction intervals and hypothesis tests.


### 4.1 Capital Budgeting and Risk

How to deal with risk in capital budgeting is one of the central issues in modern finarce heory. Some of you may have encountered, at work or in finance classes, many of the oncepts covered in this section. We will concentrate on the use of regression to measure asset betas These numbers measure the riskiness of different assets, forming the basis fo the mos widely used approach to capital budgeting under uncertainty, the Capital Asset Pricing Mredel (CAPM). This section should explain enough to enable you to appreciate the mportance of as set betas and how to use them in simple examples. You may wish to supplement this section by reading the relevant sections of any standard finance text, such as Principles of Corporate Finance, by Brealey and Myers. ${ }^{1}$ There, you will learn about some factors we have ignored here, most notably the relation between capital structure and the cost of capita?.

## CAPITAL BUDGETING ANE THT OPPORTUNITY COST OF CAPITAL

Suppose your company has the or portunity to begin a new project. The project will take place over two years. In year 1, you will have to iny est $\$ 10$ million, and in year 2, you expect average returns of $\$ 11.5$ million after whick the project will end. Should you undertake the project?

The answer is you should unariake the project if it has positive net present value (NPV). If you are unfamiziar with the concept of NPV, Brealey and Myers or any other finance text will cover it in detai. For a given interest rate or cost of capital, r, the net present value is given by the

[^18]$$
-10,000,000+\frac{11,500,000}{1+r}
$$

You can check that the NPV will be positive if $r$ is smaller than $15 \%$ (.15) but will be hegative otherwise. This means, you should invest if your cost of capital is less than or equal to 15 percent. This makes intuitive sense: If you make the investment, you will get a recurr of $15 \%$ in exchange for having your capital tied up for one year. The cost of capital refers to how mu h it costs you to have your capital tied up for one year, which is the rate of return you could achieve with it. Since this investment pays $15 \%$, you should make it if you cannot earn more thar $15 \%$ elsewhere. Here, "you" means your shareholders, since as a corporate nanager it is your job to maximize shareholder value.

## Risk and return

However, things are more complicated once we recogsize the role of risk. Assume that this investment is somewhat risky, so the retarn of $\$ 11.5$ million is uncertain and is merely your best estimate. Your shareholders need te be compensated for bearing that risk. To determine their cost of capital, we need to see hew minch they could get for bearing the same risk in a different investment. Again, this makes sense: スisky investments pay more on average than safe ones, but that does not mean that you should automatically choose the riskiest investments you can find. In practice what it means is that you need to know how high a return your shareholders need to be compe asated for bearing the risk your project represents.

## The CAPM formula

This brings us to the bottom line of the CAPM: What it says is that the riskiness of a project or asset can be measured by a single number, known as the beta ( $\beta$ ), and the required rate of return satisfies the following formula:

$$
\mathrm{r}-\mathrm{r}_{\mathrm{f}}=\beta\left(\mathrm{r}_{\mathrm{m}}-\mathrm{r}_{\mathrm{f}}\right)
$$

Here, $r_{\mathrm{f}}$ is the risk-free interest rate, i.e., the return on a totally safe asset, and $r_{\mathrm{m}}$ is the return on a market portfolio. We usually think of $r_{\mathrm{f}}$ as the return on US Treasury bills/r-bills, which historically have paid about $3.5 \%$, and we often think of $r_{\mathrm{m}}$ as the retur on the $\$ \& p 500$ index, which has earned a much higher return (around 12\%.) The differznce betwer the return on any asset and the risk-free return is called the excess return, so the formula says that the excess return on any asset should be proportional to the excess return oitite morket as a whole, with the constant of proportionality equal to $\beta$. If we know the beta of ou project, we can use this formula to learn the correct cost of capital, r, calculate the NPL and deeide whether to make the investment.


## Measuring Risk I: unique vs. market risk

When we think about a project's 1 iskiness, ve have to distinguish between two different kinds of risk: unique risk and maket nisk. Rational investors will hold a well-diversified portfolio of investments, with money in hestocks of many companies. This may be justified by the principle of not putting all your eggs inione basket. On a more technical level, as we saw in Chapter 1, when you take tic average of a number of independent random variables, the standard deviation of that average becomes low. For instance, if you have $n$ independent risks, each with the same standard deviation $\sigma$, hen their average has a standard deviation of $\sigma / \sqrt{n}$. What this means is that investors do not have to worry much about the risk of any single investment, provided that risk is inderpendent of their other investments' risks. For example, one risk facing Hewlett-Packard is if Dell will continue to steal market share away. However, whether or not that happens is mostly independent of anything else that might happen in the world, which suggests that a well-
diversified investor should not have to worry about it. That is an example of a unique risk, also known as a specific risk, unsystematic risk, or diversifiable risk.

On the other hand, suppose that the economy slides into a recession. Hewlett-Packaru's sales will fall and so will those of most other corporations in the United States. So, the risk of a recession is undiversifiable because any companies in which we invest will face the saıe risk. The companies' risks are not independent and their eggs are all in the same baskot This kind of risk is called market risk, systematic risk, or undiversifiable risk. Sinfe investors anhot avoid this risk by diversification, they have to be compensated for bearing it. Because scme ompanies face more such risk than others, they must offer a higher retu in to interest people in investing in them. For example, during recessions, people often put off buying cars, but such economic conditions do not greatly affect their use of the telephone, so auto companies have more market risk associated with them than do telephone companiss.

## Measuring Risk II: defining beta

Now that we know the kiaciof risk to measure, what remains is learning how to measure it. We can get at the right measurement by thinking about how the share price of an auto company like Ford will vary with the market as a whole, compared to that of a telecommunications company like AT\&T. It turns out that when the market is doing well, Ford's shares do extremely well, but when the rarket is dojng badly its shares do very badly. This is what you would expect: When the economy is boonirg, the markets are up and many people buy new cars, but when things are slow. few people do. Between 1984 and 1989, Ford's shares went up/down by $1.3 \%$ for every $1 \%$ chinge ur/down in the market as a whole (on average and after subtracting the risk-free rate). This number (1.3) gives us a measure of how much risk is involved in holding Ford's shares. By comparison, AT\&T shares were safer than the stock market as a whole during this time, with a
change of only $0.76 \%$ for each $1 \%$ change in the market. These numbers are what we call the betas of the assets.

Beta measures the amount the stock price changes for a $1 \%$ change in the market as a whole.

In the next section, we will see how regression is used to calculate/estimate befas. What this section has explained is how to use the beta to make investment decisions.

## Summary

We reviewed the following procedure for deciding whe to make a isky investment.

1. Obtain a numerical measure of the riskiness called its veta. (We defined the beta, but did not explain how to measure it.)
2. Use the CAPM formula, $r-r_{\mathrm{f}}=\beta\left(r_{\mathrm{m}}-{ }_{\mathrm{t}}^{\mathrm{t}}\right)$ to obtain the appropriate cost of capital figure $r$.
3. Use that value of $r$ to cal culate the NPV.
4. Make the investment if it has positive INPV.

Implementing step 1 wilk be discussed in the next section.

### 4.2 Estimating Betas

The firm you work for owns a chain of upscale pizza restaurants in New England. Your CEO believes the lower end of the market has room for expansion and wants to start/p a large chain of fast food pizza places to compete in the fast food market. You are asked to make a preliminary study of the advisability of this investment, based on an initial investment of $\$ 8 \mathrm{mi} / \mathrm{lion}$ and projected average annual profits starting at $\$ 1$ million and increasing to $\psi 2$ million after the first two years. You write out the NPV formula for these figures (al ir \$millions):

$$
\mathrm{NPV}=-8+\frac{1}{(1+r)}+\frac{1}{(1+r)^{2}}+\frac{2}{\left(1+(r)^{3}\right.}+\frac{2}{(1+r)^{4}}+\frac{2}{(1+r)^{5}}+\square
$$

Before you can calculate this sum, you need to know the relevant discount rate, $r$. The projected profits are estimates since the true profits are uncertain, so this is a risky investment and the discount rate must reflect this riskiness. As yo a know from the previous section, the correct rate for discounting uncertain cash llowsis given by the CAPM formula:

Suppose the current risk-free rate is $4.0 \%$, and the expected excess return of the market is $8.0 \%$; so, $r=.84+.08 \beta$. Sll you need is a figure for beta, which measures the riskiness of this kind of investment.

## ESTIMATING BETA

Fortunately, you have data on the share performance of some other companies, which oferate in the fast food market. Since they are in the same business as this project, their riskiness should be a good guide to the proposed investment's riskiness. You decide to use reg ession to estimate the beta from these data, which consist of the monthly excess returns of (anong others) the shares of McDonald's Corporation and of a portfolio representing the market as a whoie. These data are contained in the stocks file; ${ }^{2}$ the data on monthly excess returns are reported in percentages. How does regression help us here? The definition of the beta tells as how much the share price moves (relative to the risk-free rate), on average, compared with a $1 \%$ move (relative to the risk free rate) in the market as a whole. So, if we draw a scatterplot of the monthly excess returns of McDonald's (stored in the MACS colvm), against the monthly excess returns of the market portfolio (stored in the column MARKET) and plot a best-fit line, the slope of the line should tell us the beta. ${ }^{3}$


As you can see, the line is faury steep. The regression equation (MACS = $0.253+1.458^{*}$ MARKET, from Figure 4.2) tells us that the beta is estimated to be about 1.458 ; so, on average, a $1 \%$ change in the rharket is associated with a change of almost $1.5 \%$ in the value of McDorald shares. ${ }^{4}$ We can use this estimate to get the discount rate: $r=.04+.08(1.458)=$ .1566, which is, about 15.7 percent. Substituting this value into the NPV calculation (and doing

[^19]some algebra), we find this gives a profit of about $\$ 3.1$ million, so this investment seems to be a good idea. Before jumping to conclusions, we should check the accuracy of our beta estimate since if it is rough we cannot be too confident that the NPV is positive. The true beta might be a lot higher than our estimate, leading to a much higher discount rate, which could tip the proiect into unprofitability.


Figure 4.i. Lxcess returns of McDonald's vs. the market portfolio.

## CONIILENCE INTERVAL FOR BETA

To produce a confidence interval, we need an estimate (commonly called the standard error of
the coefficient) of the standard deviation of our estimate of beta, which we can find in the regression output from Stata.

| - regress MACS MARKET |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | Ss | df |  | S |  | Number of obs <br> F ( 1, 130) <br> Prob $>F$ <br> R-squared <br> Adj R-squared <br> Root MSE | $\begin{array}{lr} = & 132 \\ = & 148.38 \\ = & 0.0000 \\ = & 0.5330 \\ = & 0.5294 \end{array}$ |
| Mode1 | 2711.90756 | $\begin{array}{r} 1 \\ 130 \end{array}$ | $\begin{array}{r} 2711.90756 \\ 18.277082 \end{array}$ |  |  |  |  |
| Residual | 2376.02066 |  |  |  |  |  |  |
| Total | 5087.92822 | 131 | 38.8391467 |  |  |  | 4.2752 |
| MACS | coef. | std. | Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% conf. | terval] |
| MARKET | 1.45837 | . 1197 | 247 | 12.18 | 0.000 | .221579 | 1.695231 |
| _cons | . 2528197 | . 3785 | 496 | 0.67 | 0.505 | -.4960954 | 1.001735 |

Figure 4.2: Regression of MACS vs. market.

The estimated standard deviation of $b_{1}$, which is listed under the Std. Enf. cciumn, is 0.1197 , and we know that our sample size is 132 (11 years of monthy data). Therefore, a $90 \%$ confidence interval is given by $1.4584 \pm(0.1197) \mathrm{t}_{0.05,130}$, and $\mathrm{t}_{0.05,130}$ is about $1.65 / 7$ (using the command display invttail $(\mathbf{1 3 0}, \mathbf{0 . 0 5}))$. This is $1.458+ \pm 0.1984=(1.26,1.6568)$. We are interested in using beta to determine the discount rate using the CAPM equation $r=.04+.08 \beta$, so we can turn this into a confidence interval for $r$. That is, we have a beta between 1.26 and 1.6568 with $90 \%$ confidence, so we can say with $90 \%$ confidence that $r$ is between $.04+.08(1.26)$ and $.04+$ $.08(1.6568)$, i.e., betweer . 1408 and .1725.


We can do a kind of worst-case analysis using this interval as follows. Suppose we have seriously underestimated deta. The true discount rate will be much higher than the $15.7 \%$ figure we used above. We can use the confidence interval to produce a sort of upper bound on the true discount rate's size: We do not know the exact value, but we are fairly (95\%) confident that it is no more than 1725\%. If we repeat the NPV calculation using $r=17.25 \%$, we will get a figure of $\$ 2.01$ milkion, whi h is still positive by a wide margin. The project will be profitable even under a worst case assumption where the appropriate discount rate is much higher than the one used. The confidence interval enables us to choose a number we may treat as our worst-case scenario.

You might wonder why we did not do a hypothesis test here. The answer is that we could have done that, but you would have needed to work out the relevant test. Finance theory suggests that the appropriate thing to prove (i.e., the thing you should use as the alternative hypotiesis) is whether the true discount rate is less than the internal rate of return (IRR). ou covild calculate this IRR with Excel or a financial calculator (it turns out to be about 21\%) and farry out the hypothesis test.


To prove the true discount rate $r$ is less than $21 \%$, the appropriate hypothesis test is the following:

$$
\mathrm{H}_{0}: \mathrm{r} \geq 0.2 \mathrm{~s}
$$

$H_{\mathrm{a}} \mathrm{F}<0.21$

The next step is to use the CAPM/ormula, $r-r_{f}=\beta\left(r_{r}-r_{t}\right)$, to rewrite the hypotheses in terms of beta. Using $\mathrm{r}_{\mathrm{f}}=0.04$ and $\mathrm{r}_{\mathrm{m}}=0.12$, the alteinat ve hypothesis becomes $0.04+0.08 \beta<0.21$ or, rearranging, $\beta<0.17 / 0.08=2125$ So, the bypothesis test is the following:


Using the results fron the regression, we can calculate a test statistic of $t=(1.458-2.125) / 0.1197$ $=-5.57$. Therefore, the p -value $=\mathbf{1 - t t a i l}(\mathbf{1 3 0}, \mathbf{- 5 . 5 7}) \approx 0$, and we can reject the null hypothesis. We are exwemply confident the true discount rate is less than the IRR, meaning this is a profitable project. This is the same conclusion arrived at using confidence intervals above.

## Summary

We used regression to estimate the beta of McDonald's from a sample of excess returns on its shares and on the market as a whole. We used this beta to estimate the correct discount rete for a capital budgeting problem. We used a confidence interval approach to get a rarge ot possible values for the beta and did a worst-case analysis to check whether the proposed investment vorald be profitable under rather pessimistic assumptions about sampling errer. We also carried out a similar analysis using hypothesis testing.


### 4.3 Predicting Circulation

A newspaper in a large metropolitan area is thinking about issuing a Sunday ed;ion. Ivianagement estimates that this would involve a start-up cost of $\$ 2$ million and fixed any ual operating costs of $\$ 1$ million. Once the project is up and running, it figures a profit (net of the marginal costs of printing and distribution) of $\$ 5$ per reader per year. Therefore, if the newsnaper gets $X$ thousand readers, it will realize an annual profit of $\$(5,000 \mathrm{X}-1,000,000$ ) in perpetuity. The cost of capital for this industry is $15 \%$, so the NPV of this profit stream is the following. 5 .

$$
\begin{aligned}
& (5,000 X-1,000,000)\left(\frac{1}{(1-. .5)}+\frac{1}{(1+.15)^{2}}+\frac{1}{(1+.15)^{3}}+\ldots\right) \\
& =\frac{(5,000 X-1,000,000)}{.15} \\
& =\$(33,333 X-6,556,567)
\end{aligned}
$$

If readership is low, this value will be megative, but even if it is positive, it has to outweigh the initial cost of $\$ 2$ miliun. In ntior words, the project is a good one if the following occurs:


This is true whemever $X$ is greater than 260. So, the break-even figure is a circulation of 260,000.

[^20]
## THE DATA

This projection is useless unless you can forecast what circulation will be. We will use regression to produce such a forecast, based on a data set called newspapers, which consists of the daily and Sunday circulation figures for 35 newspapers in other cities around the country. The adily circulation of the paper is 190,000. We will use these data to forecast Sunday sales and to assers the forecast's accuracy. We begin with a preliminary look at the data, rirst dia desciptive statistics and then graphically on a scatterplot. ${ }^{7}$ All figures are in thousands.


Figure 4.3: Univariate Statistics for Sinday and daily circulation.

Examine the data in the scatterplo shown in Figure 4.4:

${ }^{6}$ Derrved rom Hedblad, Alan, ed. Gale Directory of Publications and Broadcast Media, Gale Research, 1992.
${ }^{7}$ To generate univariate statistics for Sunday and daily only, click User>Core Statistics>Univariate
Statistics>Custom (tabstat) or type db tabstat, select Sunday and Daily as your variables, and choose the appropriate statistics in the "Statistics to display" field.


Figure 44: S-aterplot for Sunday vs. daily.

It looks as if the relationship is close to lingar. Now, we will do a regression to see what the estimated relationship is and check to see if a strong relationship exists.


From Figure 4.5, our estimated regression equation is Sunday $=24.76+1.35$ Daily. We may use the regression equation to produce an estimate of Sunday circulation for our newspaper.

Substituting the daily circulation of 190 gives the following:

Sunday $=24.76+1.35(190)=281.26$

As the units are in thousands, this equation tells us the estimated Sunday cicuitaion is 281,260. So, it looks as if we are saying that circulation will exceed our break-even ifgure of 260,000. But we have to be more careful than that. Regression is a staistical piocedure: We are estimating the true relationship between Sunday and daily circulation, and the tstir so it will contain some sampling error. In other words, there is a trye line describing that relationship, which we do not know exactly b/at have estimated. Our best estimates of its intercept and slope are 24.76 and 1.35 respectively, but those are only estimates. We need to take this into account and quantify the samplin, error in sur estimete of Sunday circulation.

## SAMPLING DISTRIRUNION OF THE FITTED VALUE $\hat{y}$



Earlier, we talked about he estimator $b_{1}$ and its sampling distribution. Most of what we said about $\mathrm{b}_{1}$ iso applies to the estimator $\mathrm{b}_{0}$. Now, however, we are interested in a third estimator. The paranueter we van to estimate is the average (or expected) Sunday circulation of a paper mitt 2 daily circulation of 190,000 . If the regression model is right, then this is given (in


We need to know the sampling distribution of this quantity, which is called the fitted or predicted value corresponding to $x=190$. It makes sense to talk about the sampling distribution as this estimate is the outcome of an experiment. If we repeated the experiment by taring a different sample, we would get a different outcome, i.e., different estimates.

The sampling distribution of this estimator has the following propertie\%:

The fitted value is normally distributed, with mean equal to the tree value, i.e.,

$$
\mathrm{E}\left(\hat{\mathrm{y}}_{190}\right)=\beta_{0}+\beta_{1}(\mathrm{t} 90)
$$

so it is an unbiased estimator. Its standard deviation is written $\sigma_{\hat{y}_{10} 0}$ and can be estimated from the sample. This estimate, which we call the stancard error of the estimated mean, is denoted by $s_{\hat{y}_{\hat{y}_{00}}}$.

## CONFIDENCE INTERVAIS WITH THE FITTED VALUE



Since we know the distribetion of our estimator, we can use it to produce confidence intervals as we have uone with every other estimator. By now, you should know what the formula will be. To get a $100(1-\alpha) \%$ conficence interval for $\beta_{0}+\beta_{1}(190)$, use the following:

$$
\hat{\mathbf{y}}_{190} \pm t_{\alpha / 2, n-2} s_{\hat{y}_{190}}
$$

Here, $\mathrm{t}_{\alpha / 2, \mathrm{n}-2}$ is the $\alpha / 2 \mathrm{t}$-value with $\mathrm{n}-2$ degrees of freedom, and n is the sample size (i.e., $\mathrm{t}_{\alpha / 2, \mathrm{n}-2}=$ invttail(n-2, $\alpha / 2$ )). Next, we present an example showing how to use Stata to calculate $s_{\hat{\gamma}_{\text {m }}}$ and this confidence interval.

As an example, let's produce a $90 \%$ confidence interval for $\beta_{0}+\beta_{1}(190)$. Frrst run the regression of Sunday versus Daily in Stata. Then, open the Data Editor and enter 190 for he $37^{\text {th }}$ observation under the Daily column (we leave a blank row to remind oursely where the oxigingl data ends). Your data should look something like this:


Next, click User>Core Statistics>Prediction, using most recent regression (confint) (or type
db confint) and enter $\mathbf{9 0}$ in the "Confidence Level in \%" field:


Click OK, and Stata will gene ate the folloving:

- confint, se(pred cted se_est_mean se ind_pred) pr(PIlow PIhigh) fc(CIlow cIhigh) clv(90) replace
- capture drop predicter
- capture drop se_est mea
. capture drop se ind pred
- capture drop PIlow
- capture drop PIminh
- capture drop CIlow
- capture drop cirigh
using $/ 3$ diegrees of freedom
using t-vilue of 1.692360309030345
-predit p-edicted, xb
( 1 miss ing ialue gener thed)
.nrodict se_est_mean, stdp
( 1 missing value generated)
- predict se-7md_pred, stdf
( 1 missing alue generated)
.gen CIl.w = predicted - 1.692360309030345*se_est_mean
(1) missing value generated)
.gen CIhigh =predicted + 1.692360309030345*se_est_mean
( $1 \mathrm{mis} s$ ing $/$ alue generated)
.gen PIlow = predicted - 1.692360309030345*se_ind_pred
(1 missing value generated)
.gen Pstigh = predicted $+1.692360309030345 *$ se_ind_pred
(1 missing value generated)

Now, open the Data Browser and scroll down to the $37^{\text {th }}$ observation (i.e. Daily=190). You will see that Stata has generated the information we need, as shown in Figure 4.6. The predicted column gives us the actual estimate (the fitted or predicted value) $\hat{y}_{190}=281.4864$, the se_est_mean column gives us the standard error of the estimated mean, $s_{\hat{y}}=33.1563 \%$ which is the estimated standard deviation of $\hat{y}_{190}$ treated as an estimate of arerage circulation, and the CIlow/CIhigh columns give the requested $90 \%$ confidence interva. This data sheet also gives output relevant to prediction intervals, which are the subject of the next section The se_ind_pred column gives us the standard error of prediction, the estimated standard deviation we use in calculating prediction intervals. The PIlow/PIhigh colynns give the $90 \%$ prediction interval for the fitted value.



## PREDICTION INTERVALS AND THE FITTED VALUE

Prediction intervals sre particularly useful tools. A $90 \%$ confidence interval gives us a range of values in which we are $90 \%$ confident that the mean value falls, i.e., the mean Sunday circulation sfali papers with daily circulation of 190,000 . In contrast, a $90 \%$ prediction interval is a range of values which we are $90 \%$ confident would contain the circulation of a particular Sunday paper selected at andom from all those with a daily circulation of 190,000.

Below is the formula for prediction intervals:

$$
\hat{\mathrm{y}}_{190} \pm t_{\alpha / 2, n-2} \sqrt{s^{2}+s_{\hat{y}_{190}}^{2}}
$$

It is similar to the one for confidence intervals except that it uses a different (larger) standard deviation. This standard deviation is often referred to as the standard error of preaiction. In the formula, $s$ is the standard error of regression, $s_{\hat{y}_{y_{00}}}$ is the standard error of the estimated
mean, and $\sqrt{s^{2}+s_{\hat{y}_{190}}^{2}}$ is the standard error of prediction. The stuter symbols are familiar:
$\hat{y}_{190}$ is the estimated value of the dependent variable, $\mathrm{t}_{\alpha / 2, \mathrm{n}-2}$ is he $\alpha / 2 \mathrm{t}$-statistic with $\mathrm{n}-2$ degrees of freedom, and $n$ is the sample size, i.e., $t_{\alpha / 2, n-2}=\operatorname{invttai} i(n-2, \alpha / 2)$


A word about terminology is called for at this point for nower stat 2 users. Confusingly, Stata's built-in predict command - accessed via dialog box by typing db predict - refers to the standard error of prediction as the "standard errer of the forecast", and uses the term "standard error of the prediction" to refer to what we call the standard error of the estimated mean.

## HYPOTHESIS TESTS WITH THE EITTED VALUE



The fitted value, $\hat{y}_{190}$, is eur estimator for the population average $y$ when $\mathrm{x}=190$ as well as for an individua/ value, $y_{i}$, when $x=190$. As we have seen in the previous two sections, we can determine the range arc und $\hat{y}_{190}$ where the population average should fall (when $x=190$ with a given confidence) using the standard error of the estimated mean, and a similar range where an Individusl value, $y_{i}$, should be using the standard error of prediction. We can use these standard errorsto develop hypothesis tests regarding the population average $y$ at $x=190$ and confidence statements about an individual $y_{i}$ at $x=190$.

First, we try to prove the average of the Sunday circulations of all newspapers with a daily circulation of 190,000 is greater than 260,000. The basic steps are the same as in all previous hypothesis tests. The hypotheses are the following:

$\mathrm{H}_{0}$ : at $\mathrm{x}=190$, population average $\mathrm{y} \leq 260$
$H_{a}$ : at $x=190$, population average $y>260$.

We calculate the test statistic that shows by how many standard efrors the estirnator is greater than 260. The estimator is $\hat{y}_{190}$, and since the hypothesis is avout the population average, the correct standard error to use is the standard error of the estimate man (at $x=190$ ), which we can find from Figure 4.6.


Now we can proceed to calculate the p-value of the test with the following:


Since $\mathrm{p} \mp 26 \%$, we cannot reject the null at a $5 \%$ significance level. In other words, we cannot prove at a $5 \%$ signiitica ace level that the average of the Sunday circulations of newspapers with a daiily edition of 190,000 copies is greater than 260,000.

As a manager at your newspaper, you are not necessarily interested in the above result. You are more interested in determining whether your own Sunday edition will exceed 260,000 copies per
day (you do not directly care about the industry average for papers with your daily circulation); that is, you might want to test the following:
 However, you can still use a similar procedure to better understand your newspaper's potential Sunday circulation. The estimator for your Sunday circulatior is the same as before, $\hat{y}_{190}$, but the correct standard error to use in the calculation is now the standard error of prediction at $x=190$. Using the information from Figure 4.6, we calculate that the break-even level of 260 is 0.146 standard errors of prediction below the estimator:


If this were indeed a hypothesis est its p-value would be given by the following:

or $44.2 \%$. This is the area that lies below a prediction interval with lower endpoint 260. In this sense, we are only $1-0.442=0.558$ or $55.8 \%$ confident that Sunday circulation exceeds breakeven. In øther woràs we expect the Sunday circulation of an individual newspaper with a daily circulation of 190,000 to exceed 260,000 but there is still a reasonable chance it does not.

## THE DECISION

Remember that the break-even point for this project was a circulation of 260,000. The regression gives a point prediction of 281,486, but if we look at the $90 \%$ prediction interval ( 31,633 to

531,340 ), we see this point prediction is of little use because the margin of error is enormous. The same conclusion arises from our latter hypothesis test, as we cannot prove at any reasonable significance level that our newspaper will have a Sunday circulation in excess of 260,000 . In other words, knowing the daily circulation is not informative enough about Sunay circulation.

Was this regression useless? No; however, it suggests we need to collect mre infomation to obtain a prediction accurate enough to make the decision. Newspaper circulation can be predicted much more accurately if we add in some extra variables (various demographics) and perform a multiple regression. We will examine multiple regression techniques in coming chapters. Though daily circulation on its own is not informative enough to make the kind of prediction we need, it did explain a large fraction of the variation in Sunday circulation. We know this because of something called the R-squared statistic which you can see in the regression output (R-squared $=0.8649)$.

## THE R-SQUARED STA TISTIC

If you have ever studted regression'vefore, you will likely recognize the R-squared. It is a number that tells you how much variatioh in the $y$ or dependent variable is explained by the regression equation. In this example, the dependent variable is Sunday circulation, and its total variation is defined this way:

$$
\sum\left(v_{i}-\bar{y}\right)^{2}
$$

$\bar{y}$ is the mean Sunday circulation of all the papers in the sample. This quantity is usually known as the total sum of squares (SST). You can find it by running a regression using Stata, and looking at the value in the Total row and the $\mathbf{S S}$ column. Next, we take the estimated regression equation $\hat{y}=\mathrm{b}_{0}+\mathrm{b}_{1} x$ and ask how much variation it predicts. Taking each paper in the samle in turn, look at its daily circulation $x_{\mathrm{i}}$, and calculate the Sunday circulation that the regression equation predicts for that $x_{\mathrm{i}}$. This number is called the $\mathrm{i}^{\text {th }}$ fitted value $\hat{y}_{i}$ This value $\hat{y}_{i}$ is not equal to the true Sunday circulation of the $\mathrm{i}^{\text {th }}$ paper because the regression is not iotaly ac\&urate. But we can ask how much variance there would be if this regression vere totaliy accurate, so that each $\hat{y}_{i}$ was the true value for its paper. This is given by applying the variation formula to the $\hat{y}_{i}$ 's instead of to the $y_{i}$ 's:


This quantity is known as the sum/ of squares due to regression (SSR). You can find it on the regression output table in the Model row and the $\mathbf{S S}$ column. The SSR tells us how much variance there would be in our sample in sunday circulation were exactly related to daily circulation by the estimated regression equation, i.e., if our best-fit line were a perfect fit. If the best-fit line is close to the diata points, the SSR will be close to the SST since in that case the bestfit line is preuicting a curately; if the best-fit line is a poor fit, the SSR will be much smaller than the SS .

This inturior leads to the mathematical definition of the R-squared:

$$
R^{2}=\frac{\operatorname{SSR}}{\operatorname{SST}}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}
$$

In this case, the high R-squared ( 0.8649 or $86.49 \%$ ) tells us that daily circulation does an impressive job of explaining/predicting the variation in Sunday circulation; however, there is an enormous amount of variation overall. The remaining 13.51\% variation that is unexpained represents a thin slice of a very large pie. In this example, the unexplained fraction is ios nuch to make the prediction useful. One moral of this example is you should not oyervalue the R-squared. One of the most common mistakes in using regression is thinking that a high R-squared means the regression is automatically useful for prediction. As we have seen, that is not the case. Similarly, a low R-squared does not mean that a regression is 1 sess.

## R-SQUARED AND ASSET BETAS

If you look back to our regression of McDonald's excess returns against the market, you will see that the R-squared in that regression is only about $53 \%$. Should we have worried about this? The answer is no. All we were interested in was the accuracy of our beta estimate, and the R-squared is irrelevant to this. What it does tellus is how much of the variance in McDonald's share price is explained by the market's moverents as a whole. This has a nice interpretation. Recall that a basic idea behind the betrand the CFDM morel is that some risk is specific to each firm, and therefore diversifiablo: the rest is dee to the movements of the whole market and cannot be avoided by diversification. The K -squared is the ratio of variance (i.e., risk) due to the market and the total variance in McDonald's stock. In other words, it tells you what proportion of the risk in holding McDonaid's shares cannot be diversified away. So, in this case, about 47\% of McDonald risk isfirm-specific, related to things such as the success or failure of its new ad campaign or new rood ideas; the other $53 \%$ is systematic risk, related to factors like people spending ess at McDonald's in hard times.

## SUMMARY

In this chapter, we learned two of the important things that regression can be usad for: studying how changes in an independent variable relate to changes in the depend ent rariable through the coefficient and using a particular value of the independent variable to make preactions of the dependent variable. In both cases, we observed point estimates and interval estimates. In the finance case, we estimated a beta and gave confidence interval relecting sur uncertainty about the estimate. With our newspaper circulation case, we estimated Sunday sales for a paper with a certain daily sales level and gave a prediction interval to demonstrate the limitations of our estimate.


Between the two cases, we used four ditferent standard errors computed by Stata. Though each of these represents the same basic idea, a mieasule of the uncertainty of some estimate, you must keep track of which estimates ore being assessed by which standard errors.

## NEW TERMS



Fitted value The value of the dependent variable (y) predicted by the regression equation for a given value of the independent variable ( x ). It is a prediction for the average value of y given x and for an in dividual realization of $y$ given $x$

Standard error of the coefficient An estimate of the standard deviation of a regression coefficient

Standard error of the estimated mean An estimate of the standard deviation of the fitted value. It is used in constructing confidence intervals for the average value of y given x and in conducting hypothesis tests concerning the average value of y given x

Standard error of prediction An estimate of the standard deviation of our estamate tor an individual value of y given x . Calculated by combining the standard error of regression witist the standard error of the estimated mean. Used in constructing prediction inter zals for in individual value of y given x and in conducting hypothesis tests concerning arinuixidual vate of y given x

## NEW FORMULAS



CAPM formula

$$
r-r_{f}=\beta\left(r_{\mathrm{m}}-r_{\mathrm{f}}\right)
$$

Confidence Interval for the average value of y given $\mathrm{x}=\mathrm{p} \quad \hat{\mathrm{y}}_{\mathrm{p}} \pm t_{\alpha / 2, n-2} S_{\hat{y}_{p}}$
Prediction Interval for y given $\mathrm{x} \sim \mathrm{p} \quad \hat{y}_{\mathrm{p}} \pm t_{\alpha / 2, n-2} \sqrt{s^{2}+s_{\hat{y}_{p}}^{2}}$

Total Sum of Squares (SST)

Sum of Squares due to Regression (SSR)

$$
\sum\left(v_{i}-\bar{y}\right)^{2}
$$

$$
\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

R-squared



NEW STATA EUNCTIONS

Equivalently, you may type db confint. This command generates fitted or predicted values, the standard error of the estimated mean, the standard error of prediction as well as prediction and
confidence intervals. Because it uses the output of the most recent regression, you must run a regression before using this command. After running the regression, open the Data Editor and in some blank row(s) enter values in the respective column(s) of the independent variab e(s) from which you want to generate the fitted value. Then, follow the menu path or typ confint to open the dialog box and set the desired level of confidence. The default is \%\% confidence. When you click OK, results will be calculated for each set of values you have entered (as/well as for all of the original observations on your datasheet).


If you want to generate only predicted values, only the standard erro of the estimated mean, or only the standard error of prediction after running a regression, you can click Statistics>Postestimation>Prediction, residuals, ete. or type db predict. In the "New variable name" field, type in the name for which yov want your predicted values or standard errors to be displayed as, and choose the appropriate variable from the "Produce" list:
a. To generate predicta' values, choese 'Linear prediction (xb)."
b. To generate the standard error of the estimated mean, choose "Standard error of the prediction.
c. To generate the standard error of prediction, choose "Standard error of the forecast."


The corresronding diect commands are:
predict newvar, xb
b. predict newvar, stdp predict newvar, stdf
where nevvar is the name of the newly generated variable.

## CASE EXERCISES

## 1. Estimating betas

Access the stocks dataset and use it to estimate betas for the following stocks: Apple, IBM anci HP. Suppose the excess returns on the stock market (as measured by the S\&.P50, s.ored under ESP in the dataset) were to be negative 20\% next month.
a. What would you expect to be the excess return on Apple shares next nont? How about IBM and HP shares? Base your estimate on the estimated Deta and the theoretical CAPM equation; that is, discard the estimated constant (zipha), as we diul in the chapter.
b. How much money would you expect to lose hext month if you had $\$ 10,000$ invested in Apple shares at the beginning of the ingnth? For the pumposes of answering this part of the question only, assume that the risk free rate next month is $0.25 \%$.

In the example from the chapter, we used the variable MARKET to measure the market excess return. In this problem, we ask yoy to use an alternative method of measuring the market excess return using the variable ESP. So, for this exercise, use ESP. One problem with the CAPM is that it is not obvious how to measure the mariet return. Market is a combination of bonds and the S\&P 500, and ESP includes nnly the $\$ \& P 500$. Finally, all the variables in the dataset are excess market returns (i.e., marhet retyrns minus the risk-free interest rate).

## 2. Slippery soap salts

Greenfiela, Inc., a nianufacturer of a popular bathing soap, tried to find the relation between its Froduct's price and its sales. It supplies over 2,000 retail outlets in the United States. It collected data from 25 of these stores during one week and ran a regression using these data. For each store in the sample, it observed the independent variable Price (measured in dollars), and the dependent variable Sales (measured in thousands of dollars). The results were as follows:

a. If the price of the bathing soap is reduced by $\$ 0.50$, what is the expected increase in sales per store? Additionally, provide a $95 \%$ confidence interval for the expected increase.
b. The product manager claims that if the price is reduced by $\$ 0.50$, average sales will increase by at least \$160 per store. Do the datz allow you te reject this claim at a level of significance of 5 percent?

c. The price in all stores next week is going to be \$9.99. Preaict the total expected sales including all of the 2,000 stores d/urirg next week.

## 3. Shore Realty revisited

Retrieve the shore dataset, which ve used in Case Exercise 3 in Chapter 3, and run the regression again. Provide a $90 \%$ conidence interval for the coefficient on the sqfoot variable, and explain clearly and concisely what this interval means. Predict the selling price for a home with 2,600 square feet, provide the associated 95\% confidence and prediction intervals and explain clearly and conc\%ely what sach means. Suppose that Shore Realty sells a large number of houses of this size: what proportion of them would you expect to sell for over $\$ 383,000$ ?

## PROBELEVIS

Access he Retailsales data file to answer problems 1-3. This data file reports the percentage change in total domestic retail sales and the percentage change in the U.S. GDP over a recent tenyear period. (from A.C. Nielsen's Facts, Figures and the Future. Feb. 2003).

## 1. Perform a regression of percent_chginRetailSales using percent_chginGDP as the

 independent variable.a. Write the estimated regression equation.
b. Use the regression to estimate how much a one percentage point in rease in GDP will affect retail sales.
c. Provide a $95 \%$ confidence interval for your estimate in part $\mathbf{t}$.
d. Provide a $90 \%$ confidence interval for your estimate in part b.
e. Using $\alpha=0.05$, can you reject the null hypothesis that the true coefficient multiplying percent_chginGDP is zero?

2. Use the regression from problem 1.
a. Predict the percent_chginRetailSales in a year where the GDP increases by $3.0 \%$.
b. Provide a $95 \%$ prediction interval for yout esti nate.
c. Provide a $98 \%$ predict on interval for your estimate.
d. Using the same prediction, estimate the probability that the percent_chginRetailSales will be greater than 8.5 .
3. Overall how would you rate the quality of this regression? Justify your answer.

Access the Salaries file to answer questions 4-6. These data represent the salaries of 41 workers
at a majo curporation based on the number of years employed with the company.
4. 2erforr/ a regression of Salary vs. Years Experience.
a. Write out the estimated regression equation.
b. Use the regression to estimate the effect of one additional year of work experience at the company on a worker's salary.
c. Provide a 95\% confidence interval for your estimate in part b.
d. Provide a 99\% confidence interval for your estimate in part b.
e. Using $\alpha=0.05$, can you reject the null hypothesis that the true coeffient is zero?
5. Use the regression from problem 4.
a. Predict the salary of a worker with nine years of experience at the con pany.
b. Provide a 95\% prediction interval for your estimate.
c. Provide a $75 \%$ prediction interval for your estimate.
d. Provide an interval that you are $90 \%$ confident contains the rue mean salary of workers with nine years of experience.
e. How confident can we be that worl experience is significantly related to salary?
6. What percentage of salary can be explained using an employee's work experience with the company? Does this number sound reasonable to you?

For problems 7-9, youp wir needis access the eurodata file, which contains information from the Statistical Annex of the European Economy, 2003. The dataset consists of 42 years worth of wage rate growth and unemployment rates for 10 countries in Europe. Multinational corporations might be interested in studyirg how unemployment impacts the growth in wages for some or all of these

a. Write both estimated regression equations.
b. How does a one percentage point increase in unemployment relate to the growth rate of wages in each country?
c. Provide a $95 \%$ confidence interval for the coefficient multiplying unemploymen for each country.
d. Predict the growth rate in wages for each country in a year that has $3 \%$ unemployment
e. Provide a $90 \%$ confidence interval for each prediction from pait d.
8. Perform a regression of wage growth vs. unemployment in Germany (DE). Do the same for Greece (EL).
a. Write both estimated regression equations.
b. How does a one percentage point increase in (nenployment relate to the growth rate of wages in each country?

c. Provide a $95 \%$ confidence inte val for the coefficient multiplying unemployment for each country.
d. Predict the growth rate in wages fer each country in a year that has $3 \%$ unemployment.
e. Provide a $90 \%$ confidence hiterval for each prediction from part d.
9. Perform a regression of wage giowth vs. unemployment in Spain (ES). Do the same for France (FR).

## Write both estimated regression equations.

b. How does a one percentage point increase in unemployment relate to the growth rate of wages in each country?
c. P ovide a $95 \%$ confidence interval for the coefficient multiplying unemployment for each country.
d. Predict the growth rate in wages for each country in a year that has $3 \%$ unemployment.
e. Provide a $90 \%$ confidence interval for each prediction from part d.

## CASE INSERT 1

## ENERGY COSTS AND REFRIGERATOR PRICING

As a manager in charge of a brand of refrigerators, you are confronted with the following scenario: A representative from your company's research and development team/sends you a report announcing a breakthrough in energy-efficient refrigeration tectnology. Specifically, the team believes that for an additional production cost of $\$ 80$ per reffigerator, the consumer's annual energy costs to run the refrigerator will drop by $\$ 20$. should you incorporate this new technology into your next refrigerator model?


One key issue is how much extra you cord charge for a more energy-efficient fridge. To get an estimate of this, you order a study of the relatıonship between the annual energy costs and price of a refrigerator. The data gathered $f_{5}$ this study provide information on 41 popular models of refrigerators. ${ }^{1}$ Using these date, a eegressior of price on annual energy costs is performed. The variables are "Price," whith gives the refrigerator price (in \$), and "Energy cost," which gives the annual energy cost of running the refrizerator (in \$/year).


[^21]

## Case Questions



1. Given this output, what is an estimate for the change in price of a refrigerator model when its annual energy costs decrease by $\$ 20$ ?
2. Given this estimate, would you go ahead with the nev technclogy?
3. Does this estimate make sense? Explain


## CHAPTER 5



### 5.1 Dummy Variables

## DUMMY VARIABLES: REVISITING THE PACKAGING CASE

A "dummy" or "qualitative" variable is one that only takes on the values 0 dad 1 . The idea of a dummy variable is it measures not a quantity but a quality. For an example, go bach to the consumer packaging example from Chapter 2. The dataset cor sis ed of 72 :ales figures, 36 from locations using packaging one and 36 from locations using Packaging two. If/ we number these locations 1 through 72 , we can define $y_{\mathrm{i}}$ to be sales a location i ( $\mathrm{so} y_{\mathrm{i}}$ is a regular, quantitative variable) and $x_{\mathrm{i}}$ to be a dummy variable defined by the following:


You will see that dymy variailes ane one of the most useful techniques available in regression because they enable us te measure the effect of qualitative differences. This section introduces you to duminy variables and how to use them in regression by reproducing the two-sample results we obtained in Chaptel 2.

## INTERPRETING DUMMY VARIABLES IN THE REGRESSION MODEL

Suppose we regress sales on our packaging dummy. What is the meaning of this regression?
Remember the regression model: The assumption is that we may write the following:

$$
\mathrm{E}(y)=\beta_{0}+\beta_{1} x
$$

That is, the average value of $y$ for a given $x$ is a linear function of $x$. That seemed to make sense when $x$ was measuring income and $y$ auto price. What does it mean when is a dunnmy variable? Suppose $x=0$; then, the equation says the expected value of $y$ is $\beta_{0}$. So, $\beta_{0}$ is the expected value of y when $x=0$, i.e., expected sales in districts using packaging one. For $x=1$, the equation says the expected value of $y$ is $\beta_{0}+\beta_{1} 1$; so, the expected sales in dis/ricis using packaging two equals $\beta_{0}+\beta_{1}$. What is the difference in expected sales betweer distrizts using packaging two and districts using packaging one? It is $\beta_{0}+\beta_{1}-\beta_{0}=\beta_{1}$. When we lun the regressicn and estimate $\beta_{1}$, what we are estimating is the difference in expected sales betweer the two types of packaging, which is what we wanted to estimate in the first place in Chapter 2 because it tells us which packaging we should choose.

## THE REGRESSION

Go ahead and run this regression using the allpack file. Our data should consist of two columns. The first (called allpack) is a list of sales figures, one for each district, and the second (called dummy1) is 0 for the first 36 entries since the first 36 sales figures come from districts that used packaging one (P1), an 11 for the next 36 since the next 36 sales figures come from districts that useú pachaging two (p2). ${ }^{1}$
${ }^{1}$ This dataset was generated from the original package file from Chapter 2. To create the allpack variable, we opened a blank datasheet in Stata and pasted the sales figures for Pack1 and Pack2 into one column (i.e., the first 36 entries were from Pack1, and the next 36 were from Pack2). To create the dummy1 variable, we typed the following commands: 1) generate dummy $\mathbf{1 = 0}$ in $\mathbf{1 / 3 6}$, and 2) replace dummy1=1 in 37/72.

| - regress allpack dummyl |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df |  | S |  | Number of obs <br> F ( 1, 70) <br> Prob > F <br> R-squared <br> Adj R-squared <br> Root MSE | $\begin{array}{lr} = & 72 \\ = & 5.45 \\ = & 0.0225 \\ = & 0.0722 \\ = & 0.0589 \\ = & 50.534 \end{array}$ |
| Mode 1 | $\begin{aligned} & 13908.3405 \\ & 178761.353 \end{aligned}$ |  | $\begin{aligned} & 13908.3405 \\ & 2553.73362 \end{aligned}$ |  |  |  |  |
| Residual |  |  |  |  |  |  |  |
| Total | 192669.694 | 71 | 2713.65766 |  |  |  |  |
| allpack | coef. | std. | Err. | t | $P>\|t\|$ | [95\% Eonf | Intervab] |
| dummy1 | -27.79722 | 11.91 | 109 | -2. 33 | 0.022 | 51. 55314 | -4.041301 |
| _cons | 290.5439 | 8.422 | 413 | 34.50 | 0.000 | 9 | 307.3419 |

Figure 5.1: Allpack regression.

If you look back at the consumer packaging section, you will see that we estimated the difference in average sales with P 1 versus P 2 to be 27.79 in favo of D 1 . Here in the regression output we have $b_{1}=-27.80$ which says that we estimate that when goes frgm 0 to 1 , i.e., when we change from P1 to P2, sales go down on average by 27.80 . So, the regrecsion has given us the same estimate we had before (the 0.01 difference is due to rounding when we estimated the difference in average sales).

One convenient thing about using the regression is Stata has automatically tested this coefficient for significance: The t-statistic is -2.33. giving a p-value of .022 . Recall that this is the p-value for the following hypo hesis test:


So, the $n$-value of .022 tells us we are quite confident (over $97 \%$ confident) that $\beta_{1} \neq 0$. What
does this mean in the context of our example? Since we worked out that $\beta_{1}=\mu_{2}-\mu_{1}$, it means that we are quite confident that there is a difference in true average sales between the two types of
packaging. Is this what we wanted to know? Not exactly. We wanted to see if the data provided strong evidence that average sales with P1 were above those with P2 using the hypothesis test:


Since $\beta_{1}=\mu_{2}-\mu_{1}$, this may be rewritten as


Using the regression output, we calculate the $p$-value for this test to be $\mathrm{p}=1-\operatorname{ttail}(70,-2.33)=$ .01135. Thus this data provides very strcing evidence that average sales with P1 are higher, supporting a decision to go with packaging 1 rather than continue the marketing experiment.

When we used Stata to conduct the same hypothesis test using the two-sample t-test in Chapter 2.4, it reported a p-value of. 0113 and we reached the same conclusion.


## A NOTE ON OUR ASSUMPTIONS

Even though the p-values in the example are similar for the test based on the regression as for the two-sampis t-test in Chapter 2.4, the two methods of comparing two population means rely on different assimptions. As you know, regression assumes the $y$ values have the same variances for different $x$ values, which, in this example, is equivalent to assuming the $y$ values have the same variance for each of the two populations. The two sample t-test used in Chapter 2.4 did not use this assumption. Formally, using regression with a single dummy variable yields the same results
as using a two-sample t-test assuming equal variances, and these results may differ from those obtained by using a two-sample t-test without assuming equal variances.

## SUMMARY

Dummy variables capture qualitative differences rather than quantitatiee onss. When we have data from two populations, we can define a dummy variable to repesent wheh population each data point comes from, run a regression to estimate differences in the two popllation means, and test the difference for statistical significance, etc. This is an alternative $\pm e$ ennique to the twosample methods we learned earlier and provides a first aplication dummy variables.

### 5.2 California Strawberrics

Susan Lee is the chief manage of California S rawberries, Inc. Her firm transports strawberries from local farmers to a chan of grocery sores. The strawberries are packed into the retail boxes in two locations, using two different packaging systems. One is used at the plant in Bakersfield and the other in Monterey. Susan wants to compare the efficiency of the two systems and decide if one of the systems should D ¿abandoned. The personnel and equipment needed for the two systems are basically dentical. However, the time taken to pack a box of strawberries in Bakersifield and Monterey differs. Susan wants to adopt the quickest system. She asked her ascistant to observe the time (measured in minutes) taken to pack different amounts of str2wberr es (measured in number of boxes) at Bakersfield and Monterey. The data he obtained is in the california file and is shown in Figure 5.2:


Figure 5.2: California Strawberries, Inc. data.

We can use a regression analysis to study the relationship between the two variables. Time is the dependent variable and Boxes is the independent variable. In this first regression (see Figure 5.3), we use only the data obtained at the Monterey plant. ${ }^{2}$


Figure 5.3: Simple regression for the Monterey system.

Now, consider a similar regression for he Bakersfield system (see Figure 5.4). In this regression, we use only the data obtained at the Bakersfield plath


Figure 5.4: Simple regression for the Bakersfield system.
${ }^{2}$ As shown/n Figure 5.3, we need to add the command in $\mathbf{1 / 1 5}$ to specify that we want to run the regression of Time on Boxes using only observations from the Monterey plant (observations 1 to 15). Similarly, we need to add the command in $\mathbf{1 6 / 3 0}$ when running a similar regression for the Bakersfield plant (observations 16 to 30) as shown in Figure 5.4. If using the regress menu option or dialog box, these restrictions on the observations to use can be entered by selecting the by/if/in tab in the dialog box, checking the box next to "Obs. in range," and specifying the appropriate range.

What is the interpretation of these two regressions? The constant term indicates the time needed to start the system (literally, the time to pack 0 boxes). The coefficient on Boxes indicates the time it takes to pack each additional box. The regression analysis suggests it takes a ionger time to set up the Monterey system (3.59 min) than the Bakersfield system (2.62min). However, onde the system is ready, the Monterey system ( 0.57 min per box) is faster than he Bakersfield system (0.66 min per box).


Susan believes the time to set up both systems should be similak ana she decides to maintain this hypothesis unless she discovers strong evidence agai/ast/t.

Before she examines the regressions, Susan/does not have any reason to believe that the time to pack each additional box in Monterey is smallen than in Bakersfield, nor does she have any reason to believe that the time per aduitional box in Bakersfield is smaller than in Monterey. By looking at the regressions, she feels tempted to abandon the Bakersfield system. However, she decides not to do so unless significant statistigal evidence shows the Bakersfield system is slower.

Susan has good reasons to be cautious. Suppose the Bakersfield system is actually faster than the system in Monterey. In this case, if Susan switches to the Monterey system on the basis of the sample, data, Caiifornia Strawberries, Inc. will incur the costs of forcing the workers to adapt themse ves to a new (and slower) system. Moreover, she will not be led to correct her mistake in the future because, once the Bakersfield system is abandoned, no more data will be available nom it.

If the current sample evidence is not strong enough to prove that one system is faster than the other, it may be wise to obtain more data before making a decision. On the other hand, if the
statistical evidence strongly convinces her it takes less time to pack an additional box in the Monterey system than to pack it in the Bakersfield system but there is no strong statistical evidence that shows the time to set up the Bakersfield system is shorter than the time to set up the Monterey system, then Susan can safely decide to abandon the Bakersfield system. Hovv cen Susan perform these statistical tests?


A simple and effective solution to this problem is to use dummy and slope aummy variables. A slope dummy variable is a variable that takes the value zero in some rows and the value of another independent (i.e., x) variable elsewhere.

Such a slope dummy variable may be constructed by/mutiplying a dummy variable times another x variable.


In simple regressions, we fit the data to a single straight line. However, in this case, the data come from two different sources and may not be well medeled by a single straight line, but may fit two different straight lines. A simple ilustration of this possibility is given in Figure 5.5.


Figure 5.5: Example of data well-modeled by two straight lines.

If the Bakersfield and Monterey systems are different, then the data may fit naturally in wo straight lines. One line is associated with the Monterey system, and another line is assofialed with the Bakersfield system. A dummy variable allows for differences in the intereepts of these two lines. A slope dummy variable allows for differences in the slopes of these wo lines. Next we apply these important dummy variable techniques to Susan's problem.

Consider the dummy and slope dummy variables Plant and Boxplant. Plant equals 1 if the data come from the Bakersfield plant and 0 if the data cone from the Monterey plant. Boxplant is equal to the variable Boxes if the data come from the Bakersfield plant and 0 if the data come from the Monterey plant (i.e., Boxplant = Plant*Boxes).

If we put all the data together, we obtain Figure 56 .


| 0 | 104 | 180 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 11 | 126 | 210 | 0 | 0 |
| 12 | 63 | 106 | 0 | 0 |
| 13 | 34 | 50 | 0 | 0 |
| 14 | 38 | 60 | 0 |  |
| 15 | 88 | 150 | 0 |  |
| 16 | 95 | 140 | 1 |  |
| 17 | 104 | 153 | 1 | 153 |
| 18 | 48 | 70 | 1 | 70 |
| 19 | 108 | 161 | 1 | 161 |
| 20 | 89 | 128 | 1 | 128 |
| 21 | 85 | 125 | 1 | 125 |
| 22 | 90 | 133 | 1 | 133 |
| 23 | 81 | 122 | 1 | 122 |
| 24 |  | $\longdiv { 9 5 }$ | 1 | 95 |
| 25 |  | 1/3 | 1 | 143 |
| 26 | 2 | 161 | 1 | 161 |
| 27 | 54 | 80 | 1 | 80 |
|  | 85 | 128 | 1 | 128 |
| 29 | 137 | 205 | 1 | 205 |
|  | 85 | 125 | 1 | 125 |

Figure 5.6: Complete dataset for California Strawberries, Inc.

Consider a new regression (see Figure 5.7) making use of all the data. Time is the dependent variable. The independent variables are Boxes and the dummy and slope dummy variables (Plant and Boxplant).

## MULTIPLE REGRESSION ANALYSIS INCLUDING A DUMYY AND A SLQPE

## DUMMY VARIABLE

Examine the results in Figure 5.7. The constant term indicates the time needed to set up the Monterey system. The coefficient on Boxes indicates the auditional paching tume for each additional box under the Monterey system. The constan plus the coefficient on Plant indicates the time needed to set up the Bakersfield system. The goefficien, or/Boxes plus the coefficient on Boxplant indicates the additional time to pack each additional box under the Bakersfield system. (This is not obvious. A good exercise to wiurerstand dummy and slope dummy variables is to think about the interpretation of these coefficients.)


Figure 5.7: Multiple regression for California Strawberries, Inc.

For the Monterey system, the regression equation simplifies to the following:

$$
\begin{aligned}
\text { Time }= & 3.593+0.568 \text { Boxes- } 0.971 \text { Plant }+0.091 \text { Boxplant } \\
= & 3.593+0.568 \text { Boxes- } 0.971(0)+0.091(0) \\
= & 3.593+0.568 \text { Boxes }
\end{aligned}
$$

For the Bakersfield system, the regression equation simplifies to the following.


These are exactly the same equations as we of ained before using two simple regressions. What is the difference? Our regression equatich using dunmy and slope dummy variables allows Susan to perform the desired statistical tests, whish she coula not easily do using two separate regressions.


The key coefficients are the conefficients on the dummy and slope dummy variables. The coefficient on Plant measures difference in the time needed to set up (i.e., the constant term for) the Bakersfielu and Montereysystems. The coefficient on Boxplant measures the difference in the time needed to pack each additional box (i.e., the slope term) in the Bakersfield and Monterey systems
-

The coefficient on Plant ( -0.971 ) is not significant. The reported $p$-value is 0.638 . Thus, we cannet conclude that the time to set up the Bakersfield system is different than to set up the Monterey system. On the other hand, the coefficient on Boxplant (0.0908) is significant. The
reported $p$-value is 0.000 . The $p$-value for the one-tailed test with alternative hypothesis that the true coefficient on Boxplant is greater than 0 is therefore 0.000 as well. So, we can conclude that the time to pack each additional box under the Bakersfield system is significantly longer than the time to pack each additional box under the Monterey system.

Our conclusions are as follows:


1. The time to pack each additional box under the Monterey system is significantly shorter than the time to pack each additional box under the Barkersfield systen.
2. The time to set up the Monterey system is not significantly different than the time to set up the Bakersfield system.
3. Susan decides to abandon the Bakersfield system.


### 5.3 Head-Hunting Agency



Having finally completed yeur $M B A$, vow haye landed work at a prestigious consulting firm.
Your first project is with CEQ Seek a head-hunting agency. CEO Seek looks for CEOs as well as lower-level managers.


To stay ahrad of competition, CEO Seek recently came up with a "Within 15 days. Guaranteed!" marketing scheme. The agency wants to guarantee finding a well-suited candidate within 15 days, or the service is fiee of charge. You are asked to evaluate the scheme and propose possible inproven ens. Naturally, you have inquired where the number 15 came from. However, the answer ygu got was, "It's a nice round number and will catch the eye." This did not satisfy you. You decide to investigate further.

You suspect it is harder to find a CEO to manage a bigger company than one to head a small firm. It is, after all, a more responsible job, involving more skills and experience. So, fewer candidates may be suitable for it.


However, the staff at CEO Seek does not agree with your hypothesis. They nad the same idea in the past, and they intensified all searches on behalf of larger clients. This neethod bought no improvement. Thus, they concluded, no relation exists between the size of the firkin to manage and the time needed to find a candidate.


But is it true? You decide to check this hypothesis using regression analysis. From the past performance of the agency, you take a random sample of 48 observations from each of the two categories of searches that CEO Seek conducts; CEO searches and lower-level searches. Each observation includes the size of the firm to be managed and the time it took to produce a wellsuited candidate.


The dataset is in the headinenting floe. In the variable SIZE, the size of the client firm is measured in hundreds of employees. DAYS denotes the number of days it took CEO Seek to find a suitable candidate. The rest 40 observations are from lower-level searches and the remaining 48 observations are from CEO searches.


You would like to y se he data to answer the following questions:

3. Is it efficient to treat searches for large firms the same as for small ones? If not, do you have any recommendations for improving the system?

Start with a simple regression. DAYS is the dependent variable, and SIZE is the independent variable (see Figure 5.8).


Figure 5.8: Simple regression ofDAYs on SIZ.e.

The estimated slope coefficient is 0.006 with a p-value of 0.769 . At first glance, there does not appear to be any relationship betyeen the size of the chient firm and the number of days CEO Seek took to find a well-suited ca/didate. This explains why focusing search effort more on searches for larger clients dite not improve the system.

Nevertheless, the plot ef DAYS and SIZE (see Figure 5.9) indicates the size of the firm and the search time are related. However, there appear to be two relationships; a positive one for CEO searches and a negativg one for lower-level management searches.


We could proceed in two ways. Ohe is to tun separate simple regressions for CEO and lower
 variable. We choose the latter here because it is more convenient and facilitates comparisons. It would have been fine to do this andiy sis with separate regressions.

First, we create two new variables. We will call the first one LOWconst . It is equal to 1 if the positio is lower-level/management and 0 if a CEO is demanded. The second new variable we call I OW slope. It is a slope dummy variable and is the product of LOWconst and SIZE. It is equal to SIZI if the position is lower-level managerial, and it is equal to zero if the position is CED. Figare 5.10 shows the output from a regression of DAYS on SIZE, LOWconst and LOWslope.

| - regress DAYS SIZE LOWConst LOWslope |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df | MS |  | $\begin{aligned} & \text { Number of obs }=r \\ & F(3, \quad 92)=275.57 \end{aligned}$ |  |
| Mode 1 | 2358.49289 | 3786 | 164297 |  |  |  |
| Residual | 262.465443 | 922. | 288525 |  | R-squared | $=0.8999$ |
| Total | 2620.95833 | $95 \quad 27$. | 890351 |  | Root MSE | 1.689 |
| DAYS | coef. | std. Err. | t | $P>\|t\|$ | [95\% conf | Interval] |
| SIZE | . 0887339 | . 0099333 | 8.93 | 0.000 | . 0690055 | . 1084622 |
| Lowconst | -1.022163 | . 7195078 | -1.42 | 0.159 | -2.151168 | . 4068411 |
| Lows lope | -. 1650824 | . 0131664 | -12.54 | 0.000 | 1912319 | -. 1389329 |
| _cons | 13.17457 | .5483776 | 24.02 | 0.000 | 12085:5 | 14.2637 |

Figure 5.10: Regression of DAYS using dummy and s'ope dummy variables.

The estimated coefficient on SIZE, 0.0887 , is the effect on DAYS of increasing the size of the client firm by 100 employees when looking for a CEC. Testing $\mathrm{F}_{\mathrm{a}}$ : $f_{1}>0$, we see we are convinced the time to find a suitable CEO cand date increases as the client firm's size grows.

For a lower-level managerial position, the estimated etfect on DAYS of increasing the size of a
client firm by 100 employees is given by he sum of the coefficients on SIZE and LOWslope or $0.089+-0.165=-0.076$.


The basic descriptive statisvics for SIZE (for CEO and lower-level management searches) can be seen in Figure 5.11.

## User>Core Statistics>U invariate Statistics>Custom (tabstat) (or db tabstat)



Figure 5.11: Univariate Statistics for SIZE.

The descriptive statistics tell us client firms have between 0.52 and 99.61 hundred enployees.
The mean is 47.69 and the median is 48.85 . Thus, we can consider a firm where SIZF equald 90 as a large firm and where SIZE $=110$ as an exceptionally large firm. A client fimin with 2,000 employees is relatively small, while 5,000 is typical.

We will use our new regression with the dummy and slope duramy variaide to mane predictions about the time needed to find suitable candidates of both categeries for differeht sized clients. The 95\% confidence and prediction intervals for time to find well-suited CEO candidate for firms with SIZE $=20,50,90$, and 110 respectively can be obtained using stata (see Figure 5.12): ${ }^{3}$


Figure 5.12: Predictions for CEO position search times.

For CEO pssitions, the lower and upper levels of the confidence and prediction intervals increase as the size of the firm increases.

[^22]For firms of all sizes, the upper limits of confidence and prediction intervals are greater than fifteen. Thus, it appears it would be quite costly to attach a 15-day guarantee to CEO-level searches. You would not recommend applying the new guarantee for these searches.

The $95 \%$ confidence and prediction intervals for lower-level management searches for firms wi h SIZE $=20,50,90$, and 110, respectively, are also easily obtained (see


Figure 5.13: Predictions for lower-level management search times.

For the case of lower-level manzgement, the upper and lower levels of the prediction and confidence intervals for time to find a well--uited candidate decrease as the size of the firm increases.


For all sizes of the clien firm, the confidence and prediction intervals are below 14.05. Thus, the 15-day gyrantee could be offered at little cost for lower-level managerial positions. Therefore, it would be advisable to apply the new policy only for lower-level managerial searches but not for CFO searches.

[^23]1. The size of the firm and the search time are related but the relationship depends on the category of employee desired. When a CEO is needed, it takes more time to find a suitable candidate for large firms than for small firms. On the other hand, it tanes less time to find a suitable lower-level candidate for large firms than for smali firms.

2. The 15-day guarantee policy is quite feasible for the case of 1ower-fevel pesitions. This policy would work poorly for the CEO searches. A longe time horizon for the guarantee should be considered for candidates in this category.
3. We might improve the current system (in terras of reducing he lengthiest searches) by allocating more effort to finding CEO Candidates for large firms. Alternatively, CEO Seek might want to solicit more business from small firms looking for CEOs and large firms looking for lower-leycl management singe it seems to handle these searches more efficiently. Since it takes nore tine to find a CEO candidate than a candidate for a lower managerial positive a policy recosnizing the increased difficulty of finding CEOs would be sensible.

## SUMMARY



Dumrivy and slope dammy variables can be used to test statistical differences between the

[^24]When we have to decide between adopting different systems, these statistical tests are useful. It may not be easy to tell which system is best and these statistical tests help quantify the strength of our evidence for this question.


A single simple regression may be unsuccessful when the relationship between the independent and dependent variables is changed by a third factor. You need dumm, anc slope dummy variables to deal with this.


Situations in which slope dummy variables can prove useful cak ofter be detected through graphical analysis. The regression output on its own an be inadegate or misleading as in the simple regression in the head-hunting agency case.


Dummy variable Anertisicialiy constrycted variable which takes on the values of zero and one only. Used to quantify non-nunerical qualities or categories. When included in a regression, effectively allows the constant to change depending on the value of the dummy variable Slope dummy variable A vaisble that takes the value zero in some rows and the value of an indeperdert variable etsewhere. The product of a dummy variable and another variable. When include in regression, effectively allows the slope on the independent variable used in its contruction to change depending on the value of the dummy variable used in its construction

## CASE EXERCISES

## 1. Valuing an MBA for yourself

The purpose of this example is to compare the "value-added" of two diferent basiress schools by looking at the incomes of the student body prior to beginning the MD $\stackrel{\text { H }}{\text { program, }}$ and comparing it to the incomes after completing the program. The data consist of informatio on 400 students, half from school A and the other half from school B.

'preMBA' = income in year before beginning the progran, in thousinds of dollars 'postMBA' = income in year after completi/g the program, in thousands of dollars 'school' = a dummy variable equal to 0 for students attending school A , and 1 for students attending school B

The following regression output was obtained

a. Explain clearly, and as concisely as possible, the interpretation of the coefficient on the school variable.

Suppose we define a new variable as follows:
'schoolpreMBA' = 'school' multiplied by 'preMBA'.

We redo the regression with this extra variable added as another prediror and gotain the following regression output:


Answer the remaining questions, basing you answers on this second regression:

b. Suppose your income this year is $\$ 15,000$ and you are choosing between the two schools' programs. Assume the two schools have the same fees, similar locations, etc. Which one should you choose? What if your current income is $\$ 65,000$ ?

1/ve ask Stata to predict the post-MBA income of someone entering school A with a pre-MBA income of $\$ 40,000$ and to give $90 \%$ confidence and prediction intervals for post-MBA income.

This gives the following additional output:

| predicted | se_est_mean | CIlow | CIhigh | PIlow | PIhigh |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 98.171 | 0.79 | 96.868 | 99.474 | 79.71 | 116.632 |

c. What is the predicted post-MBA income of graduates of school A having pre-MBA income of $\$ 40,000$ ? If 60 students entering school A this year have pre-MBA incomes of $\$ 42,000$, about how many of those students do you estimate will make less than $\$ 80,000$ the yfar they leave?
d. Explain briefly the meaning of the R-squared statistic in this context (i.e, do not simply say what it means in the abstract, but say what it means for this regiession and application).

e. In a few, non-technical words, summarize what the difference seems to be between the two schools.


## 2. Valuing an MBA for your empioyer

A well-known consulting company is interested in comparing the performance of the consultants it recruits from MBA programs with that of consultants it recruits from non-traditional backgrounds (such as Dh D. Dingrans). The accounting department has developed a method of allocating all billing to indrviduals, so it is possible to say how much revenue any given consultant has produced in the last year. You collect data on 130 consultants. For each person, you get three pieces on information, stored as follows:
experience = the length of time they have been with the company (measured in months)
bliling $=$ the revenue they brought in in the last year (in thousands of dollars)
$\mathrm{MBA}=1$ if they came from an MBA program; 0 for those from non-MBA programs

You define a slope dummy variable as follows:
experienceMBA = experience multiplied by MBA
Then, you run the following regression:

(a) What do you predict to be the averag billing of consultants with two years of experience if they came in with an MBA? What lif they rame in with a PhD ?
(b) Does the extra value to the company of an MBA as compared to a non-MBA change over the time the MBA is uith the company? Test at the $1 \%$ level of significance.
(c) The sample consists of consultants who have been at the company for up to five years. Suppose you are askea to use your results to predict what the difference in billing (between MBAs and inn-MBAs) will be after 10 years. What does the estimated regressiori quation predict?
(d) Use your judgrnent: What do you think of this last prediction and why?

## PROBLEMS

For problems 1-4, you will need to access the pizzasales file.

The Waialua Pizza Company is a medium-sized chain of pizzerias located at beaches all over the South Pacific. The chain is known for its delicious pizzas served at all the nice beaches, and it is known for its use of statistical techniques to improve operations.


The company has obtained data reflecting its sales in its 50 beachfront stores. The Waialua Pizza Company feels the income levels of the nearby community and the presence or absence of competition might be major factors in determining sales.

The following variables were tallied:

Sales $=\$$ per day


Income = Average per-capita income in \$ per week in the surrounding neighborhood
Competitor $=1$ when one or more competing izzerias are located within $1 / 2 \mathrm{mile} ; 0$ when no other pizzerias are located nearby


1. Conduct a regression of Sales vs. Competitor (only use this one independent variable for now) and use the results to answer the following questions:

a. Estimate the daily sales or a store that has no competition.
b. Estimate the caily sales for a store that faces competition.
c. Calculate tre difference between your two estimates and comment on the practical and statistical significance of this gap.
d. P ovide a $95 \%$ confidence interval for the effect of competition on sales.
e. What percentage of the variance in sales can be explained using only the Competitor variable?
2. Conduct a regression of Sales vs. Income (only use this one independent variable for now) and use the results to answer the following questions:
a. Estimate the daily sales for a store whose neighborhood income is $\$ 200$ per week.
b. Estimate the daily sales for a store whose neighborhood income is $\% 300$ per week.
c. Estimate the impact of a $\$ 100$ increase in neighborhood incone per week pon sales.
d. Provide a $95 \%$ confidence interval for your estimate in partc.
e. What percentage of the variance in sales can be explaned using only the Income variable?

3. Create a scatterplot of Sales vs. Income and plot the regeessior lire as well. Does the picture reveal any likely opportunities to improve your model?

4. Construct a new variable, Comptne, by multiplying he Competitor and Income variables together. Run a regressior to predict shles using all three variables: Competitor, Income, and CompInc.
a. Is the Competitor variable in this model statistically significant?
b. Estimate the daily saies for 2 store without competition whose neighborhood income is $\$ 300$ per week.
c. Estimate the daily sales for a store with a competitor whose neighborhood income is \$300 pel week.
k.
d. Contpare your answers to part b and part c. Reconcile the results of this comparison with ypur answer to part a.
5. Access the eurodata2a dataset, which is a restructured version of the file eurodata used in problems 7-9 in Chapter 4. This file contains information about unemployment and wage growth in Belgium and Denmark. The dummy variable Belgium is set to 1 in Belgium and 0 in Denmark.

Perform a regression of Wage Growth vs. Unemployment, Belgium, and BZUnemployment. ${ }^{5}$
a. Write out the full estimated regression equation.
b. Write out the estimated regression equation for Belgium.
c. Write out the estimated regression equation for Denmark
d. Compare the equations from part b and c to your answers from D oblem 7, Chapter 4.
e. How does a one percentage point increase in unemployment relate to the growth rate of wages in Belgium?
f. How does a one percentage point increase in unemployment relate to the growth rate of wages in Denmark?

g. Estimate the difference in how unemployment relates to wage growth between the two countries.

h. Provide a $95 \%$ chnifiderce intorval fo the difference in how unemployment relates to wage growth hetween the two countries.
i. Predict the grewth rate in wages for each country in a year that has $3 \%$ unemployment.
j. Provide a $90 \%$ conficence interval for each prediction from part i.
6. Access the eurodats $\mathbf{2 b}$ dataset, which is a restructured version of the file eurodata used in problems $7-9$ iin Chapter 4 . This file contains information about unemployment and wage growth in Germany and Greece. The dummy variable Germany is set to 1 in Germany and 0 in Greece.

[^25]Perform a regression of Wage Growth vs. Unemployment, Germany, and DEUnemployment. ${ }^{6}$
a. Write out the full estimated regression equation.
b. Write out the estimated regression equation for Germany.
c. Write out the estimated regression equation for Greece.
d. Compare the equations from part b and c to your answers from Profiem 8 , Chapter 4.
e. How does a one percentage point increase in unemployment relate to the gowth rate of wages in Germany?
f. How does a one percentage point increase in unemployment relate to the growth rate of wages in Greece?
g. Estimate the difference in how unemploymelt relates to yoge growth between the two countries.
h. Provide a $95 \%$ confidence interval for the difference in how unemployment relates to wage growth between the two countries.
i. Predict the growth rate in wages for each coun ry in a year that has $3 \%$ unemployment.
j. Provide a $90 \%$ confide nce interval for each prediction from part i.

7. Access the eurodata2c dateset, which is a restructured version of the file eurodata used in problems 7-9 in Chapter 4. This filc contains information about unemployment and wage growth in Spain and France. The dunsmy variable Spain is set to 1 in Spain and 0 in France.


Perform a regression of Wage Growth vs. Unemployment, Spain, and ESUnemployment. ${ }^{7}$

b. Write out the estimated regression equation for Spain.
. Write out the estimated regression equation for France.

[^26]d. Compare the equations from part b and c to your answers from Problem 9, Chapter 4.
e. How does a one percentage point increase in unemployment relate to the growth rate of wages in Spain?
f. How does a one percentage point increase in unemployment relate to the growth rate of wages in France?
g. Estimate the difference in how unemployment relates to wage Grovth betyeen the two countries.
h. Provide a $95 \%$ confidence interval for the difference ih how unemployment relates to wage growth between the two countries.
i. Predict the growth rate in wages for each colntry in a year hat has $3 \%$ unemployment.
j. Provide a $90 \%$ confidence interval for each prediction from part i.

## CHAPTER 6

## FORESTIER WINE: GRAPHICAL ANALYGIS, NONLINEAR REGRESSION AND SPLRIOUS

## CORRELATION

In this chapter, we will learn how to use graphical anclysis to supplement regression. We will study residuals and how to use residual plots to supplement our regression analysis. Additionally, we will expand our regression model's aomain of applicability by learning how to conduct one type of non-linear regression. Finally, we will explore he notions of outliers, influential observations, and spurious cor-elaion.

### 6.1 Snowfall, Unemployment, And Spurious Correlation

The following data (see the unemploy file ${ }^{1}$ ) provides the annual inches of snow fall in Amierst, Massachusetts, and the annual U.S. national unemployment (in \%) for the years 1873 to 1982 (see Figure 6.1).

In principle, should we expect any relationship between snowfall in Amherst and U.S. unemployment? Look at the plot of these two variables in Figure 6.2.


[^27]

Figure 6.2: Snowfan vs. unemployment in Amherst.

There is clearly a linear relationship betwern the two variables in the sample, and a regression will do well here (see Figare 6.2).


The R-squared of 0.9673 ( $96.73 \%$ ) is exceptionally high, which indicates we are explaining most of the variation in U.S. unemployment. Based on our data, should we conclude that there exists a significant relationship between snowfall in Amherst and U.S. unemployment?


To answer this question we can do a hypothesis test on the slope coefficien to find out if it is significant. The $t$-statistic is 15.39 and the associated p-value is 0 ; thus, we rejegt the null hypothesis that the slope is zero and conclude there is a significant elationsixip.


This example shows that on occasion, clear patterns pop un at random Since our inferences are based on data, we will make errors. The relationship between unemployment and snowfall is spurious.


Spurious correlation occurs when the latz coning from two unrelated variables are apparently linearly related.


The example suggests tha if pepple want to reach a certain conclusion, and they search for data with this in mind, they can often tind a dataset which supports the conclusion.


For example, we generated 40 columns of random data with 10 numbers in each column. We know that rone of then are related to unemployment or to any other real dataset because the data was rar donly geneyated in Stata. However, some of the regressions turned out to fit the unemployment data pretty well with the slope coefficient statistically significant at a standard 5\% revel of significance. For example, a regression relating unemployment and the $33^{\text {rd }}$ randomly generated column turned out this way (see Figure 6.4).
. regress unemployment c33


Figure 6.4: Regression of unemployment on random data.

Our conclusions are as follows:

1. Unemployment and snowfall in Amherst have a ctatistically signinicant linear relationship over this period. This relationship is spurious.

2. It is always possible to find a spurioys relation between an independent variable and a dependent variable if you try many different independent variables. This occurs because each relationship you examine has some chance of appearing significant due to luck or sampling error even if there is no underlying relationship. Using a level of significance $\alpha$ when testing a single relatınnship ensyres the probability of finding this type of spurious result is at most $\alpha$. However, if you examine 100 different possible relationships, the probability hat at least one of them appears significant even if none of the relationships are real may be as nigh s.s $1-(1-\alpha)^{100}$. So, when $\alpha=0.05$, this probability is $1-(0.95)^{100}=$

3. Fo this reason, always think hard about what variables are sensible to use in a regression analysis beiore running the regressions. This helps to limit your risk of obtaining spurious resuits. Similarly, when presented with others' analyses, make sure to find out the process that led to the reported results. If they were the result of searching through a large number of relationships and reporting only significant results, you should be skeptical.

### 6.2 Wine and Wealth

In this section, we present some simple (yet deceptive) regression examples. The purpose is to motivate techniques that move beyond an examination of the basic regression outpur.


Robert Owen is the new chief manager of Forestier, a company that prodteces, markets, and distributes wine. Forestier produces four brands of wine: Almafen Bianco, Casarosa, and Delacroix. Almaden and Casarosa are high-quality wines. Biarco is a regular wvine. Delacroix is a specialty dessert wine sold only in specific locations.


Robert believes that wine sales are directly related to the average household income of the neighborhoods in which the wine shops located. Robert is considering expanding the business to rich neighborhoods with $\$ 15,000$ monthly average income. To learn how the various wines are likely to sell in these neighborhoode, ie wants to estimate how average income affects sales of the four Forestier brands.

Robert obtained so ne data on average monthly household income (measured in units of $\$ 1,000$ ) and average monthly wine sales (measured in units of \$1,000). He has figures from 11 neighborhoods for each brand. The data are in Figure 6.5 and in the wineandwealth file. ${ }^{2}$


[^28]| 13 | 7.58 | 13 | 8.74 | 13 | 12.74 | 8 | 7.71 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 8.81 | 9 | 8.77 | 9 | 7.11 | 8 | 8.84 |
| 11 | 8.33 | 11 | 9.26 | 11 | 7.81 | 8 | 847 |
| 14 | 9.96 | 14 | 8.1 | 14 | 8.84 | 8 | 7.04 |
| 6 | 7.24 | 6 | 6.13 | 6 | 6.08 | 8 | 5.25 |
| 4 | 4.26 | 4 | 3.1 | 4 | 5.39 |  | 12.5 |
| 12 | 10.84 | 12 | 9.13 | 12 | 8.15 |  | 5.56 |
| 7 | 4.82 | 7 | 7.26 | 7 | 6.42 |  |  |
| 5 | 5.68 | 5 | 4.74 | 5 | 5.73 |  | 6.89 |

Robert decides to use regressions to get a feel for the effect of average income on wine sales. He intends to use the regressions to predict wine sales in neighborhoods of $\$ 15,000$ monthly income.

Consider the Almaden data. Sales A is the dependent variable. Income A is the independent variable (see Figure 6.6).


Figure 6.6: Simple regression analysis using the Almaden data.

The regression indicates that monthly sales of Almaden increase, on average, by 50 cents for each extra dollar (equivalently, by $\$ 500$ for each extra $\$ 1,000$ ) in average monthly household income of the neighborhood where the wine shop is located.

The coefficient on Income A (0.50) is statistically significant at our standar $5 \%$ level of significance. The $t$-ratio is 4.24 with a p-value of 0.002 .

The regression estimate and $95 \%$ confidence and prediction ineryals for Almaden sales when Income A is 15 are $10.501,(8.692,12.310)$ and $(7.170,13.833$ ), respectively as you may calculate by entering 15 for Income A in an empty row and clickirg the User>Core Statistics>Prediction, using most recent regression (confint) meru option ${ }^{3}$ ). Thus, in any single neighborhood with $\$ 15,000$ monthly/average income, our estimated monthly average sales of Almaden are $\$ 10,501$, and, with $95 \%$ confidence, monthly average sales of Almaden will be between $\$ 7,170$ and $\$ 13,833$. Similatiy, the average, over the whole population of neighborhoods with $\$ 15,000$ monthly income, of the monthly average sales of Almaden is between $\$ 8,692$ and \$12,310 with $95 \%$ confidence.

Plot Almaden sales and avarage ineeme (see Figure 6.7). That is, plot Sales A versus Income A. There does not seem to be anything unusual or troubling about this plot. The data seem to fit a general/y linear pattern with some variance about the line.

Next. Rovert analy zes the effects of average income on Bianco sales. In the next regression (see Figure 6.8), \$ales B is the dependent variable and Income B is the independent variable.

[^29]

Figure 6.7. Ply 10 of Almaden Sales vs. Income.
. regress sales_B Incom:-B


| Number of obs | 11 |
| :---: | :---: |
| F 1 , 9) | 17.97 |
| Prob > F | $=0.0022$ |
| R -squared | $=0.6662$ |
| Adj R-squared | $=0.6292$ |
| Root MSE | 1.2372 |
| [95\% conf. | Interval] |
| . 2331475 | . 7668525 |
| . 4552982 | 5.54652 |

Figure 6.8: Simple regression analysis using the Bianco data.
Tha regession output when using the Bianco data is almost exactly the same as the regression output when using the Almaden data. Thus, the conclusions we would obtain from this regression are the same as the conclusions we obtained from the regression using the Almaden data. In particular, this regression indicates that Bianco monthly average sales increase, on average, by 50
cents for each extra dollar of average monthly household income. The confidence and prediction intervals for Bianco sales are virtually identical to the ones for Almaden.

The data on Bianco sales are different from the data on Almaden, but the regresons using the Bianco and the Almaden data are essentially the same. This seems odd. Rofert is puzzled. Afte? all, Almaden is a high-quality wine and Bianco is merely ordinary. Many times, a background graphical analysis can help us understand a regression analysis better. Plot Bianco sales and average income (see Figure 6.9). That is, plot Sales B versus Income B.

Figure 6.9: Plot of Bianco Sales vs. Income.

The plot clearly indicates that the relationship between Bianco sales and average income is not linear. Thus, one of the most fundamental assumptions of regression (linearity) has been violated. The conclusions we obtained concerning Bianco must be revisited.

The regression using the Bianco sales seems, at first glance, to confirm the conclusion obtained from the regression analysis using the Almaden sales. However, this is incorrect. The effects of average income on Almaden sales are not the same as on Bianco sales. The plots indicate that the Almaden sales are higher if the shops are located in richer neighborhoods. The Bianco sales increase if the wine shops are located in richer neighborhoods but only up to a gertzin point. After this point, the Bianco sales decrease if the wine shops are located intictior neighberhoods. This probably happens because the quality of the Bianco wine is worse than the quallity of the Almaden wine. The crucial point, however, is that the relationship between Bianco sales and average income is non-linear, i.e., not a straight-line elationship.

How can we estimate the effects of average income on Bianco sales when this relationship is nonlinear?


It may seem that everything whe hearred so far only applies to the linear case, and therefore, these techniques are useless if the retationship between the independent and dependent variable is non-linear. Fortunately, this is untive: We can apply the techniques we have learned to the case of a non-linear relationskip between the independent and dependent variable. One useful and important kind of non-linear relationship is a quadratic relationship. Below, we will learn to use regression to estinate such a relationship.

## A minadratic function is a function of the form $f(x)=a+b x+c x^{2}$.

If the coefficient on the squared term is negative, i.e., if $\mathrm{c}<0$, then the plot of the function f looks like an inverted U. For example, Figure 6.10 shows the plot of the function $f(x)=5+10 x-x^{2}$ for values of x between 0 and 8 .


Figure 6.10: Quadrac equation with negative coefficient on the squared term.


On the other hand, if the Coefficient on the souared term is positive, i.e., if $\mathrm{c}>0$, then the plot of the function $f$ looks liko a $U$. For example, Figure 6.11 shows the plot of the function $f(x)=5$ $10 x+x^{2}$ for values of $x$ between 0 and 8 .



Looking at these prots, we ean reasonably conjecture that Bianco sales are a quadratic function (with negative coefficient on the squared term) of the average household income of the neighbo hoods in which the wine shops are located. That is, we can reasonably conjecture that Bianco sales and average income are related in the following way:


We can estimate the coefficients $\mathrm{a}, \mathrm{b}$, and c by running a multiple regression. The dependent variable is Sales B. The independent variables are Income B and Income Bsqr, where Income

Bsqr is the square of Income B: ${ }^{4}$

Income Bsqr $=\left(\right.$ Income B) ${ }^{2}$

The relevant data for this regression are in Figure 6.12:



Figure 6.13: Regression analysis of the Bianco data whath quadratic tern.

The regression (see Figure 6.13) appears extremely sucessful in capturing the relationship. In fact, the R-squared is 1 (100\%), indicating a perfect fit. The coeificient on the linear term is positive (2.7808) and is significantly greater than zero, and the coefficient on the squared term is negative ( -0.1267 ) and is significantly below Zero. This makes sense. The estimated coefficient on the linear term in a quadratic regressis is the estimated slope of the relationship when $\mathrm{x}=0$. Here, this tells us that if average monthly income is ciose to zero, increasing it by a dollar yields an average of $\$ 2.78$ in extra sales. Thus, for low levels of income the slope relating income to sales is positive and steer


The estimated coefficient on the squared term in a quadratic regression tells us how quickly the slope of the relatienship changes as x increases. The fact that this coefficient is negative in the example tells us thet increases in income provide less of a boost in Bianco sales for higher income heightoorhoods than for lower income neighborhoods. We expected these signs for the coefficients because we observed (in Figure 6.9) at low levels of income Bianco sales increase as the average jncome of the wine shops' neighborhoods increases, but gradually this effect lessens, until, eventually, Bianco sales start decreasing as the average income of the wine shops' neighborhoods increases.

What is the meaning of the constant term? It is our estimate of average sales of Bianco when average monthly household income is zero. The estimated constant (-6) is significanty regative. This does not make sense as a prediction. After all, we should not expect sales De negative for the wine shops located in extremely poor neighborhoods. However, an exaymation of the data indicates no such neighborhoods were in our sample for Bianco. Thus, although the quadratic regression appears be an excellent model for incomes closer to the range of our data, we should exercise caution in using our regression equation to forecast B an oo sales in peor neighborhoods. Robert wants to predict Bianco sales in wine shops located in neighborhoods with $\$ 15,000$ monthly average income. Using the quadratic regression, he estimated sales when Income B is 15 (and therefore Income Bsqr is $15^{2}=225$ ) are $\$ 7,206$ per month. The corresponding $95 \%$ confidence and prediction intervals for Bianco Sales are shown in Figure 6.14.


Figure $6.14 \cdot 95 \%$ confidence and prediction intervals for Bianco sales.

The confidence and prediction iitervals are narrow, indicating little error in our sales estimate. The nor-linear regression predicts that the average sales will be $\$ 7,206$ per month. The linear regression predicted average monthly sales of $\$ 10,501$. The difference is large (almost $50 \%$ ). It would have been a big mistake to ignore the non-linearity present in the data.

Hew do we know if a non-linear model should be used? One way is to plot the dependent against the independent variable and look for distinct curvature. We used this method in the Bianco example. Another method (explained below) involves plotting residuals versus predicted or fitted
values and examining this plot for distinct curvature. This method is extremely useful, especially if there is more than one independent variable. The reason is simple. Since a plot can have no more than three dimensions, plotting the dependent versus the independent variables is impossible if more than two independent variables are used. Plotting residuals yersus predicted values is always possible because the plot remains two-dimensional no mater hov many independent variables are used. Examining such plots to detect non-linearies shovid become a regular supplement to your basic regression analysis.

According to the simple regression model, every observation, $y_{\text {, consists of a part that is linear in }}$ $x$, plus an error term:


In the case of $m$ independent variables, evexy observation, $y_{i}$, consists of a part which is linear in $x_{1}, x_{2}, \ldots . x_{\mathrm{m}}$, plus an error term:


We use regression to estimate the linear part via the fitted (or predicted) value $\hat{y}$ :


The fitted value (or predicted value), $\hat{y}$, is the value of the dependent variable predicted by the regression model.


The residual is the difference between the observed value and the fitted value. That is, the residual for the $\mathrm{i}^{\text {th }}$ observation in our sample, $e_{\mathrm{i}}$, is given by the following eceuation.


Since the residuals depend on our estimates (via the fitted values), it makes sense to talk about their sampling distribution. If the standard assumptions of the regression model are correct, the residuals will be normally distributed with a mean equal to zero, a constant variance, and independent of each other.

For the Almaden and Bianco vines, we carr use a plot of the residuals to check our linearity assumption. Consider th Almaden data. To plot residuals against the fitted values, we first have to run the regressior for Sales -1 against Income A again since Stata uses only the most recent regression in calculating the residuals and fitted values. Then, click User>Core Statistics>Model Analysis, using most recent regression>Plot residuals vs predicted values (rvfplot) or type db rvfplot. ${ }^{5}$ Click $\mathbf{O K}$ and Stata will plot residuals against the fitted values (see Figure 6.15).

[^30]

In this plot, the residuals seem to e displayed at random. No distinct curved pattern can be detected as we move fror ingt te rigit across the plot. This is a good sign, because it indicates that our linearity assumption appears satisfied.


Consider the Bianco data. A por of the residuals against the fitted values for the regression without the squared infome term reveals distinct curvature (see Figure 6.16).


Figure 6.16: Resiaual pret of Bianco sales with linear model.

All the residuals are negative when the fitted values are low or high. On the other hand, all the residuals are positive for mindle fitted values. This inverted-U pattern indicates a non-linear relationship (in fact, a quadratic relationship in this case) between the dependent and independent variables. In general, distinct curvature in the plot of residuals against fitted values suggests a non-linear relationship between/he dependent (y) and independent ( x ) variables.


Try rurning the quadratic regression using the Bianco data and plotting the residuals versus predicted values firm that regression. If the quadratic form is successful in capturing the carvature in he relationship, there should no longer be a distinct curved pattern across the residual plot. You will see that is the case. If distinct curvature had remained, that would have suggested that a model other than the quadratic was needed.

It is important to check the linearity assumption whenever you try a regression model. If distinct curvature is ignored, the regression estimates and standard errors will be biased and may be quite misleading. In addition to checking the linearity assumption, residual plots have another use that we will see in Chapter 7 when we learn how to check the assumption of constari variance.

Now, we will move on and analyze the effects of average income on Casarsa sales. As you can see in Figure 6.17, the regression using the Casarosa data is almostidentical to the regressions using the Almaden and Bianco (the linear case) data. Thus, a dire it interpietation of the regression would indicate that average monthly sales of Casarosa increase, or average, by 50 cents for each extra dollar of average monthly houseliol income for the neighborhood in which the wine shop is located.

| - regress Sales_c Income_c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS |  |  | Number of obs <br> F (1, <br> Prob > F <br> R-squared <br> Adj R-squared <br> Root MSE | $=11$ |
| Mode1 | 27.4700082 | 0082 |  |  | $=\quad 17.97$ $=0.0022$ |
| Residual | 13.75619 .8 1. | 6576 |  |  | $=0.6663$ |
| Total | 41.2262 | 2262 |  |  | $=1.2363$ |
| Sales_c | a. Er | t | $P>\|t\|$ | [95\% Conf. Interval] |  |
| Income_C | 4997273 .1 .78777 <br> 3.00 .2455 1.124481 | 4.24 | 0.002 | . 2330695 | $\begin{array}{r} .7663851 \\ 5.546208 \end{array}$ |
| _cons |  | 2.67 | 0.026 | . 4587013 |  |

Figure 6.17: Simple regression analysis using the Casarosa data.

The coefficient on inceme (0.4997) is statistically significant as the t-ratio is 4.24 , with a p-value of 0.002 . The $95 \%$ confidence and prediction intervals evaluated at income of 15 are (8.6898022, 12.30692) ard (7.167809, 13.82892), respectively, which are almost identical to the intervals we first obtained with the other two wines.

Plot Casarosa sales against average income (see Figure 6.18). That is, plot Sales C and Income C.


The plot indicates a mearelationsinp between Casarosa sales and average income, except for one point. In this case, this unnesaal observation is called an outlier.


An outlier is an obseryation with an unusually large residual. Stata can identify outliers for you.
This is especially useful in multiple regressions or large datasets where they may not be visualizer as readily. To have Stata do this, run the regression (here Sales C vs. Income C) and clic Use >Core Statistics>Model Analysis, using most recent regression>Residuals, outliers and influential observations (inflobs). (You can also type db inflobs.) Click OK and examine the data browser. The stdized column contains the studentized residuals. The studentized residual
tells you the number of standard deviations that this residual is from zero, which is the expected value of residuals. The studentized residuals for any outliers will have a value of 1 in the Ystdized column. The cutoff for determining if an observation is an outlier can be seen in Stata's Results window, where it is listed under Flag values next to Studentized residaia. ith chis example, the cutoff is 2.2621572 , so any studentized residual with an absol/te vake above his value generates a 1 in the Ystdized column. The formula used to deternine the cutoff value is invttail(df, . 025 ), where df is the residual degrees of freedom of yoar regression. .in other words, this cutoff is determined so that if the residuals are normally d/stributed, approximately $5 \%$ of the observations would typically be classified as outliers.


When you encounter outliers (especially if they are lange, as in Figue 6.18), you should initially check whether they are due to a mistake such as a data entry error or a measurement error. If that is not the case, it may be worthwhile to ry to find out what led to the unusually high or low value: for example, if these are financial data, an Sutlifi might be linked to a stock market crash. In this example, the outlier coud be related to a single buyer who is particularly fond of Casarosa wine.


You should not remove ouftiers from your dataset unless they are due to a mistake: Weird things happen, and it is foolish to preteid otherwise.


On the pther hand, if you have a data entry error or a measurement error, then the data should be correctea er removed. In the case of an error, we would have to run a new regression with the cerrected data. The results would probably indicate that average Casarosa sales increase by less that 50 cents for each extra dollar on the average income of the wine shops' neighborhood. We can see this in the slope of the line formed by the remaining points being smaller than 0.5 .

Finally, we will analyze the effects of average income on Delacroix sales (see Figure 6.19). In this regression, Sales D is the dependent variable and Income D is the independent variable.

| Sales_D Income_d |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df |  |  |  | Number of obs | ,1 |
| Mode 1 | 27.4900009 |  | 27. | 0009 |  | Pro $5>F$ | $=0.0022$ |
| Residual | 13.74249 | 9 |  | 4333 |  | R-squared | 0.6667 |
| Total | 41.2324909 | 10 | 4.1 | 4909 |  | Root MSE | 1. 2357 |
| Sales_D | coef. | Std. | Err. | t | $\mathrm{P}>1 \mathrm{t}$ | [95\% con | Interval] |
| Income_D | . 4999091 | . 1178 | 189 | 4.24 | 0.00 | . 2333841 | . 7664341 |
| _cons | 3.001727 | 1.123 | 921 | 2.67 | 0.026 | - 4592412 | 5. 544213 |

Figure 6.19: Simple regression anal ysis on the De acrcix data.

The regression using the Delacroix data is essentially identical to the regression using the Almaden data, the Bianco data (the lirear case), and the Casarosa data. A direct interpretation of this regression would lead to the same conclusions as before. However, we have seen that before deriving conclusions from the regression analy sis, it is useful to look further.

Again, click User>Core Statistics $>$ Model Analysis, using most recent regression>Residuals, outliers and influential observations (inflobs) or type db inflobs and examine the Data Browser. One of the values in the Yleverage column has a value of 1 . This indicates an observation has high liverage. The corresponding entry in the YCook column is also 1. This indicates an abseryation has a disproportionately large influence on the regression results. Cook's distance (or Cook's $\mathbf{D}$ ) is a measure of this influence.

Plor Delacroix sales against average income (see Figure 6.20). That is, plot Sales D and Income D.


Figure 6.20: Plot of Delacioiy/Sales vs. Income.


The plot clearly indicates mat the regeession is entirely driven by a single observation. The estimated regression roefficients would be drastically different if the sales number for just the one influential observation were changed.

An inflaeralocservation is a data point that has a disproportionately large effect on the regress on esults.

Aŋ influe tial observation can be an outlier. In this example, however, the influential observation is not an putlier. In fact, the residual associated with the influential observation is zero, i.e., the estimated regression line goes through this point. An influential observation can happen because
the point has an unusual $x$ value, i.e., one far above or below the average of the $x$ values (these are called high leverage points). This is the case here.

As with outliers, you should check that the influential observation is not due to ome uata error. If it is not due to error, then you should keep it.


It is often a good idea to run the regression with and without an influetitial observation, and report both. This is a way to explicitly see the influence on the regression estimates. In this example, however, it makes no sense to run a regression without the influentia observacion. (Can you explain why not?)


Robert should be hesitant to rely on the resyats rom the Delacroix regression. The results are all driven by a single observation. More data are nesessary for a reliable analysis. In particular, data from more income levels are needed.


We have shown four different clatasets generaing the same regression output. These examples demonstrate we have to be carefur when analyzing data to guarantee we do not mistakenly miss any of these problems In siaition, since these problems do occur with some regularity in real applications, we must have a "to

Our conclusions are as follows:

1. The nitial regression output for the Almaden, Bianco, Casarosa, and Delacroix data is the
2. The regression using the Almaden data seems to work fine. The analysis predicts average Almaden sales of $\$ 10,501$ in a neighborhood with average household income of $\$ 15,000$ a month.
3. The simple regression using the Bianco data is unreliable because the ryaúonstip between Bianco sales and average income is curved. Curvature mar be dietected by examining the plot of residuals versus predicted values. Once quadratic trm is introduced, the regression analysis predicts that Bianco sales siteula be on average \$7,200 in a neighborhood with the average income of $\$ 15,000$ a nonth. A fur her residual plot confirms that the quadratic regression has captured the survature in the relationship.
4. The regression using the Casarosa data contans outlier. If there is no error associated with this observation, the regression analysis is identical to the analysis of the regression on the Almaden data.
5. The regression using the Delacioix data is driven entirely by one influential observation. More data on Delacroix sales are necessary for reliable conclusions.

## SUMMARY



Spurious correlation occurs when uie data indicate a linear relationship that is a statistical artifact (i.e., is due to luck of the dravy.) Examples of spurious correlation can be constructed deliberately by generating data at inndom or (sometimes accidentally) by looking at many different indepel dent variables. This highlights the importance of judgment in constructing and intarneting regiessions.

A regression must not be interpreted mechanically. Checking if the underlying assumptions are satisfied is important. If the relationship between dependent and independent variables is nonlinear, then we must introduce non-linear terms in our regression. We should also check if
outliers and influential observations are associated with some error. These observations should not be modified or deleted unless we find a measurement error or data entry error. Results driven primarily by a few influential observations should be used with care.

## NEW TERMS



Spurious correlation
Quadratic function
Fitted value
Residual
Outlier

The appearance of a significant relationship between un elated variables A function of the form $f(x)=a+$

The value of the dependent variable predicted by the regression model
The difference between the observed value and the fitted value
 unusually large residual

Leverage A measure of how different from the norm the values of the independent variables are for a particular observation

High leverage point An observation whose leverage is more than twice the average for the dataset

Influential observation A data poilt which has a disproportionately large effect on the regression results


Cook's D A measure of the influence a data point has on the regression results

## NEW STATA FUNCTIONS


[3H]User>Core Statistics>Model Analysis, using most recent regression>Plot residuals vs predicted values (rvfplot)

Equivalently, you may type db rvfplot. This command generates a dialog box allowing you to plot the residuals against fitted values following the most recent regression.

Alternatively, you can bypass the dialog box and directly type the command ryfplot.

User>Core Statistics>Model Analysis, using most recent regression $>$ Residyals, outliers and influential observations (inflobs)

Equivalently, you may type db inflobs. This command creates new variables (default variable names are in parentheses - these can be changed in the dialog bex) centaiains, residuals (residuals), Studentized residuals (stdized), leverage (leverage) Cook's distance (Cook_D). It also creates flag (dummy) variables Ystdized, Yleverage and YCook (again, these are the default names and may be changed). The Ystdized column alerts you to outliers by assigning them the value of 1 . Observations that are not outliers have the value 0 . The Yleverage column alerts you to high leverage points hy assigning them the value of 1. The YCook column alerts you to influential observations by assigning them the value of 1 .

An alternate way to generate the rosiduals, studentized residuals, leverage or Cook's distance individually following a regression, is to click Statistics $>$ Postestimation $>$ Predictions,
residuals, etc. and select the ruantities of interest. The analogous commands are:
a. pradict newverl, residuals
b. predict nevvar2, rstudent
r. preäiet newvar3, leverage
d. predict newvar4, cooksd
where neyvar1-newvar4 are the names that you want to apply to your respective variables.

## CASE EXERCISES

## 1. The Denny Motors Case

A group of consultants has suggested to Denny Motors that it can predict cales using a forecasting model based on the S\&P500. Specifically, as many people view a "Denny" as a luary good, surges in the stock market may result in subsequent purchases from Denny Mietors. After evaluating numerous potential lag times (how long before son eone cashes the.r windfalls into luxury goods is unknown), the consultants have determined that 30 -month ag yields an accurate forecasting model. Specifically, they tried every possible lag time from 0 to 40 months and the highest R-Squared value was found when using a 30 -msnth/delay.

Access the data in the dennymotors file and run he regression of Denny Motors Quarterly Sales vs. S\&P 500 Lagged 30 Months. Knowing that the average value of the S\&P during the quarter ending 30 months ago was 13:7, construct a $9.5 \%$ prediction interval for next quarter's sales and evaluate its precision. Is a vide interval or does it seem pretty tight?

Do you agree with the constltants' conclusions?

## 2. Basebadl

A professional basebal/ team wants to estimate attendance at their ballpark to help make decisions r-garding concessions and turnstile revenues. One factor they suspect has an impact on the attendance is weather. The baseball data file has attendance data for the first half of the season including, both temperature and attendance figures.

Estimate the effect of temperature on attendance. Explore the residuals using the model analysis feature. Are there any obvious explanations for the influential observations? Would removing any outliers improve your model? Can you suggest a way to improve the model without removing any outliers?

## 3. Television for life



The World Almanac and Book of Facts, 1993, reports the following data en televisions and life expectancy in 38 countries. Access the tvforlife file, and conduct a regression predicting life expectancy using TVs per person. Are you surprised by the outpput? Sugrost zossible explanation for these results.


## 4. Show me the money

Running an agency that represents many professiznal athletes, you are often forced into serious contract negotiations. One of the baseball players hat you represent has had a decent career but has been known to strike out a lot. The tean is not offering him a significant contract based on his propensity to strike out more then the ather players. To improve your negotiating leverage and to add force to your arguments, you hrve gathered data to conduct a preliminary analysis of ballplayers' salaries àd the number of times they strike out. Your assistant, who has analyzed the data, tells you that every strineoat adds about $\$ 14,800$ to a player's salary; thus, the assistant suggests ericouraging your top players to strike out as often as possible.

The strikeout fiite ${ }^{6}$ contains the data on 337 professional baseball players. Use these data to conduct a resression of salary vs. number of strikeouts to replicate the assistant's results. Should you go along with the assistant's suggestion?

[^31]
## PROBLEMS

1. Take the dataset from Case Exercise 4 called strikeout and run the regre sion of salary vs. number of strikeouts. Construct a listing of the studentized residuals.
a. What do the 1's in the Ystdized column tell you about the correspornding ebservations?
b. How many studentized residuals large enough to be flagged as 1's should you expect for a dataset of this size?

2. Access the data in the burglary file ${ }^{7}$, which contains information about burglary arrests and employment levels in 90 counties in the United States. Conduct a regression of Burglary Arrests vs. Employed (which contains the number ef employed people in the civilian workforce in that county.)
a. What do these results uggest?
b. Are these results surprising te vor?
c. Identify any counties that are outliers or highly leveraged or influential observations
d. What is the probability that a normal random variable will be over 6.953 standard deviations from the mean (as the LA County residual is)?
3. Access the beerdata dataset ${ }^{8}$, which contains data on beer consumption and income levels per canita for 19 European countries. Conduct a regression of beer consumption vs. income levels per canita.

[^32]a. On average, as income increases by $\$ 1,000$ per capita, how much does beer consumption increase?
b. Does this relationship make sense?
c. Identify any outliers in this dataset.
d. How would your answer to part a change if the outliers were remoyed from the data? (This is generally not a good idea, but we are using the removed of outliers so how strongly they impact some of our results.)

4. A Midwestern hotel chain has noticed much variation in its electricitv costs and would like to be able to explain these changes for planning and buageting reasonc. It has collected samples from random hotels during random months during the pasivear. The variables include the hotels' electricity costs per room and the average temperature that month. These data are available in the electricitycosts file. Conduct a regression of electricity costs per room vs. average temperature.
a. Does the relationship seem significant?
b. Plot residuals versus peedicted values for this regression. Does this graph give you any thoughts on improving the model?
c. Use the tools discussed in this chapter to build an improved model.


## CHAPTER 7

## THE HOT DOG CASE: MULTIPLE REGRESSION, MULTICOLLINEARITY AND THE GENERALIZED

## F-TEST

In this chapter, we will further our understanding of multiple regression analysis. One new topic is multicollinearity, i.e., strong linear relationships be ween independemi variables in a regression. Specifically, we will learn to use variance inflation factors to detect multicollinearity and use Ftests to test joint significance of regression coefficients. Other topics emphasized include omitted variable bias, hidden extrapolation, and conducting hypothesis tests concerning linear combinations of regression coefficients. Most oithis is done in the context of a case involving the Cles)

### 7.1 The Hot Dog Case

You have just been hired by Dubuque ${ }^{1}$, a hot dog manufacturer that produces rabuque brand hot dogs for the retail market. On your first day at work, you receive a disturbi/g mento indicating that Ball Park², a competing brand, may substantially reduce the price of its hot dos. Dubuque is concerned about the negative impact this might have on its market share.

At the last staff meeting, some of your colleagues argued that $\mathrm{Ccar} \mathrm{Maver}^{3}$ is Dubuque's leading competitor and that Ball Park's new campaign will not substantialiy reduce Dubuque's market share. Others, however, disagreed and no consensus vas obtained or the strategy that Dubuque should take to protect its market share.


Ball Park produces two kinds of hot dogs. One is a regular hot dog, and the other is a special, allbeef hot dog. The current prices are $\$ 1.79$ and $\$ 1.89$ per package, respectively. Dubuque's current price is $\$ 1.49$ and Oscar Mayer's current price is $\$ 1.69$.

According to the mene, Ball Park inends to reduce the price of the regular hot dog to \$1.45.
Two rumors concern the price ot Ball Park's special hot dog. One is that Ball Park will slightly increase the price of the special hot dog to $\$ 1.95$, and the other is that Ball Park will set the price of the specisl hot drg to $\$ 1.55$.

You want to predict Dubuque's market share under these different scenarios. Some data are available from a scanner study conducted at grocery stores located in the western suburbs of

[^33]Chicago (see the hotdog file). The data were compiled at a weekly level and consist of information on Dubuque's market share (MKTDUB) along with its price (pdub), as well as Oscar Mayer's prices (poscar) and Ball Park's prices (pbpreg and pbpbeef) where pbpreg stands for the price of Ball Park's regular hot dog, and pbpbeef stands for Ball Park's special dor dog. Prices are given in cents (i.e., $135=\$ 1.35$ ) and market share is given in decimal form (i.e., $04=4 \%$, There are 113 weeks of data.

## Questions:

1. How does Dubuque's price affect its market share?
2. Does Oscar Mayer's price affect Dubuque's market share?. If so, how?
3. Does Ball Park's price affect Dubuque's marret share? I/ so, how?
4. Is Ball Park or Oscar Mayer Dubuque's leading competitor? Why?
5. Assume that Dubuque does not resnond to Ball Park's new campaign. How much market share is Dubuque expected to lose? In what rarge is Dubuque's market share expected to be?
6. How much should Dubuque harge for its hot dog to maintain its current market share?

### 7.2 Hot Dog Case: Solutions, Multicollinearity, Hidden

## Extrapolation and Tests of Joint Significance

We begin by pointing out an interesting issue present in this data. Examine the correlation between Dubuque's market share and the various prices (see Figure 7.1). Calculating the correlation between two variables is a quick-and-dirty way of estimating the extent of the linear relationship between them. The correlation between Y and X may be found by regressing Y on X ,
taking the square root of the R-squared (expressed as a decimal), and making it positive or negative depending on the sign of the estimated coefficient multiplying $X$. Thus, correlations lie between -1 and 1 with correlations further from 0 corresponding to higher R -squared of the regression relating the two variables. The Stata menu option User>Core Statistics>Divariate

Statistics>Correlations (correlate) (also accessible by typing db correlate) carculates the correlations between each pair of variables in your data and reports them in a table

## Correlations (correlate)

|  | MKTDUB | pdub | poscar | pbpbeef |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MKTDUB | 1.0000 |  |  |  |  |
| pdub | -0.4329 | 1.0000 |  |  |  |
| poscar | 0.1695 | 0.4844 | 1.0000 |  |  |
| pbpreg | 0.3517 | 0.3593 | 0.5488 | 1.0000 | 1.0000 |
| pbpbeef | 0.3695 | 0.3226 | 0.5337 | 0.9794 |  |

Figyre 7.1: Correlations.

What signs would we expeet the orrelations between MKTDUB and the various prices to have?
Do we see what we expect? $\square$

Note the high sorrelation between pbpreg and pbpbeef (0.979). In this situation, estimating the separate e.fects from these two variables is likely to be difficult. When one goes up or down, so does the oher: hence, it is difficult to tell if the resulting change in market share is due to pbpbeef or pbprey. This will play a role in our analysis below.

[^34]Multicollinearity is the term used to describe the presence of linear relationships among the independent variables. A multicollinearity problem occurs when these relationships are strong. We describe it as a problem because it can make it difficult to accurately assess the separate contributions of the strongly related variables to a regression analysis. Specificaity, multicollinearity increases the size of the standard errors of the estimated chefficients multiplying the related independent variables. However, we want to emphasize that muticolinearity does not cause any of the basic regression assumptions to be violated. In this sense itis less serious a problem than the curvature issue discussed in Chapter 6. Multicolinearitysimply decreases the precision with which we can estimate some of the regression coefficients

In this example, we do have a problem of multicollinearity becayse pbpreg and pbpbeef are highly correlated. In the case of these two varizoles, the correlation is so strong that it can be seen by looking at the plot between them (see Figure 7.2).


Figure 7 2: S atterplot ff Ball Park's prices.

These two prices move in almost a perfect one-to-one fashion, and so it will be essentially impossible to separate the inmpact of phoreg from that of pbpbeef on Dubuque's market share.

This is a graphical depiction of the multicollinearity problem we noted above.


Now begin the main analysis by running a regression of MKTDUB on the price variables (see


| - regress mKTDUB pdub poscar pbpreg pbpbeef |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | S5 | df |  | MS |  | $\begin{array}{lr} \text { Number of obs } & =113 \\ F(4, ~ 108) & =\mathbf{3 0 . 0 0} \end{array}$ |  |
| Mode 1 | . 012013954 | 4 | . 00 | 003488 |  | Prob $>$ F | $=0.0000$ |
| Residual | . 010811783 | 108 |  | 00109 |  | R-squared | - 0.5263 |
| Total | . 022825737 | 112 | . 000 | 03801 |  | Root MSE | 01001 |
| MKTDUB | coef. | std. | Err. | t | $P>\|t\|$ | [95\% conf | Interval] |
| pdub | -. 0007598 | . 0000 | 809 | -9.39 | 0.000 | -.0009202 | -. 0005994 |
| poscar | . 0002622 | . 0000 | 843 | 3.11 | 0.002 | . 0000552 | . 0004293 |
| pbpreg | . 0003473 | . 0003 | 316 | 1.05 | 0.297 | -.05037 | . 0010046 |
| pbpbeef | . 0001025 | . 0002 | 938 | 0.35 | 0.728 | -. C 0047.8 | . 0006848 |
| _cons | .0403026 | . 0141 | 226 | 2.85 | 0.005 | 12.3092 | . 068296 |

Figure 7.3: Multiple regression analysis of Dubuq ie's market share.

The $95 \%$ confidence and prediction intervals for market share eraluated at Dubuque's price of \$1.49, Oscar Mayer's price of \$1.69, Ball Park's (regular) price of \$1.45, and Ball Park's (special) price of $\$ 1.95$ are ( $0.01636,0.067149$ ) and ( $0.009533,0.073973$ ), respectively.

The $95 \%$ confidence and prediction intervals for maket share evaluated at Dubuque's price of $\$ 1.49$, Oscar Mayer's price of $\$ 1.69$, Ball Park's (regular) price of $\$ 1.45$, and Ball Park's (special) price of $\$ 1.55$ are ( $0032809,0.042497$ ) and ( $0.017238,0.058069$ ), respectively.

Consider the $95 \%$ conlidence and prediction intervals for market share evaluated at Dubuque's prices of $\$ 1.49$, Oscar Mayer's price of $\$ 1.69$, Ball Park's (regular) price of $\$ 1.45$, and Ball Park's (special) price of $\$ 1.95$. The prediction we tried to do is far from typical. This is true, though the values we picked are within the range of the values we have in the data. (You can check this ty examining the univariate statistics for the data.) In particular, while pbpreg has been near 145 and pbpbeef has been near 195, they have never been near these values simultaneously. This is an example of a problem called hidden extrapolation.

Extrapolation occurs when the values of the independent variables used for a prediction are far from those in the sample data. Hidden extrapolation occurs when these values, as a group, are far from the values in the sample data, even though for each independent variable individually the data seem reasonable enough.

The effect of extrapolation, hidden or not, is to increase $s_{\hat{y}}$, the standad enor of the estimated mean, when we predict for such values. This will make our predi/tion and confidense intervals larger. In this example, quite large. The lower bound of the confidence inte val (0.016) is four times smaller than the upper bound of the confidence intervat (0.067). Predisting that Dubuque's average market share is expected to be between $1.6 \%$ ard $6.7 \%$ eens not to be helpful. After all, with few exceptions, Dubuque's market share is in this range thoughout the data.

Consider the $95 \%$ confidence and predict on inter als for market share evaluated at Dubuque's prices of $\$ 1.49$, Oscar Mayer's price of $\$ 1.69$, Ball nark's (regular) price of $\$ 1.45$, and Ball Park's (special) price of $\$ 1.55$. In this scencrio the prediction and confidence intervals are much narrower. The reason is de not have a hiduen extrapolation problem in this case. The values we are using for preülction are more typical of those in our data.


The lesson to tale from this discussion of hidden extrapolation is that predictions using values of the indepeadent variables far from those in the data will be less accurate than those for values more typical of the data. The "hidden" part of hidden extrapolation emphasizes that values for a group of independent variables may be far from those in the data even if the value for each variable indi/vidually is close to those in the data.

Now turn to the estimated effects of each price on Dubuque's market share, controlling for, or holding fixed, the other prices. The coefficients of the independent variables have the expected signs. They are positive for the competitors' prices and negative for Dubuque's price. In particular, the coefficient on Dubuque's price is -0.00076 . The coefficient on Ofar Mayer's price is 0.000262 . The coefficients of Ball Park's prices (regular and special) are 5.000347 and 0.000103 , respectively.

Examining the p-values for the coefficient estimates, we see that he coefticiel the constant, Dubuques's price, and Oscar Mayers' price are significantly dilferent fron zero. However, the coefficients on the Ball Park prices do not seem to be significant. This is rather curious. The estimated coefficient on Ball Park's regular hot dog pqice is higher than the estimated coefficient on Oscar Mayer's price. This may indicate Bal Park is Dubuque's main competitor. On the other hand, the coefficient estimates on Ball rark's prices are not significant. This may indicate the opposite. That is, this may indicate sü data do not show that Ball Park's prices have any effect on Dubuque's market share.


By looking at the t-ratios and associated p-values for Ball Park's prices, you might think from this first regression that we hare ititic cuidence that Ball Park's prices are related to Dubuque's market share. This conclusion sfems to support the idea of not reacting to the Ball Park campaign though he estimated coefficient on Ball Park regular hot dog price is higher than the estimated coefficient on Oscay Mayer’s price.

However, to decide this issue, we must test if both Ball Park's price coefficients taken together, or jointly are statistically different from zero. This is particularly important in light of the strong multicollinearity between the Ball Park prices. As observed above, the effect of this multicollinearity is to make it hard to separate the effects of the two Ball Park prices. This
appears as an increase in the standard errors of our Ball Park coefficient estimates. The larger standard errors, in turn, result in larger p-values for those coefficients, making them less statistically significant. By giving up on separating the effects of the two Ball Park price. and examining their joint effect on market share, we can sidestep the multicollineariy in tie data and, hopefully, arrive at a more precise estimate of the joint effect.


When we want to test whether at least one of a group of coefficients is different frem zero, we must consider a hypothesis test called an F-test on the group of crefficients rather than the individual t -tests on each coefficient. As we will see, when x variabies are strongly related, the F test (so-called because the test statistic for this test foilows an F distribution if the null hypothesis is true) can give a different answer from the t-tests.


Let's see how we can conduct such a test of ioint significance using Stata. Specifically, we will test whether Ball Park's price coefficicnts taken together, are statistically different from zero. The null and alternative hypotheses are as follows:


To perforrn this test, aiter running the regression, click User>Core Statistics>Test Hypothesis, using most necent res, ression $>$ Joint significance (testparm) (or type db testparm). You will chan the dialog box in Figure 7.4.


Select pbpreg and pbpbeef in the "Test coefficients of these variables" field (in this test, these two variables are also called added variables; pdukand poscar are your base variables).

Choose Jointly equal to zero uncer the "Hypothesize...variables are" option. ${ }^{5}$ When you click OK, Stata will run an F-est where the null hypothesis is that coefficients of the added variables (pbpreg and pbpbeaf) me equil to ஃero, and the alternative hypothesis is that at least one of the coefficients of the added variables is not equal to zero. Stata output for this test is shown in

Figure 7.5.


Figure 7.5: Testparm results.

[^35]This output tells us the p-value (0.0000) associated with this test in the Prob > F row. Since the p-value is zero, we reject the null hypothesis:

$$
\mathrm{H}_{0}: \beta_{\mathrm{pbpreg}}=\beta_{\mathrm{pbpbef}}=0
$$

Therefore, we can conclude that, holding Oscar Mayer's and Dubuque's prices fixed, at least one of the Ball Park prices has an effect on Dubuque's market shae.

To understand the example above, we need to have a terhnical discussion on the use of F-tests.
Consider a regression with $p$ independent variables. The datacchsisi of $n$ observations of all the variables.


The regression equation is the following:


We want to test if the coefficients $\beta_{q+1}, \ldots, \beta_{p}$ are jointly significant. The null and alternative hypothesis can be stated as follows:


Let $\operatorname{SSE}\left(x_{1}, \ldots, x_{q}, x_{q+1}, \ldots, x_{p}\right)$ be the error (or residual) sum of squares of the regression equation using all independent variables (the "extended" model).

Let $\operatorname{SSE}\left(x_{l}, \ldots, x_{q}\right)$ be the error (or residual) sum of squares of the regression equation using only the first q independent variables (the "base" model).


The following F statistic provides the basis for testing whether the addition p-q variables are jointly statistically significant.

$$
\left.\mathrm{F}=\left(\left(\operatorname{SSE}\left(x_{1}, \ldots, x_{q}\right) / \operatorname{SSE}\left(x_{l}, \ldots, x_{q}, x_{q+1}, \ldots, x_{p}\right)\right)-1\right) *((\mathrm{n}-\mathrm{p}-1))(\mathrm{p}-\mathrm{q})\right)
$$

In general, p is the number of variables in the extended nodel, ad is the number of variables in the base model; thus, $\mathrm{p}-\mathrm{q}$ is the number of variables being tested.

We have seen that when we run an F-test. Stata gives us the associated p-value for the test. Sometimes, you may only have access to someone else's output where only the F statistic is reported. In this case, you can use Stata's htail function to find the p-value corresponding to the F statistic. In the hotdog eyample, the F stautsti\% was 17.21 (see the $\mathbf{F}(\mathbf{2}, \mathbf{1 0 8})$ row in Figure 7.5). To find the corresponding F -value. you an directly type the command display Ftail(2, 108, 17.21) (the numbers in the parentheses correspond to $\mathrm{p}-\mathrm{q}$ (the number of variables being tested), n-p-1 (the degrees of freedom for the extended model with all the variables included), and the F statistif, respectively).

Ahernatively, you can use Excel's FDIST function to find the p-value corresponding to the F statistic. Click Insert>Function..., and choose Statistical as the Function category and FDIST as tine Fynction name. Enter the F statistic next to $\mathbf{X}$, enter p-q (i.e., the number of variables being tested (= 2 in this example)) next to Deg_freedom1, and enter n-p-1 (i.e., the degrees of
freedom for the extended model regression with all the variables included (= 108 in this example)) next to Deg_freedom2. With the Formula result, Excel will give you the p-value. You can also directly type $=\mathbf{F D I S T}(\mathbf{X}, \mathbf{p}-\mathbf{q}, \mathbf{n}-\mathbf{p}-\mathbf{1})$ into an empty cell and press Enter.

This analysis provides an excellent example of the danger of relying too heavily on the significance test of individual coefficients in a multiple regression context. Here, individual t-tests from the original regression would have led us to the incorrect conclusion that neither Ball Park price was significant. The test of joint significance showed that at least one of the Ball Park price coefficients is significant. The joint test does not try to distinguish the effects of the two prices while the individual tests do. The multicollinearity between the typ prices explains why the joint test was able to succeed even though the individual tests failed: nulticollinearity makes it harder to separate the effects of the two prices.

To carry this discussion a little further, watch what would happen if we run a new regression with only one of the Ball Park prices ircluded, as ir. Figure 7.6. This is for illustration purposes only. Do not take this to mean that the proper respose to multicollinearity is to drop one of the variables. This is not generaly conrect and, as in this case, may lead to regressions that will be interpreted incorrectif if the numicolinearity present in the original set of variables is not explicitly acknowledged.


- regress MKIDUB pdub poscar pbpreg


Figure 7.6 Multiple regression analysis withrat pちpbeeî

As you can see from this output, there is almost no qualitative difference in the overall fit of this regression equation. Once we have removed pbpbeel from the ręrression equation, pbpreg becomes highly significant ( p -value $=0$ ). As noted above it would have been a mistake to have concluded from the results of the first reg ession that neither variable matters. It follows from the results of the earlier F-test that at least one of the twe Ball Park prices does matter, but because of the multicollinearity problem described above, we cannot tell which does matter in the first regression. The coefficient on pbpreg in the regression in Figure 7.6 is approximately the sum of the two Ball Park coefficients in the first regression. You should not conclude from the regression in Figure 7.6 that the effect of Ball Päk's regular price on Dubuque's market share is significant. Rather, its coefficient is an estimate of the combined effect of pbpreg and pbpbeef, and we cannot determine which part belongs where.


You should not conclade from this exercise that there was something special about the choice of pbpreg. We ould have as easily chosen pbpbeef to leave in the regression. If you do this, the resuits yill be quite similar. This exercise supports the results of our F-test: That the Ball Park prices do matter in determining Dubuque's market share. In the regression with both Ball Park
prices, we must remember that the t-ratios should be interpreted recognizing a high degree of multicollinearity.

We can see, from adding together the two Ball Park coefficients in the original egression, that the estimated effect of changing both Ball Park prices by one cent (0.00045) is langer than the estimated effect of changing Oscar Mayer's price by one cent (0.0002fi. This syggests that Ball Park seems to be Dubuque's main competitor. Of course, to know if we should be confident in this conclusion, we need to know if the difference between the two estimates iss statistically significant. Section 7.3, entitled "Analyzing sums and differences or̀regression coefficients," explains how this can be done.


Our responses to the case questions are as follows:


1. Dubuque's market share falls by an estimated $0.076 \%$ for each cent of increase in its hot dog price, holding fixed the Ball Park and Oscar Mayer prices.
2. Dubuque's markenchare falis by an estimated $0.026 \%$ for each cent of decrease in Oscar Mayer's price, holding fixed the Dubuque and Ball Park prices.
3. Dubuque's marke share falls by an estimated $0.045 \%$ for each cent of decrease in both of Ball Park's prices, helding fixed the Dubuque and Oscar Mayer prices.
4. Ball Park seems to be Dubuque's main competitor.
5. Assume that Dubuque does not react to Ball Park's campaign. Also, assume that Ball Park's regular hot dog price goes to $\$ 1.45$, and Ball Park's special hot dog price goes to \$. .55 . Dubuque's average market share is expected to fall by $1.529 \%$. In this case, we are $95 \%$ confident that Dubuque's average weekly market share lies between $3.28 \%$ and 4.25\%. We are $95 \%$ confident that its market share for any given week at these prices will lie between $1.724 \%$ and $5.81 \%$.
6. If Dubuque wants to reduce its price to keep its market share, then the correct price reduction will depend upon Oscar Mayer's reaction to Ball Park's campaign. For example, suppose that Oscar Mayer does not change its price. Then, if Ball Park prices are at $\$ 1.45$ and $\$ 1.55$, Dubuque must reduce its price by approximatel 20 cents ( $\approx$ market share to make up/market share gained per cent decrease $=1.529 \%, 0.076 \%)$.

We can take away two additional lessons from this case:


Ball Park's prices are highly correlated. This creates a multicolinearity problem. As a result, we cannot accurately estimate separate effects for the two Pall Park prices using these data.


Predicting Dubuque's market share is difficalt where Ball Park's regular hot dog price is $\$ 1.45$ and Ball Park's special hot dog is $\$ 1.95$ beause of the hidden extrapolation problem. In our sample, these two prices are almost diways only 12 certs apart.


### 7.3 Analyzing Sums and Difierences of Regression Coefficients

In the case, we asked: "Who i¿ Subuque's leading competitor, Ball Park or Oscar Mayer? Why?" Since the sum of che ettimated coefficients on Ball Park's two prices was larger than the estimated ceefficient on Oscar Mayer's price, it appeared that Ball Park was Dubuque's leading competito Because these coefficients are estimates, being able to use statistics to say how confident we are in our conclusion that the effect of a Ball Park price change is larger is imprrtant. As usual, we will use a hypothesis test (and the resulting p-value) to evaluate the strength of our evidence. The only twist will be that we will have to use a new test command in Stata to calculate the standard deviation we will need for our test statistic.

Since we would like to know if we have strong evidence that a change in Ball Park's prices has a larger effect on Dubuque's market share than an identical change in Oscar Mayer's price we should make that the alternative hypothesis. Therefore, using the regression wit/ tine four prices as in Figure 7.3, our null and alternative hypotheses are the following:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{3}+\beta_{4}-\beta_{2} \leq 0 \\
& \mathrm{H}_{\mathrm{a}}: \beta_{3}+\beta_{4}-\beta_{2}>0 .
\end{aligned}
$$



Unfortunately, the p-value for such a test is not part of the standird legression output on Stata or any other regression program. However, Stata does have a separate command for us to find the pvalue, which we will cover later. As usual the next step after writing the hypotheses is to calculate the test statistic. The test statistiz is simitr to those for the hypothesis tests concerning individual coefficients:


If the null bypotiosis is true, tris will have a t-distribution with degrees of freedom equal to the residual degrees ol free dom reported by Stata (= n-\# of regression coefficients). So, the only prohlem is, where car we get the value of $s_{b_{3}+b_{4}-b_{2}}$ ?

To dothis, run the regression of MKTDUB on pdub, poscar, pbpreg, and pbpbeef. Click User>Core Statistics>Test Hypotheses, using most recent regression>Linear combinations
of coefficients (klincom) or type db klincom. This will open the klincom dialog box:

| 圄 klincom - Linear combinations of estimators (lincom) w/e... | $\square$ |  | X |
| :--- | :--- | :--- | :--- | :--- |


| Linear expression: |
| :--- |
| pbpreg+pbpbeef-poscar |

Exponentiate coefficients
$\exp (b)$
Odds ratio
Hazard ratio
Incidence-rate ratio
Relative-risk ratio
95 Confidence level
(2) (1) 酉
Type pbpreg+pbpbeef-poscar into the "Linearexpression" field and click OK. ${ }^{6}$ The Stata output should look like Figure 7.7
. klincom pbpreg+pbpbeer-poscai
(1) - poscar + pbpreg + pbpteef $=0$

| MKTDUB | cgef | Std. Err | t | $P>\|t\|$ | [95\% Con | nterval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | . 0001875 | . 0001413 | 1.33 | 0.187 | -. 0000925 | . 0004676 |
| If $\mathrm{Ha}:<$ then $\mathrm{Pr}(\mathrm{T}<\mathrm{t})=.906$ <br> If $\mathrm{Ha}:$ not $=$ then $\operatorname{Pr}(\|T\|>\|t\|)=.187$ |  |  |  |  |  |  |
| If Ha: $>$ tren $\operatorname{Pr}(T>t)=.094$ |  |  |  |  |  |  |

Figure 7.7: Stata's klincom test output.

[^36]First, the value under Coef. ( 0.0001875 ) is exactly $b_{3}+b_{4}-b_{2}$ (our estimator). Second, the value under Std. Err. (0.0001413) is exactly $s_{b_{3}+b_{4}-b_{2}}$, the standard error (or estimated standard deviation) of our estimator. Therefore, the test statistic for our hypothesis test is $0.0001875 / 0.0001413=1.327$, which is precisely the test statistic that Stata reorts after rounding $(\mathrm{t}=1.33)$. We can calculate the p -value $=\operatorname{ttail}(108,1.327)=0.0936537$ or $9.4 \%$. The klincom command actually calculates this value automatically and displays it in the last rovy of Figure 7.7 (If $\mathbf{H}_{\mathbf{a}}:>$ then $\operatorname{Pr}(\mathbf{T}>\mathbf{t})=\mathbf{0 . 0 9 4}$ ). It looks as if we have fairly strong (though naybe not as strong as we hoped) evidence that Ball Park is our leading competito: The method presented here is general and will work for any hyp theses comparing a linear combination of regression coefficients to a number. For examaple, suppose you wanted to estimate if the effect on our market share would be oigger from a 10-cent drop in the Oscar Mayer price or a reduction in the Ball Park prices of 15 conts on the regular brand and 9 cents on the special hot dog. You would want to compare $-10^{*} \beta_{2}$ with $-15^{*} \beta_{3}-9 * \beta_{4}$. Therefore, if you were doing a twotailed test, the alternative hypothesis would be the following:


If you warted to sea if the effect of the Ball Park changes was at least 0.001 larger than the effect of the Oscar Mayer changes, the alternative would be the following:

$$
\mathrm{H}_{\mathrm{a}}:-10 * \beta_{2}+15 * \beta_{3}+9 * \beta_{4}<-0.001 .
$$

In the first case, you would type $\mathbf{1 5 *}$ pbpreg+9*pbpbeef-10*poscar in the "Linear expression" field of the klincom dialog box. ${ }^{7}$ In the second case, you would type $\mathbf{1 5 * p b p r e g + 9 * p b p b e e f - ~}$ $\mathbf{1 0}$ *poscar $+\mathbf{0 . 0 0 1}$. ${ }^{8}$ The Stata output would give you the needed estimated standará u'eviation (as well as the estimator), test statistic, and the appropriate p-values.

### 7.4 Detecting Multicollinearity



In the hot dog example, the presence of a multicollinearity problem was clear from looking at the correlation between pbpreg and pbpbeef. However, ingeneral, it may be not so clear if a multicollinearity problem is present. For example, suppose you found the correlation between two independent variables is 0.65 or 0.75 . Is there a mpulticollinearity problem? How can we quantify this? More importantly, looking at the correlation ketween pairs of variables often may miss important interactions among three or more variables. These can cause multicollinearity problems as well.


Is there an indicator of a milticoilimearity problem that may overcome these shortcomings of simple correlations? The ansver to this question is the variance inflation factor.


Variarce inflationfactors measure how much the variance of the estimated regression
coefficients are cilarged compared to when the independent variables are not linearly related. For example, suppose the variance of a coefficient is 6 , and the variance inflation factor is 2 . In this case the /ariance of this coefficient should be 3 (6 divided by 2 ) in the absence of

[^37]multicollinearity. Clearly, the larger the variance inflation factors, the more severe are the multicollinearity problems (i.e., the more that multicollinearity is contributing to the lack of precision in our estimates).


For example, assume the $t$-ratio of a coefficient estimate is 0.5 . In this case the coefficient night appear to be insignificant. On the other hand, assume the variance inflaior factor is, 36. This means that the standard deviation of this coefficient is six times (because the square root of 36 is 6) larger than the standard deviation of this coefficient would be in the absence of multicollinearity. The t-ratio is the estimated coefficient divided by its staria d deviation. Thus, the t-ratio (0.5) is six times smaller than it would be in the absencerf a multicollinearity problem. In conclusion, in the absence of a multicollinearity problens the t-ratio of this coefficient would be $3(=0.5 * 6)$ and the coefficient estimate roud have been significant. Of course, since multicollinearity is present in our data, we sannet conclude we have significant evidence of an effect. We can say, however, that maticollinearity was severe enough to have led to the insignificance in the t-test.


Consider the same example as before, but now assume the variance inflation factor is 4 . In this case, the t-ratio of the coenticiemt would be only 1 in the absence of multicollinearity.

A thres otten used for the variance inflation factor is 10 . That is, if the variance inflation factor is above 10, ther. a serious multicollinearity problem exists in the data.

To obtain the variance inflation factors using Stata, after running a regression click User>Core Statistics>Model Analysis, using most recent regression>Variance Inflation Factors (vif). ${ }^{9}$

[^38]Click OK, and Stata will report the variance inflation factors for all independent variables. To illustrate how to check the variance inflation factors, we will reexamine the hot dog regression.

Consider the regression with all the prices (see Figure 7.3). MKTDUB is the dependent vatiable. The independent variables are all four of the price variables. The variance \%flation factors may be found in Figure 7.8 in the VIF column. The variance inflation facto s of the two Ball Park prices are 25.97 and 25.15. These are well above 10. Therefore, as we ueterninea before, a multicollinearity problem exists in this regression and the two $\mathrm{Ba} / 1$ Park prices are the multicollinear variables.


Consider another regression MrTDUB is once more the dependent variable. The independent variable are all the price variables except the Ball Park prices. The variance inflation factors are the following:

| - vif |  |  |
| ---: | ---: | ---: |
| variable |  |  |
| pdub <br> poscar | VIF | $1 /$ VIF |
| Mean VIF | $\mathbf{1 . 3 1}$ | $\mathbf{0 . 7 6 5 3 2 9}$ |
| $\mathbf{0 . 7 6 5 3 2 9}$ |  |  |

The variance inflation factors of Dubuque's price and Oscar Mayer's price are 1.31 ; therefore, both the variance inflation factors are below 10. This indicates we do not heve seripus multicollinearity problem in this regression.

### 7.5 Omitted Variable Bias



Multicollinearity can make it difficult to obtain precise estimates of the coefficients of strongly related variables in the regressior equation. A different and often more serious problem can occur if we leave out one or more related independent variables from a regression. This is called an omitted variable bias and we've seen it at york in the refrigerator case and some of the case exercises in Chapter 6 .

Examine Case Exercise 4 from Chapter 6 called Show me the money. In that case, we were surprised to see that the more often a baseball player strikes out, the higher his salary tends to be. This outcome is nether spurious nor phony but is the result of an omitted variable bias. That is, players who strike out a lot actually do make more money then those who do not, but they also hit a lot of homer runs. (For instance, Sammy Sosa is, as of this writing, third in the all-time career strike on list behind Reggie Jackson and Andres Galarraga, and all three are in the top-40 career home run list.) The strikeouts 2 dataset extends the dataset used in the case exercise.

The original regression using just strike outs is shown in Figure 7.9.

| - regress salary strike_outs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df | MS | Number of | 337 |
| Model | 84949301.8 | 1 | 84949301.8 | Prob $>F$ | 0.0000 |
|  | 431695388 | 335 | 1288642.95 | R-squared | $=0.1644$ |
| Total | 516644690 | 336 | 1537633.01 | ROOT MSE | 1135.2 |
| salary | coef. | std. | Err. t | $\mathrm{P}>\mathrm{t} 1 \quad 1.95 \%$ coni | Interval] |
| strike_outs | 14.8636 | 1.830 | 671 8.12 | 0. 0001126254 | 18.46465 |
| _cons | 405.6697 | 120.8 | 324 3.36 | $0.001 \quad 157.9838$ | 643.3556 |

Figure 7.9: Salary vs, str ke outs.

Watch what happens when we add the hore rens variable to our model. We will see a major change in the coefficient on strike out (sfe Figure 7.10).

[FigCap]Figure 7.10: Salary vs. home runs and strike outs.

The coefficient on strike outs has dropped from 14.86 to -3.06 . What's happening here? Which one is the 'right' coefficient? Well, they're both right, but the proper number depends on the question you ask:
i. On average, how much does salary increase for every strike out?
ii. On average, for a player with a certain number of home runs, how much does salary increase for every strike out?

The answer to the first question is about $\$ 14,860$, and the answer to the second is about $-\$ 3,060$.

The direct effect of one more strike out is negative; that is, holding home inns constant, the owners would pay players less if they had more strike outs. What's important here is the existence of an indirect effect. Hitting a lot of home uns will make the owners happy enough to pay the player a higher salary, but trying to hit a home rum will ofter lead to a strike out. So, more strike outs is associated with more home ruis, rhich is associated with a greater salary. When the regression only includes the strike out yariable, he coefficient has to carry the weight of the direct effect (which is negative) and he indirect effect/which is overwhelmingly positive) on salary. In other words, omitting the home-run pariable from the regression biases the coefficient of the strike out variable. 涌e will see this effect whenever related independent variables each have a measurable impact on the dependent variable.


Figure 7.11: Influence diagram.

## CALCULATING THE EXTENT OF THE BIAS

Compare two estimated regression equations, where we omit one of the variables in the second one:

$$
\begin{gathered}
y=b_{0}+b_{1} x_{1}+b_{2} x_{2} \\
y=b_{0}^{\prime}+b_{1}^{\prime} x_{1}
\end{gathered}
$$

The bias on the coefficient of $x_{1}$ is defined to be $b_{1}-1 b_{1}$. t turns ctt that this bias is given by the following:


The effect of $x_{2}$ on $y$ is given by $b_{\vee}$, and the effect of $x_{1}$ on $x_{2}$ is given by regressing $x_{2}$ on $x_{1}$ :
 them between the two regressions. The only thing that changes is that now the $\mathrm{c}_{1}$ is the coefficient on $\mathrm{x}_{1}$ in the multiple regression of the omitted variable on all the non-omitted variables.

As an illustration, we can determine the bias in the strike-outs case by using the previous regressions plus the one in Figure 7.12:


Figure 7.12: Regression of home funs vs strike buts.

This new regression tells us that every adritional strike out yields an average of 0.2056 home runs. The rule for determining the bias on be coeftrient of strike outs from omitting home runs tells us to multiply the effect of st-ike outs on Fome runs times the effect of home runs on salary holding strike outs fixed the coefficietit on bome runs from the regression in Figure 7.10) or $0.2056 * 87.1526=17.32$. We.ran verify that this is the same as the change in the value of the strike-out coefficient when we go from the multiple regression with both variables to the simple regression with just strike outs: $14.86-(-3.06)=17.92$.

## Sign of the Bias

The onitted variable bias in this example was positive (omitting home runs caused an increase in the coefficieht on strike outs) but that is not always the case. The influence diagram in Figure 7.11 gives us an idea how to generalize these results. In terms of the figure, the omitted variable
bias on the coefficient of the variable in the upper-left box from omitting the variable in the lower box is given by the product of the two lower legs of the triangle.

If the signs of the relationships depicted by both lower legs are positive, then the blas will be positive as we saw in the strike-out example. Similarly, if both relationships have negative sign, then the bias will be positive. For instance, consider a simple regression of the yalve of a house in Hawaii on its age. You might be surprised to find a positive coeffigient hare since newer houses are usually more valuable. However, this result is easily explaned by taking in to account omitted variable bias and the local real estate market. There is not much landin Hawari, so the earliest houses were built in the best places like the beachfront. The omittea variable of "Distance to the beach" will have a negative relationship with the house's age and with its value. Though the direct impact of age is negative on the value of a house, the addition of the positive omitted variable bias can create an overall positive oefficient.

Figure 7.13: Influence diagram of real estate value.

What lif one sign is positive, and the other one is negative? For instance, consider a regression of the number of priests in a city on the air quality, which has a negative coefficient. What might cause that result? Does dirty air cause people to become more religious? The omission of the
variable population size would explain it. A city with dirty air is usually big (a negative relationship), and a city with many people living in it will usually need more clergy (a positive relationship). The product of these two effects creates a negative omitted variable bias or the coefficient of air quality. If this indirect effect is stronger than the direct effect of ail quality on the number of priests, which in this case is probably near zero, then the coefficient in the simple regression will be negative.

## SUMMARY



It is often useful to conduct hypothesis tests concerning sums and differences or general linear combinations of regression coefficients. The Linear combinations of coefficients (klincom) command in Stata can be used to carry oat such tests. In the context of the Hot Dog case we used such a test to compare the combined effect of Ball Påk's prices to the effect of Oscar Mayer's price on Dubuque's market share.

A multicollinearity problent arises when two or more independent variables are strongly related. In the Hot Dog case the relationship yas between two highly correlated price variables; however, correlation is a limited pati-wise concept, and the problem of multicollinearity is more general than this. Observing a lack of high correlation coefficients does not ensure a freedom from multicollinearity problems; therefore, variance inflation factors need to be used to detect nulticellinearity problems accurately.
according to the tests on the individual coefficients and some of these seemingly insignificant variables are involved in the multicollinearity. Nothing can be done to get rid of multicollinearity short of gathering new data where the strong linear relationships among independent var ables are lacking.

The estimated regression coefficient on an independent variable may be biased by the omission of another independent variable that is related both to it and to the dependent variabre In many practical situations, you may suspect that such a variable may have been omitted from the analysis, but no data is available to allow you to include it. In stech cases, being able to reason about the likely sign of the bias using the influence dagam can behelpful in understanding the potential impact and importance of the omission.

## NEW TERMS

Multicollinearity
The term lsed to desc ibe the presence of linear relationships among the independent variables

Hidden extrapolation Making a presiction using values of the independent variables that are collectively far from the sample data though each x variable is
 individually within the sample data's range

The variables in your regression you are not testing for joint significance The variables in your regression you wish to test for joint significance Variance inf ation factor (VIF) A measure of how much the variance of the estimated regression coefficients are enlarged as compared to when the independent variables are not linearly related. Used to detect multicollinearity. A common rule
is a VIF above 10 indicates strong multicollinearity involving that variable

Omitted variable bias The effect on a regression coefficient caused by omitting an mportant correlated variable from the model

## NEW FORMULAS

p is the number of variables in the extended model, q is the number of variables in the base model, and p-q is the number of variables being tested.

The omitted variable bias on the coeffirient of $x_{1}$ from omitting $x_{2}$ is

where each of these values come fiom the following estimated regression equations:

- $y=b_{0}+b_{1} x_{1}+0_{2} x_{2}$
- $y=b_{0}{ }^{\prime}+b_{1}{ }^{\prime} x_{1}$

- $x_{2}=c_{0}+c_{1}-x_{1}$


## NEW STATA AND EXCEL FUNCTIONS

## STATA

## User>Core Statistics>Bivariate Statistics>Correlations (correlate)

Equivalently, you may type db correlate. This command displays a correration matrix with the estimated correlations between each pair of variables in the dataset. If anty of the variables are non-numeric, Stata will report an error. To avoid this, you can specify the (humeric) variables for which you want Stata to calculate pairwise correlations in tie "Variavico" field of the correlate dialog box.


Alternatively, you can directly type the ommand correlate varlist, where varlist corresponds to the names of the variables for which you want to calcalate the correlations. Omitting varlist will generate a correlation matrix for al/varlables in the current Stata dataset (provided that all variables are numeric).

## User>Core Statistics>Test Hypothesis, using most recent regression>Joint significance

 (testparm)Equivalfhtly, vou may type db testparm. This command opens a dialog box that asks the user to select the added varialles in the "Test coefficients of these variables" field. Choosing the "Jointly equal to zers" option will tell Stata to conduct an F-test, which we used to determine joint significance of the added variables in a regression with the base and added variables as the independert variables. Note that you need to have run a regression on your extended model before using this command. The Stata output will display the F statistic and p-value of a given Ftest.

Alternatively, you can directly type the command testparm varlist, where varlist contains the name(s) of the added variables. The native menu path in Stata is

## Statistics>Postestimation>Tests>Test parameters.

## Ftail(n1, n2, f)

Typing display Ftail(n1, n2, f) into the Stata Command box will generate the p-velue associated with a given $F$ statistic, $\mathbf{f}$. $\mathbf{n 1}$ is the number of variables being lested ( $\mathrm{p}-\mathrm{q}$ ), and $\mathbf{n} \mathbf{2}$ is the degrees of freedom for the extended model with all the variables included ( $\mathrm{n}-\mathrm{q}-1$ ).

## User>Core Statistics>Test Hypotheses, using most recent regression>Linear combinations

 of coefficients (klincom)Equivalently, you may type db klincon. This cemmand opens a dialog box that asks the user to enter a linear expression of regressioñ ceefficients. Do so and then click OK, and Stata will conduct a hypothesis test with he null hypothesis "expression=0." Stata reports the test statistic and p-values correspondirg to all three types of alternative hypothesis (i.e., "expression" $<, \neq,>$ $0)$.


Alternatively, you can directly ty pe the command klincom expression.

Note that inyou type liacom expression ${ }^{10}$ instead, Stata will execute its built-in linear combination of coefficients test rather than the customized klincom modification of lincom. The only difference is that the klincom command will display p-values corresponding to both oneand two-sided tests, while the lincom command only displays the p-value for the two-sided test.

[^39]
## User>Core Statistics>Model Analysis, using most recent regression>Variance Inflation

 Factors (vif)

Equivalently, you may type db vif. This command reports the variance inflation factors for each independent variable in the most recent regression. We can use this comand to defect multicollinearity.

Alternatively, you can directly type the command vif.

## EXCEL

## FDIST



Typing $=\mathbf{F D I S T}(\mathbf{X}, \mathbf{p - q}, \mathbf{n - p}-\mathbf{1})$ ino an ernpty cell retarns the p-value associated with a given F statistic, $\mathbf{X}$. $\mathbf{p}$ is the number of variables in the extended model, $q$ is the number in the base model, and n is the sample size.


## CASE EXERCISES

## 1. Show me even more money.

Running an agency that represents many professional athletes, you are ofter for ed into serious contract negotiations. Having recently fired your assistant, you have decided to evaluate the data collected to support your argument that the player whose contract you are negptiating is currently underpaid. The data in the strikeouts ${ }^{11}$ file extends the previcus dataset tr include much more information.


Start by conducting a regression using all of /ire data provided to predict salary. Do the signs of all of the coefficients make sense?


Next, remove each of the variables that are insignificant based on $\alpha=0.05$. Are the variables that you removed jointly significan? Hivw can you tell?

## 2. Video sales



Your compray bas tine rights to distribute home video of previously released movies. Your goal is to estirnate the volume of DVDs you can expect to sell based on box office totals of the original movies. Data are available for 30 movies that indicate the box office gross (Gross, in millions of dollars) and the number of DVDs sold (Videos, in thousands).

[^40]

You are planning for the video release of Matchstick Men that grossed \$36 million. n the Stata Data Editor, you enter 36 for Gross in a blank row, execute the command ch confint, and get the following:


| predicted | se_est_mean | se_ind_pred |
| :--- | :--- | :--- |
| 317.53 | 13.89164 | 49.84182 |

a. Predict the DVD sales for Matchstick Men.
b. Construct a $95 \%$ prediction interval fo the video sales of Matchstick Men.
c. Your firm has a truckiead of films that were huge flops and grossed $\$ 0$ each. What would you expect average vioieo salos to be for these films known as the "flops"?
d. Based on your regression, can you prove at a $5 \%$ significance level that the average video s\%es of the flops will be greater than 10,000 copies per film?

## 3. D-school cosis

[^41]explains the "estimated total costs" of attending the program. Does the coefficient of "base salary: median" make sense? What might be causing this unusual result?

## 4. Video libraries

A group of independently owned video stores in the south has formed trade g.oup to help support their survival in the face of competition from dominant nztonar chans. The group of 29 store owners have collected data in the videostores file, which ccntains the average monthly sales, neighborhood population (in thousands), annual advortising expenses, and the number of DVD and VHS films in the libraries (films that have been available for over one year) of each store. A big problem facing these small stores is if they should wpdate their collections of older films by adding DVD versions to their current hbrary. Though they usually buy the new movies in both formats, the lower sales volumes at these small stores make the expense of an older DVD hard to justify. The typical store c\%irreak even if the פVD brings in more than 1 dollar per month.


Using all of the variahles provided to you by the trade group:
a. Which of the £our variables given seem to be significant predictors of sales?
b. On average, how mush does one DVD add to the monthly sales of one of the stores?
c. Provide a $95 \%$ confidence interval for your estimate.
d. Should the sto es upgrade their DVD libraries?

## CASE INSERT 2

## COLONIAL BROADCASTING

In this case, we will use our regression skills to help run a broadcasting compary. The Colonial Broadcasting Company case describes the problem of Barbara Warringtor, vice president of Programming at Colonial Broadcasting Company, who has to decide which ielevision movies to broadcast and when to schedule them.


The assignment is to answer all questions in part A of the case except question 7a and all questions in part B except question 12.


In the regression output in the case, some numbers anpear within parentheses indicating a negative number. That is, (8) mans-8. All questions can be answered without running any additional regressions. However, you are free th do any supplementary analysis using the data contained in the colonial \&ile.


In answering question 11, you will think you need to know the standard error of prediction, and you will be right. However, the regression output in the case only provides the standard error of regression. So, for convenience only, you may use the standard error of regression to approximate the standard error of prediction in your answer.

[^42]
## CHAPTER 8

## THE ADVERTISING CASE:

## HETEROSKEDASTICITY AND LGGARITHMS

This chapter presents a brief overview of natural logarithms and (emonstrates their use as a technique to model curvature in regression and as a method far Iemoving heteroskedasticity or non-constant variance. Special concerns when making predictionsing regressions with logarithmic dependent variables are discussed. An example relating advertising expenditures to sales is explored. The detection and implications of heteroskedasticity are explained. Case Exercise 1 reexamines the hot dog case from Chapter 7 with these new tools and issues in mind.

### 8.1 A Primer on Logarithms in Regression

Logarithms are used extensively in statistics. In particular, log-linear regression-modeis art a useful alternative to the standard linear form. They work well in various applications where sorie of the assumptions of the standard linear regression are not satisfied. Noreever/the coefficients of the independent variables in a logarithmic regression are easy trinterpret, and the whole equation is easy to use for prediction.


Log forms of regression are used at least as much, if hot more oftent than the linear form. So, we need to have a good understanding of what they mean and how they/work. To achieve this goal, we describe the main properties of the logarit/m function (the so-called natural logarithm, $\mathbf{l n}$ in Stata or $\mathbf{L N}$ in Excel), and show how the logarithmic transformation of variables can be used in regressions. We will talk about differemt log regression forms (log-log and semi-log), and the interpretation of coefficients in hese regress ons. Then we will highlight the differences between linear and logarimnic egressions as/ar as prediction with these regressions is concerned. Finally, we will introduce an important practical motivation for using log-regressions: logs often "cure" hetexoskudasticity. A more in-depth analysis of heteroskedasticity including detection, effects, and fixes is the final subject of the chapter.

## PROFERTIES OF THE NATURAL LOGARITHM FUNCTION (In)

$\ln (x)$ is a unction that can be evaluated for any positive $x$ value. We show the graph of the function below (Figure 8.1, generated in Excel). To get the graph, we created a column of
different $x$-values (ranging from . 0018 to 20), generated their logs (by typing = LN(A2) in cell B2, etc.), and generated the graph with the chart-wizard.


The function is increasing ever whrere, $\ln (1)=0$, and, as x approaches $0, \ln (\mathrm{x})$ tends to negative infinity. ${ }^{1}$ The logarethm is a concave tynction in that it increases more slowly as x increases (i.e., the slope decreases as x increases).

An interesting property of the logarithm function is that if you keep multiplying $x$ by a constant (for cxanmle, if you double it starting from one, i.e., 1, 2, 4, 8, 16), then the logarithm will increase by constant increment. In the example, $\ln (1)=0, \ln (2)=0.693, \ln (4)=1.386, \ln (8)=$ 2.079, $\ln (16)=2.773$; the increment is about 0.693 or the $\log$ of the multiplier, $0.693=\ln (2)$.

[^43]In general, if you increase a number by a fixed proportion (say, by 15 percent, i.e., you multiply it by 1.15), then the logarithm of the number will increase by the logarithm of the multiplier (in the example, by $0.1398=\ln (1.15))$.


The logarithm function transforms the proportional increments ("doubling or sincreasing by $15 \%$ ") into additive increments ("adding $\ln (2)=0.693 "$ or "adding $\ln (1.15)=0.1398$ "). In other words, the logarithm function transforms growth rates into (additive) growth.

Perhaps more interesting, the following rule of thumb can be used fortranslating small percentage changes in $x$ into absolute changes in $\ln (x)$.

(


Every 1\% change in $x$ corresponds to (approximately) a 0.01 change in $\ln (x)$.

That is, a $k \%$ change in $x$ corresponds to $a 0.01^{*} k$ charge in $\ln (x)$, for any $k$ not too large. For example, a $5 \%$ increase from 20 results in 21; f you take logs, the difference between $\ln (21)$ and $\ln (20)$ is equal to $\ln (21)-1(20) \approx 3.042 .99=0.05$.

The ln function has many other interesting and related properties. For example, the logarithm of a product, $\ln (2 * 3)$ is equal to the sum of the logarithms of the two factors, $\ln (2)+\ln (3)$. Also, $\ln \left(x^{a}\right)$ $=a^{*} \ln (x)$, and $\ln (1 / x)=-\ln (x)$.

Mamy exanples show where logarithms play an important role in the world. In music, the position of a key on the keyboard is a logarithmic function of its pitch's frequency. Our senses, in general, measure things in logs (this is called Fechner's law): "As stimuli are increased by multiplication, sensation increases by addition." Logs come up in financial computations, too.

Suppose that you put $\$ 1$ in the bank, and a year later receive $\$ 1.20$ (quite a good deal). What interest rate does this gain correspond to if interest is compounded continuously? The answer is $r$ $=\ln (1.2)=0.1823$, or $18.23 \%$.


The inverse of the natural logarithm function is the exponential function, $\exp$ (iit Stata). It you have the value for the logarithm of a variable, then, to get the variable's varue, you
"exponentiate" it. That is, $\exp (\ln (x))=x$ for any positive number $x$

### 8.2 Logarithmic Regressions: Forms and Interpretation of the

## Coefficients



Recall that in the standard linear regression seting ve assume the following:


Here, we are saying that a nne-unit increase in X causes Y to increase by $\beta_{1}$ units, on average. For example, if $X$ is price in dolars and $Y$ is sales of wheat in thousands of tons, $\beta_{1}$ is the number of thousands oftons that average wheat sales change by when the price is increased by one dollar.

We examine two logarithmic regression forms when you have a single independent variable. One
is called the emi-log specification, and the other the $\log -\log$ specification. In the semi-log
specification, you create a new variable, $\ln \mathrm{Y}=\ln (\mathrm{Y})$, and regress it against X . In the $\log -\log$ specification, you regress $\ln \mathrm{Y}$ against $\ln \mathrm{X}=\ln (\mathrm{X})$.

That is, the semi-log regression model can be written as follows:
(SL) $\ln \mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}+$ error term.

Here, the interpretation of the coefficient $\beta_{1}$ is that when X increases by 1 unit. $\ln \mathrm{Y}$ changes Dy $\beta_{1}$ units, on average. Because of the interpretation of logs given above, we can say that a one-unit increase in X is associated with approximately a $\left(\beta_{1}{ }^{*} 100\right) \%$ charge in Y .


For example, let the equation be $\ln Y=1-0.03 * \mathrm{X}$. Each anit ir creese in X leads to a 0.03 decrease in $\ln \mathrm{Y}$, which corresponds to a $3 \%$ decrease in Y . (We rad to multiply 0.03 by one hundred to get 3 , and then we added "percent".)

The log-log regression model with a single X variable is as follows:


Some X variables annot appear in a log-log regression because they take non-positive values. A good example is when X is a dummy: You cannot take the log of a dummy because it sometimes equals 0 .


The interpretation of he coefficient in (LL) is interesting: A $1 \%$ increase in X will imply a $\beta_{1} \%$ change in Y . Why? A $1 \%$ increase in X corresponds to (approximately) a 0.01 increase in $\ln \mathrm{X}=$ $\ln (\mathrm{X})$. Accofding to (LL), a 0.01 increase in $\ln \mathrm{X}$ will lead to a $\beta_{1}{ }^{*} 0.01$ change in $\ln \mathrm{Y}$. This change, in turn, corresponds to (approximately) a $\beta_{1} \%$ change in Y.

For example, let the equation be $\ln \mathrm{Y}=1-3 * \ln \mathrm{X}$. Then a $1 \%$ increase in X leads to a 0.01 increase in $\ln X$, which implies a 0.03 decrease in $\ln Y$. This corresponds to a $3 \%$ decrease in Y. Therefore, a 1\% increase in X leads to a 3\% decrease in Y. Here, we do not multiply the coefficient by 100 in contrast to what we had to do in the semi-log case.

The natural interpretation of the coefficient of $X$ in the (LL) regressior is that itrelates a percentage increase in X to a percentage change in Y . Contrast this witi the interpretation of the coefficient in a linear regression ( L ), which relates a unit increase in X to e unt change in Y .

You might recall from microeconomics that the percentage response in a quantity to a percentage change in another quantity is called the elasticity. Thes, in equat on(LL), we are assuming the elasticity of Y with respect to X is $\beta_{1}$. Examples include where Y is sales, X is price, and $\beta_{1}$ is the price elasticity of demand; where $Y$ is ales, and $X$ is income, and $\beta_{1}$ is the income elasticity of demand; and where $Y$ is cost, and $X$ is ounut, and $\beta$ is the output elasticity of cost. For this reason, the form (LL) is widely used and of prectical importance.

In a multiple regression, you may heve some X variables in logs and some others in their original linear "measurement units:'


Such a mixed semi-log/log-log regression form may be necessary to accommodate dummy varitbles in a log-log regression, for example. Remember, you cannot take ln of a dummy or other variable that sometimes has zero or negative values. The interpretation of the coefficients follows just as above. Holding the other included variables fixed, a $1 \%$ increase in $X_{1}$ will change

Y by $\beta_{1} \%$. Holding the other included variables fixed, a unit increase in $\mathrm{X}_{2}$ will change Y by approximately $\left(\beta_{2}{ }^{*} 100\right) \%$.

### 8.3 Prediction With Logarithmic Regressions

When you transform some variables using logs and run a logarithnic regressien, remember you are no longer working with the original $\mathrm{X}, \mathrm{Y}$ data. This affects ho $w$ you do forecasting in two ways.


First, when you are using a log-log model, $\ln \mathrm{X}$ is the independert variable. This means that if you want to predict when $\mathrm{X}=100$, you do not enter 100 in Stata's Data Editor. Rather, the X in the regression is $\ln (X)$. Thus, you must remeridar to type in the value $\mathbf{4 . 6 0 5 1 7 0 2}(=\ln (100))$ in the appropriate cell in the data editor (Note that when eornputing logarithmic values it is a good idea to keep more decimal places than usual as they can make a difference when converting back to the original units. For example, $\exp (4.5051702)=100$, but $\exp (4.605) \approx 99.98$.)

The second important thing is that it you are using $\ln Y$ as the dependent variable (e.g., in the SL model or the II model), what the Prediction, using most recent regression (confint) command will gire you is a rediction, a confidence interval, and a prediction interval for $\ln \mathrm{Y}$ and not for Y. Since this is not yyfically what you want, you must reconstruct the prediction for Y, the CI, and the PI. To do this, you must exponentiate Stata's prediction output so you are getting Y and not $\ln Y$. This must be done for the fitted value (i.e., the prediction) and the ends of the confidence and rediction intervals. In addition to this, it turns out that exponentiating introduces a downward bias in the CI and in the estimate for the average value of Y (but not for the estimate
of an individual value of Y ). Typically, this bias is small in practice, but it can be large and you should get in the habit of correcting for it. The way you do this is to multiply through by $\exp \left(\mathrm{s}^{2} / 2\right)$ after exponentiating, where $s$ is the standard error of the regression which is found in heot MSE row in the Stata regression output. The expression $\exp \left(s^{2} / 2\right)$ is called the б्rrectitn factor. This bias is absent from the PI or when estimating an individual value of Y. Therefore, you must not use the correction factor in calculating the PI or your estimated individeal value of Y.

### 8.4 Ad Sales: Using Logarithmic Regressions

We will study an interesting application of logs in the Ad Sales case that uses the data in the file adsales. This dataset contains observations for he sales of a product (variable sales) and advertising expenditures for the same prodact (variable expend). Each are measured in thousands of dollars. Should we anticipate a linear relationshìp between sales and advertising or do diminishing returns exist? In other words, it is likely that each additional dollar spent advertising may not have as much of an impact as the previous dollar? The scatterplot in Figure 8.2 suggests diminishing returns from advertising.



Figure 8.2 catterplot of sales vs. expend.

A log-log model might be approrıate. To see this, you may use the residual plot techniques introduced in Chapter 6 to diagnose curvature problems. If you regress sales against expend and then plot the residuals versus the predicted values, you will see distinct curvature in that plot. This means that the linearmudel is inadequate. We have seen three types of non-linear models thus〉 far: quadratic, semi-log, and log-log. In order to implement them, create three new columns that contain the nitural logarithms or variables expend and sales and the square of expend respectively. Laber the $n$ as Inexpend, Insales and expendsquared. ${ }^{2}$ By trying each of the three non-linear models and/examining the plots of residuals versus predicted values, you may verify that the $\log \log$ model appears to be the one that best captures the curvature in the relationship (and so removes the curvature from the residual plot).

[^44]Run the regression for Insales against Inexpend. Suppose we want to obtain the predicted individual and average values of sales and confidence and prediction intervals using a $95 \%$ confidence level when spending $\$ 2,000$ on advertising (expend $=2$ ). First, calculate in(2) (=.69314718), then open Stata's Data Editor and type or paste this value, .6931/718, in cell lnexpend[174] (i.e., row 174 and column Inexpend). Minimize or close the bata Editor. Then, click User>Core Statistics>Prediction, using most recent regression (confini) ot type db confint. Click OK, and Stata will give you, in row 174, the predicted value and confidence and prediction intervals with $95 \%$ confidence level for $\operatorname{lnsales}$ when lexpend $=\ln 2=0.69314718$. To get the predicted average value for sales when expend $=2$, you can twoe generate pred_avg_sales=exp(predicted)*exp((e(rmse)^2)/2) ir the Statz_Command box (i.e., exponentiate the prediction for Insales and then multiply by the correction factor; e(rmse) is where Stata stores $s$, the value of the standar eror of the regression (or Root MSE)). Open the Data Browser, and you will find the predicted average sales when ad spending (expend) $=2$ in cell pred_avg_sales[174]. The resulting number stoulo be 16.71939 or $\$ 16,719.39$. To get the predicted individual value for sales when expend $=2$, you can type the command generate pred_indiv_sales=exp(prodicted). Apen the lata browser and look at the cell pred_indiv_sales[174]. The resulting number should be 16.71864 or $\$ 16,718.64$.

To obtain the corrected coninderce interval, you can type the following commands: 1) generate Cllow. cor ected $=\exp ($ Cllow $) * \exp \left(\left(e(\text { rmse })^{\wedge} 2\right) / 2\right)$ and 2$)$ generate CIlhigh_cerrected=exp(CIhigh $)^{*} \exp \left(\left(\mathbf{e}(\mathbf{r m s e})^{\wedge} \mathbf{2}\right) / \mathbf{2}\right)$. You will obtain the $95 \%$ confidence interval for avarage sales when expend $=2$ as $(16.69529,16.74352)$ or $(\$ 16,695.29, \$ 16,743.52)$
(in cells c)Ilow_corrected[174] and CIlhigh_corrected[174], respectively).

To obtain the correct prediction interval, you can type the following commands: 1) generate
Pllow_corrected=exp(PIlow) and 2) generate PIhigh_corrected=exp(PIhigh). You will obtain
the $95 \%$ prediction interval for sales when expend $=2$ as $(16.40878,17.03435)$ or $(\$ 16,408.78$, \$17,034.35) (in cells PIlow_corrected[174] and PIhigh_corrected[174], respectively). Notice that we did not use the correction factor in calculating the prediction interval.

When you are done, rows 172 to 174 of your data sheet will look like Figure 8.3. If you want to calculate the confidence and prediction intervals for any other confiderice level open the Prediction, using most recent regression (confint) dialog box again and type the confidence level that you want in the "Confidence level in \%" field. Values iis the pred_avg_sales and pred_indiv_sales columns will remain unchanged. However, to get be correct CI and PI, you will have to regenerate the variables Cllow_correct d, CIhigh_corrected, PIlow_corrected, and PI_high_corrected. To do so, for example, you can type the conmand replace Cllow_corrected=exp(Cllow)* $\exp (\mathbf{e}($ rmse $) / 2 / 2$, after you have rerun the confint prediction command with the newly specified confidence level. ${ }^{3}$

You may also type in other values of lnexpend in the data editor. To get the appropriately transformed prediction, C 4, and PI ini this case, use the Prediction, using most recent regression (confint) command again atter you have entered new values of lnexpend. Then, regenerate the variables pred_avg_sales, pred_indiv_sales, corrected_CIlow, corrected_CIhigh, corrected_PIlow, and corresteapI_high by typing replace... instead of generate... in the respective omntends that you used to generate these variables originally. For example, to regenerate the variable pred_indiv_sales, you can type replace

```
pred inaiv_soles=exp(predicted).
```

[^45]

Figure 8.3: Prediction for sales with expend $=2$.

### 8.5 Introduction to Heteroskedasticity



Finally, we should talk about an important reason why log-reşessions are useful that is separate from their use in modeling curvature as in the Ad Sa es application. A key reason for using logarithmic regressions is simple: by taking the logarithm oir $\frac{1}{x}$ and regressing it on the X variables, which may be in linear units or logs, we are often able to reduce heteroskedasticity (non-constant error variance).

Why? Suppose the relationship between $Y$ and $X$ is such that average $Y=\beta_{0}+\beta_{1} X$; however, an individual observation's devietion from the 2.verage (the "error term") is proportional to Y. For simplicity, imagine he inuividual $\mathrm{Y}_{\mathrm{i}}$ (at any given level of $\mathrm{X}_{\mathrm{i}}$ ) is within $\pm 2 \%$ of the average Y at $\mathrm{X}_{\mathrm{i}}$. This structure is heteroskedastic. The standard error of the regression is not constant but instead increases proportionally with Y .


Now see what happens when we create $\ln \mathrm{Y}=\ln (\mathrm{Y})$, and regress this variable against X or $\ln \mathrm{X}$.
That is, we can use a semi-log or a log-log specification. $\mathrm{A} \pm 2 \%$ error in Y will become a $\pm 0.02$ error in 1 Y The new error term is not increasing with Y anymore; the error has become homoskedastic.

This example exhibits what often happens in practice: a heteroskedastic regression, where the error term is approximately proportional to Y , can be transformed into a homoskedastic regression by transforming the dependent variable into logarithms. (We need not transform X for this purpose.) To further illustrate the effect of logs on a regression, we show thee verisions of the same data using three different scatterplots (with a fitted line): the first plot/shows Y againsi X (the relation is visibly heteroskedastic); the second one is $\ln Y$ against $x$, ald the third one is $\ln Y$ against $\ln X$.


Figure 8.4: Y vs. X.

Ir. Figare 8.4, Y against X appears to be linear but heteroskedastic. The errors are getting larger as Y increases. Note the "cone-shaped" cloud of data points.


In the second scatterplot (see Figare 8.5), the variance of the error term seems to be roughly stable, and so the heteroskedasticity is gone, but there is noticeable curvature. This is not surprising: If Y is indeed linear in X , then $\ln /$ will be non-linear in X (the logarithmic transformation of Y introduces survature).



The third plot (see Figure 8.6) shows that the heteroskedasticity is gone, and the curvature introduced by the semi-log model is gene. too, int this log-log model. This is beautiful.

The situation illustrated in these three scatiprpipts is not always the case when we find heteroskedasticity in the inear specirication, but it is fairly typical. A log-transformation of the dependent variable gften resoives hrteroskedasticity, and at least one of the possible logregressions (LL or SL) ofter works in terms of linearity. In the scatterplots, the SL specification exhibited curvature, and the L specification did not. However, there are many examples in which the everse is trie and LL exhibits curvature. In other examples, both models effectively capture the curvatue is the data.

In Sectior 8.7, we will explore heteroskedasticity, its detection, effects, and possible fixes, in more deph.

## Summary for logarithms in regression

As we stated earlier, a $k \%$ change in (any variable) $X$ corresponds to approximately $k^{*} 0.01$ change in its logarithm, $\ln \mathrm{X}$, for any $k$ not too large. This property of the logarinm is useful in guiding the interpretation of coefficients in a log regression. It also allows as to eliminate heteroskedasticity when the error term is approximately proportional the the dendent variable: we take the logarithm of $Y$ and regress it against $X$ or $\ln X$.


The two forms of logarithmic regression we examined are semi-log (nv against X ) and log-log (lnY against $\ln \mathrm{X}$ ). In the semi-log case, we multiply the coefficient on X by 100 to get the percentage change in $Y$ as a result of a unit increase in $X$, holding al/ other included variables constant. In the log-log case, the coefficient is the elasticity of Y with respect to X (the percentage change in Y for a $1 \%$ incre se X ), kolding all other included variables constant. If a variable takes on zero or negative values, then we eanrot take its logarithm.


When using a logarithmi/ regression for prediction, we must exponentiate the fitted lnY to get the prediction for an individual Y(and the same applies to the prediction interval). For the estimated mean of Y (predicting an average Y ), we have to exponentiate the predicted $\ln \mathrm{Y}$ and multiply it by the correction factor, $\exp \left(s^{2} / 2\right)$, where $s$ is the standard error of regression. The same applies to the calchation of a onfidence interval for average $Y$ : exponentiate the two limits and multiply them by the correction factor.

### 8.6 An Optional Mathematical Digression

Two comments for the more mathematically inclined:

1. Another look at the change in $\ln \mathrm{X}$ for a change in X using derivatives:

Those of you who took calculus may remember that the derivative of the hatural logarithm function is $\mathrm{d} \ln (x) / \mathrm{d} x=1 / x$. In other words, the slope of the (natural) ngarinn curve is $1 / x$ at $x$.


What does this mean? The slope tells us that for a sm.ll $\Delta$ increase in $x$, the function $\ln (x)$ will increase by $\Delta \ln (x) \approx(1 / x)^{*} \Delta x=\Delta x / x$. In other yords, the absolute change in the logarithm of $x$ is approximately the percentage change in $x$ (he approximation works best for small $\Delta x$ changes).
2. Another look at the logarith nic form.

The inverse of the $\ln$ function, the exp function, can be written as $\exp (x)=e^{x}$, where $e=$
2.7183.... This famous constant is known as the basis of the natural logarithm, or Euler's number.


We have omitted the error term from these expressions for simplicity. (The error term would be multiplicative: There would be a factor $e^{\text {error }}$ multiplying the right hand sides of SL' and LL'.) You
can see the relationship between Y and X is non-linear in either model. Moreover, these regression forms make precise the meaning of the coefficient on the X variable in the SL and LL specifications.


Consider the SL specification and increase $X$ by one. For concreteness, suppose $K$ increases from 0 to 1 . As a result, Y will change by a factor of $e^{\beta_{1}}$; in the example, it goes rom $e^{\beta_{0}}$ to $e^{\beta_{0}+\beta_{1}}$. So, the percentage change in Y is $100^{*}\left(e^{\beta_{0}+\beta_{1}}-e^{\beta_{0}}\right) / e^{\beta_{0}}=\left(\left(e^{\beta_{1}}-1\right) * 100\right)$, whicn, for $\leq m a l i \beta_{1}$, approximately equals a $\left(\beta_{1} * 100\right) \%$ change. (You can check: $e^{r / 1} \approx 1+\beta_{1}$ for small $\beta_{1}$.) The interpretation given earlier for the coefficient in the LL specirication is exact: In the LL regression, $\beta_{1}$ is the elasticity of Y with respect to X .


### 8.7 Heteroskedasticity: Detecting, Effect on Results, Possible

## Fixes



Four basic assumptions are needed for the regression model to give us the best estimates: linearity, constant error vasiance independent errors, and normal errors. The second of these assumpt ons is the assumption that the error term has the same variance for all observations:

$$
\text { Regression Assumption (homoskedasticity): } \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} \text { for all i. }
$$

The purpose of this section is to show you two methods for checking whether this assumption is satisfied in any particular application, to tell you what goes wrong when this assumption is violated, and to suggest possible ways of fixing violations.

Detecting a Violation: There are at least two useful ways to detect variations (heteroskedasticity) in the error variances. The first technique is to run the regression and examine a plot of the residuals versus the predicted values. What should we expect to see on this graph? îf our regression assumptions are satisfied and the error term for each observation nas the same variance, then the predicted value we look at should not affect the vert cal sread way of visualizing variance) of the residuals. Thus, the vertical spread in poinis on the graph should remain approximately the same all the way across.

In contrast, if the graph of residuals versus predicted/values is cone shaped or otherwise varies in a systematic way in the vertical spread of the residuals, this indicates a violation of our constant variance assumption. Below is an example of a plot of residuals versus predicted values that displays a spread in the residuals that ircreases as the predicted value increases (see Figure 8.7). This pattern is often seen when analying data on incorne levels, prices, or asset values.


Figure 8.7: Resi/utal plot with heteroskedasticity.

Though examining the graph of the residuals versus the predicted values can be useful, it can be difficult to see if clear eviaence of non-constant variance exists through graphical methods. To avoid some of these nroblems, moe quantitative techniques are available for detecting nonconstant error variance. One of the easiest to implement is a version of the Breusch-Pagan Test (named after its inventors). This consists of a hypothesis test where the null hypothesis is that $\operatorname{Var}\left(\varepsilon_{\mathrm{i}}\right)$ is constant (homoskedastic) and the alternative hypothesis is that $\operatorname{Var}\left(\varepsilon_{\mathrm{i}}\right)$ varies with the predicted values (y hat's) in a linear way. Stata performs this test and produces the p-value for us. T\% de this, first iun a regression. Then, click User>Core Statistics>Model Analysis, using most recent regression>Breusch-Pagan heteroskedasticity test (hettest) or type db hettest. ${ }^{4}$ The pvaltue for his test will be the value corresponding to Prob > chi2. A low p-value suggests

[^46]rejecting the null and a high p-value suggests not rejecting it. Therefore, a small p-value (usually below 1 or .05) is strong evidence of heteroskedasticity.

Effect of a Violation: Suppose we discover the constant error variance assumption ilas been violated. What are the consequences? The estimates of our regression coeff/cients remain unbiased, but the calculated standard deviations and interval estimates are monger good estimates. Thus, we will no longer have a good measure of the acceacy of our estimates and predictions. Without a good measure of accuracy, we will not knc/ wow mucl to rely on our estimates in making decisions, we will not be able to judge if we need to gather more data, and we will not be able to conduct correct hypothesis tests to measure he strength of our findings. What can be done to remedy this?

Possible Fixes: Transforming the variables using logarithms (in semi-log or log-log form) if variance increases in the fitted valyes often helps. To see if it does, transform the variables, run the transformed regression, examine the residuals versus predicted values, and run the BreuschPagan Test again. Transffrnation using logarithms has worked if a serious indication of nonconstant variance no longer occurs More advanced techniques than we will cover, such as Weighted Least Squares, may hèp in situations where data transformations do not. (An advanced reference describing this procedyre is Chapter 10.1 in Applied Linear Regression Models, 4th ed. by Netef, K.utner, Nachtsheim, and Wasserman.) Other advanced methods include procedures for calcula ing standard eryors (and the associated interval estimates and hypothesis tests) that are rohust to hetereslredasticity. In Stata, robust standard errors can be calculated instead of the usual standard efrors when running a regression by using the options on the SE/Robust tab of the regress dialog box.

## NEW TERMS



Correction Factor $=\exp \left(s^{2} / 2\right)$ where $s$ is the standard error of regression

## NEW STATA AND EXCEL FUNCTIONS

## STATA



## User>Core Statistics>Model Analysis, using most recent regression>Breusch-Pagan

## heteroskedasticity test (hettest)

Equivalently, you may type db hettest. This command fomputes the Breusch-Pagan Test p-value that may be used to detect heteroskedasticity in the most recent reg ession model.

Alternatively, you can bypass the dialeg box by directly typing the command hettest.

In
Typing display $\ln (\mathbf{X})$ ine the State Command box returns the natural logarithm of the number X as ong as X is positive.
$\exp$
Typing di play $\exp (\mathbf{X})$ into the Stata Command box exponentiates the number X and displays the resul. Exponentiating is the mathematical opposite or inverse of the natural log function. $\exp (\mathrm{X})=\mathrm{e}^{\mathrm{x}}$ where e is a special mathematical constant having the property that $\ln (\mathrm{e})=1$.

## EXCEL

## LN

Typing $=\mathbf{L N}(\mathbf{X})$ into an empty cell returns the natural logarithm of the number $X$ as long as $X$ is positive. Typing $=\mathbf{L N}(\mathbf{A 2})$ into an empty cell returns the ratural logarithm of une number contained in cell A2.

## EXP



Typing $=\operatorname{EXP}(\mathrm{X})$ into an empty cell exponentiates the numbe: X. Typing $=\mathrm{EXP}(\mathrm{A} 2)$ into an


## CASE EXERCISES

## 1. Hot Dog revisited

We return to the market for supermarket hot dog dominance. Previously, we investigated some weekly scanner data from grocery stores on Dubuque's market share and price ahd the prices of two competitors: Oscar Mayer and Ball Park. We used these dita to investigate how Dubuque's market share depends on these prices. We saw how multicollirearity affected our findings. Now we are prepared to be on the lookout for heteroskedasicity inon-constam variance).


Keeping this in mind, we would like to use the data in the hetdog file to help Dubuque answer some further questions:

a. If Dubuque prices at $\$ 1.65$, Oscar Mayer prices at $\$ 1.75$, and Ball Park prices at $\$ 1.50$ for regular and $\$ 1.60$ for beef fanks, what is Dubuque's expected market share?
b. If, at these prices, vie observe Düuque with a $1.5 \%$ market share, would this give us reason to think the market har changed? What if Dubuque had a $4 \%$ market share?
c. At these prices, should Dubuque raise or lower its price? You may assume the size of the lot deg market is roughly fixed at 12,000 hot dog packages per week and Dubuque has a cost per uni) produced of $\$ 1.30$ / package. Does it matter how competitors would react to

## 2. Office networks

A tech support company, Net Geeks, is bidding on a major contract to provide networking, support to a firm that owns a chain of tax preparation consultancies across the rountry. in preparing its bid, Net Geeks has acquired the data contained in the email fi\%e, which lists the average number of daily internal emails and the number of computers or a sample of 24 of the tax firm's offices. One key question in determining their bid invol es the expected number of internal emails in an office with 20 computers; specifically, N et Creeks needs to know the probability that any particular office with 20 computers will have an avorage daily internal email volume below 200. Your job is to develop the best rfgression model to answer this question and use it to respond to the following questions:
a. What is the best estimate for the average daily internal email volume for an office with 20 computers?
b. Provide a 95\% predicton interval for this estimate.
c. Estimate the protaility that ane arerge daily internal emails at a particular office with 20 computers will be under 200 .
d. What can you say about the validity of the estimate in part c?
e. Estimate the probabiity that the mean number of average daily internal emails for offices with 20 campyters will be under 200.

## 3 Seper taifing

Your conpany is currently building a new factory, which will employ 1,200 workers. You are confronted with the question of how many supervisors (supers) to hire for this plant to supervise
the workers and to ensure a well-organized production process. You have employee data
(Factory) from your other factories, namely the number of supervisors and workers at these facilities.

Construct a linear regression of supers vs. workers.

a. Mathematically, what does the coefficient on workers tell as avout our staffing needs?
b. Estimate the number of supers needed for our new fachory and provide a 95\% prediction interval for your estimate.
c. Are there any problems in using this regression o answer part b?

Construct a regression of lnsupers vs. workers.
d. Mathematically, what does the exefficient on yorkers tell us about our staffing needs?
e. Estimate the number of slepers needed for our new factory and provide a $95 \%$ prediction interval for your estimate.
f. Are there any problens invising this regression to answer part e?


Construct a regression of lnsepes vs. Inworkers.
g. Mathematically, what does the coefficient on workers tell us about our staffing needs?
h. Estrimate the number of supers needed for our new factory and provide a $95 \%$ prediction ir ter jal for your estimate.
i. Are there any problems in using this regression to answer part h?
j. Which of the three regressions above is the best one to use for this scenario? Explain.

## 4. Big movies revisited

Movie studios spend a great deal of energy determining which films will be successful. A major hit or flop can have a measurable effect the bottom line of companies as big and Disney and Time Warner. The bigmovies ${ }^{5}$ file contains information on the major films of 1998 that we briefly examined in Chapter Two. Use this information to deve (Iop a model that predicts total domestic gross for a film based on the following independent variàios:

Best Actor The number of actors or actresses in the movie vho wore listed in Entertainment Weekly's list of the 25 Best Actors rnd the 25 Best Actresses of the 1990s

Top Dollar Actors The number of actors or actresses appering in the movie who were among the top 20 actos and top 20 actresses in average box office gross per movie in their/sareess at the beginning of 1998 and had appeared in at least 10 movies at that ime

Summer A dummy varabe indicating fore the movie was released during the summer season (May 31 to Sent 5 inc/usive) ( $=1$ if released during summer, $=0$ otherwise)

Holiday A dunmy variabie indicating if the movie was released on a holiday weekend (President's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving, Christmas Day, New Year's Day) ( $=1$ if released on a holiday weekend, $=0$ otherwise)

$\hat{A}$ dummy variable indicating if the movie was released during the Christmas season (December 18th -31 st) ( $=1$ if released during the Christmas season, $=0$ otherwise)

[^47]Opening Screens
The number of movie screens the film was shown on during the film's first weekend of general release
a. Construct a linear model using total domestic gross as the dependent variadie.
b. Use the Model Analysis function in Stata to check the assumptions of the regression model.

Now add a new column of data titled lntotalgross that contains the natural ogrithm of the total domestic gross.

c. Construct a semi-log model using lntotalgros as the dependent variable.
d. Use the Model Analysis function in Stata to check the assumptions of the regression model.

e. Choose the better model from the above ayd use it to predict the total gross of a movie opening on 2,600 screens with ho big or top-dollar actors on a non-holiday weekend during the summer. Provide $90 \%$ prediction interval for your estimate.

## CHAPTER 9

## SODA SALES AND HARMON FOODS: DEALING

## WITH TIME AND SEASONALITY

We will use two forecasting cases in this chapter to demonstrate (iifferent tech hiques for modeling seasonality. Quarterly data in the soda case displaý 9 seasonal pattern as summer sales outpace winter sales. We use multiple dummy variables to additively model and measure the seasonal impact on sales. Next, the longer Harmon Fouds fiBS ase uses a multiplicative seasonality model to forecast sales of its breakast cereal. The case introduces the technique of lagging independent variables to model liygering affects. Finally, we will explore different techniques for analyzing time series data including the Cochrane-Orcutt method and the Auto


### 9.1 Soda Sales

## INTRODUCTION



You have been asked by Cesca, Inc., to forecast future sales of Dada Seda. Fhe data are in the soda file. It consists of quarterly Dada Soda sales figures for the last four years (see Figure 9.1). ${ }^{1}$ Quarter 1 is the beginning of a year and is, therefore, a winter querter.


Figure 9.1: Quarterly sales for Dada Soda.

[^48]Two things are apparent from the graph: Sales are growing over time, and a strong seasonal factor exists. Suppose we ignore the seasonality and regress sales against the quarter variable, i.e., draw a best-fit line through the graph (see Figure 9.2).


Figure 9.2: Quarterly sales for Dada Soda with regression line.

This procedure enables us to estimate future sales growth by extrapolation since the coefficient on the X varizo (quarte) represents average sales growth per quarter in the last four years. The estimated ceefficient on quarter is 6668.61 so predicted sales growth is $4 \times 6668.61=26,674.44$ units per yaar. However, there are two problems: One is practical and the other is technical, but still impotant. The practical problem is that it would be useful to have an estimate of the seasonal effects as well as of the average sales growth. At the moment, the regression is predicting sales will increase every quarter, and that is not the case: From year to year, sales are going up, but, for
example, they consistently decrease from summer to fall in a given year. Solving this practical problem takes care of the technical one, so we will go through the solution first and explain what the technical problem was at the end.

## INTRODUCING SEASONAL DUMMIES



We need to introduce dummy variables to take account of the effet of the diferent seasons. To cope with the four seasons, we will need three dummy variables because one season will function as a benchmark to which we will compare the other three we choose to incly de one for each of winter, spring, and summer, so our extended dataset ooks like Figure 9.3.


Figure 9.3: Dada Soda data.

Now we will run the hew regression and discuss what the coefficients tell us (see Figure 9.4).

| quarter winter spring summer |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source |  |  | MS |  | Number of obs <br> F ( 4, 11) <br> Prob $>$ F <br> R-squared <br> Adj R-squared <br> Root MSE | 16 <br> 76.38 <br> $=$ <br> $=$ <br> 0.9600 <br> 0.9526 <br> 8894 |
| Mode 1 <br> Residual | $\begin{array}{r} 2.4167 e+10 \\ 870139592 \end{array}$ | $\begin{array}{rr} 4 & 6.0 \\ 11 & 791 \end{array}$ | $\begin{aligned} & 18 \mathrm{e}+09 \\ & 3599 ? \end{aligned}$ |  |  |  |
| Total | 2. $5037 \mathrm{e}+10$ | 151.6 | $2 \mathrm{e}+09$ |  |  |  |
| sales | coef. | Std. Err. | t | $P>\|t\|$ | [95\% टenf. | terval] |
| quarter | 6708.056 | 497.1909 | 13.49 | 0.000 | 5613.747 | 7802.366 |
| winter | 5612.169 | 6463.481 | 0.87 | 0.404 | -8613.857 | 19838.19 |
| spring | 44590.36 | 6367.15 | 7.00 | 0.000 | 305\%5.36, | 58604.36 |
| summer | 54721.06 | 6308.645 | 8.67 | 0.000 | 4 e 35.32 | 68606.29 |
| _cons | 98817.44 | 6670.515 | 14.81 | 0.000 | 81135.73 | 113499.1 |

Figure 9.4: Regression of Dada Soda with seasonal dunnmy variables.

## INTERPRETING THE DUMMY COEFFICIENTS

As always when dealing with dummy variables, we work out what the equation means by going through the different qualitative states, i.e., the different seasons, one at a time. For example, in fall, we know that all three dummies eqeal zero and the regression equation from Figure 9.4 reads as follows:


If we comparo fall ore year to fall the next year, this equation will apply to both but the quarter variable has increased by four, so it predicts that fall quarter sales should increase by $4 \times 6708=$ 26,832 unis per year. If we look at summer instead, we know that the summer dummy equals 1 and both the others equal 0 , so the regression equation from Figure 9.4 reads as follows:

$$
\begin{aligned}
\text { sales }= & 98817+6708 \text { quarter }+54,721(1) \\
& =153,538+6708 \text { quarter }
\end{aligned}
$$

Again, this tells us that if we compare yearly summer quarter sales, we should expect an increase in sales of $4 \times 6708=26,832$ units per year. The same will apply if we look at spring and winter, so the first conclusion is that once we have controlled for seasonality, the predi/ted anmual increase in sales is 26,832 units. In addition, we can predict how sales will/hange quarterly. Suppose we move from summer to fall. The quarter variable increases in value by , giving an extra 6,708 units, but the summer dummy changes from 1 to 0 so lo lose 54,721 units, a net decrease of 48,013 units. Things are a little more difficult when ( or example) we move from winter to spring. The quarter variable goes up by 1 as before, the wititer famrny goes from 1 to 0 , and the spring dummy goes from 0 to 1 , so the net effect is $+6,708-5,612+44,590=45,686$ units. We have, therefore, managed to resolve the changes into a quarterly seasonal effect, and a yearly growth trend. The R-squared has increased from around $60 \%$ to over $95 \%$, which suggests this multiple regression fits the data better than the regression without the seasonal terms did. However, R-squared is not the ap ropriate way to compare the fit of two regressions that have the same dependent $(\mathrm{Y})$ varizois but different nuribers of independent $(\mathrm{X})$ variables. A better measure for such a comparison is semething called the adjusted R-squared. It is reported on the Stata output directly Lelow the R-sपuared. The purpose of the adjusted R-squared is to adjust the measure of a regression's fit in account for the extra degrees of freedom that adding additional X variables absorbs. In this example, even after this adjustment there is a large improvement in variaticn explained by the regression with the seasonal dummy variables as demonstrated by the large increase in the adjusted R-squared. Finally, we will discuss the technical problem nentaionerl earlier.

## SEASONALITY AND AUTOCORRELATION

The regression model makes a number of assumptions about the distribution of the er or terms (i.e., the distribution of $Y$ around its average given the values of the independer ( X ) variaeles). One of these is the rather mysterious sounding assumption that "the errors are independent. Look again at Figure 9.2. For any particular quarter, the estimated errcr term is the distance from the fitted line to that quarter's data point. "Independence" means that knewneg the size of one quarter's error does not say anything about the next quarter's errcr. But that ish't true here. If you tell me this quarter's sales were "well above average," i.e, well above the fitted line, then I can guess this quarter is summer, next quarter will be fal', ard the fallquarter's sales will likely be well below the fitted line because of the seasonality in soda sales. This phenomenon of the failure of independence is known as autocorrelation ard, much like the heteroskedasticity studied in Chapter 8, interferes with the statisticalinference we do using regression. When it is present, our estimated coefficients are still unbiasea estimates, but the estimated standard deviations are not, so we cannot use confidence irtervals or hypothesis tests unless we correct this problem, which we did here by adding the seasonal ciummy variables. We discuss autocorrelation more generally in Section 9.4, including a method for detecting it and removing it.

## SUMMARY



We san hov seasonal dummies may be used to "de-trend" time series data, enabling us to estilinate a yeariy growth trend and seasonal effects. This also solved the problem of aùocorre ation in the data.

[^49]
### 9.2 Seasonality: Using Seasonal Indices in Forecasting

The Dada Soda case shows us one way to account for seasonal variations in our data. in that case, the sales seemed to vary consistently over the four quarters or seasons. We captured tinis variation in our estimated regression prediction by including dummy variables for the ditferent seasons. By using these intercept dummy variables to capture the seasonal effects, we were iriplicitly assuming the seasonal effect was additive. In other words, we only dilueved he season to move the regression line up or down by a constant, and we did not allow the season to change the slope of the line. In practical terms, we assumed that the surmer, vinter, snring, and fall effects were each of a fixed size. The effects would be identical if we were sellin\$ 1 million cases or if we were selling 100 million cases.


Sometimes, we may want to use a different model oif seasonal effects, one where the effect of the season is expressed as a percentage of the number of sales. In other words, the summer effect might be to increase sales by $10 \%$. With thi) model, the effect of summer at the 1 -million-case level is to add about 100,000 cases, at the 100-million-case level, it would add 10 million cases. This percentage-based model is knowl as a multiplicative model of seasonality in contrast to the additive model above. Why maltiplicative? Because we can express each season's effect (month's etfect, day-of-the-week's effect, etc.) by a seasonal index, which is a number multip ied by our regre;sion results to get a prediction.

For example in the Harmon Foods, Inc. case (see Section 9.3), the seasonal index for January shiprien/s is 113. This number should be interpreted as saying that, all else equal, shipments in January will be $113 \%$ (or 1.13 times) the average of all months' shipments. We say all else equal because we know other factors such as a time trend or advertising affect shipments.

So, how can you use these seasonal indices in combination with regression to make forecasts?

Step 1: Deseasonalize the Y variable by dividing each observation by its corresponding seasonal index (converted from percentages if necessary). In the Harmon Foods, Inc. case, this means dividing January shipments by 1.13, February shipments by 0.98 , etc.

Step 2: Build a regression model as usual (ignoring seasons) w ith the deseasol alized data as your Y variable.


Step 3: Use your estimated regression model to get a predicted deseasonalized value for the time period of interest.


Step 4: Multiply this predicted valye by the appropriate seasonal index to get a prediction. You should multiply any interval estimates by the seasonal index as well.

That's all there is to it. If the seasonal effect works in percentage terms, the multiplicative model and seasonal indices vill be appropriate; if the seasonal effects are of a fixed absolute size, the additive model will be a better choice.


Seasonally adjusted data are data that have been deseasonalized. For example, many economic statistics such as unemployment, retail sales, and housing starts are usually reported in a đeseasondized form. How are seasonal indices estimated? Some statistics packages can do this procedure for you. In fact there are many ways, some quite complicated, to estimate seasonal effects. For a taste of how part of the U.S. government does it, go to the Bureau of Labor

Statistics web site at http://stats.bls.gov/, search for the term "seasonal adjustment," and explore some of the links.

Often, as in the Harmon Foods, Inc. case, seasonal indices previously estimated oy oture (in this case, an industry group) using a large set of historical and industry-wide or country-wide data are provided; thus, these indices do not need to be estimated from your data. You need only use them in your analysis.

### 9.3 The Harmon Foods, Inc., Case



The Harmon Foods, Inc. case is located in the racket of cases bundled to the back of this text.

## QUESTIONS TO PREPARE:



1. Using only the data giving montily shipments of Treat (and possibly a time trend, but no variables that allow for seasenal or monthly cycles), provide a forecast for shipments of Treat in Januaty 1988. Give a 95\% prediction interval for this forecast. This forecast shows what one can did without the rest of the data in the dataset and without seasonal information.
2. Develop arid estimate a model you think makes the most sense to use for forecasting monthly shipments of Treat cereal. How did you arrive at this model?
3. Use he model you developed above to forecast shipments for January 1988 assuming that 200,000 consumer packs are shipped in that month and $\$ 120,000$ in dealer allowances are provided. Give a $95 \%$ prediction interval for your forecast.
4. Use your estimated model to comment on the impact and effectiveness of consumer promotions and dealer promotions.
5. What improvements, if any, would you recommend to the product manager in terms of the timing and amounts of dealer promotions and consumer promotions/in tie ruture?

### 9.4 Regression Analysis of Time Series Data

Most of the datasets that we have encountered in previous rhapiers are so-cal/ed cross-sectional samples: We have some data on a population (e.g., arar buyers, nevspaper subscribers) at a fixed point in time, and analyze the relationship among varibus variables in the sample (e.g., price and income, Sunday and daily circulations). Tine phays no role in these analyses. In other datasets, notably in the Harmon Foods and Dad Sodase cases, we have consecutive observations of several variables (sales of the product and marketing efforts). These data are called time series data.


When we work with a tire series dataset and ouild a regression model to explain a dependent variable, we should immediately consider including two types of variables among the explanatory variables: a time index (a variabie that increases by one every period, representing a linear trend) and seasonal dummies (variables that allow us to represent seasonal variations in the dependent variabie). ${ }^{3}$ Another lesson that we learned in the Harmon Foods case is that, in the regression, we can easily incorporate the idea that our current actions matter for the future by using lagged explanatory variables.

[^50]We mentioned earlier a new problem that may arise when we run a regression using a time series dataset. We may encounter the problem of autocorrelated residuals: The error terms that represent the difference between the actual observations of the Y variable and the theoretical regression line may not be independent (completely random) over time. This is he case, for example, if the shocks that affect the dependent variable are persistent over ime.

Suppose the Y variable represents the sales of our product. If salec mis ween were higher than expected due to a random event (e.g., good weather, a favorable review in the ocal paper), it is likely that we will be "lucky" next week as well since weather tends to nersist, information about the review will diffuse among our potential customers, eic.

Autocorrelation of the residuals has the same consequences as heteroskedasticity: The standard errors (of the coefficients, the estimated mean, the regression and the prediction) become unreliable. In particular, in the most common forms of autocorrelation, the standard errors on the coefficients will be underestirnated, resulting in p-values for the coefficients that appear to be lower than they are in reahes. As a result, we nay conclude that a coefficient is significant when in reality it is not. In a time series €egression, one must be exceptionally wary of this possibility.


Another issue in time series regressions is if we can include the lagged dependent variable among the regressors. If residuals are autocorrelated, then the inclusion of lagged Y among the X variab es vill cause bias in the coefficients and must be avoided.

Fo see this, consider the following example. Suppose (as in the Harmon Foods case) we have a tine series dataset, where our dependent variable is Sales and the explanatory variables measure marketing efforts (e.g., number of Coupons issued, cash Incentives provided to dealers). It is reasonable to believe that promotions have different immediate and delayed effects (e.g.,
consumers stock up on the product when there is a discount). Moreover, Sales in previous periods may affect our current sales, e.g., satisfied customers tend to become repeat customers. You may think a variable like Sales_1 (Sales lagged one period) could successfully represent the effects of our past actions (promotions and the resulting sales) on our currer./ sales.

However, it may be wrong to regress Sales on Coupons, Incentives a tine index, seasonal dummies, and Sales_1. Why? Sales_1 may be correlated with the error terrs in this regression because Sales_1 contains last period's error term and errors may be autocorrelated. For example, the error term may reflect the effects of a newspaper review on Sales, and that effect is likely to be persistent. The error term essentially stands for all veriables onilted from the regression, and we know coefficients become biased when an included variable (Sales_1) is correlated with omitted variables. Therefore, if error terms/areautocorrelated then including Sales_1 leads to biased coefficients. Instead of includirg the lagged dependent variable (Sales_1), you should include lagged explanatory variables te represent/he idea that our past actions (marketing efforts) matter for current Sales.

Several simple and intuitive tests exist to detect specific forms of autocorrelation in the residuals. For example, after having run the regression of the dependent variable on the appropriate explanatory variables, you can egress the residuals (the difference between the actual and the fitted values of Y for each observation) on past values of the residuals (lagged residuals) and see if the coefficient on the lagged residuals is significant.

In Stata, you can generate the residuals (from your most recent regression) from the custom menu by cicking User>Core Statistics>Model Analysis, using most recent regression>Residuals, outliers and influential observations (inflobs) or typing db inflobs or, to get the residuals
alone, through the standard menus by clicking Statistics>Postestimation>Predictions,
residuals, etc or typing db predict. Choose Residuals (equation-level scores) from the
"Prediction" field and type the name that you want in the "New variable name" field. (Vee will name our residuals residuals for illustrative purpose here.) To create once-laggea residuals, you can type the command generate residual_1=residuals[_n-1] (the [_n-1] command indicates that the $\mathrm{n}^{\text {th }}$ value in the residual_1 column is taken from the $\mathrm{n}-1^{\text {st }}$ value in the residuals column.) Then, perform a simple regression of residuals on lagged residuals. (Yyu can run this regression with or without a constant; both produce a valid test for first-ode autocor elation given large samples.) If the slope coefficient is significant, this indicates first-ordor antocorrelation. This procedure is called the Cochrane-Orcutt test.


A cure for this autocorrelation is relatively simple using the Cochrane-Orcutt method. Suppose you find autocorrelation in the Cochrane-Orcuttest: The coefficient on lagged residuals in the regression of residuals, call it $\rho$, is significant. Trapsform each observation (the Y and X variables) as follows. For each observation at $t=2,3, \ldots$, create $\mathrm{Y}^{*}=\mathrm{Yt}-\rho \mathrm{Yt}-1$; similarly, create $\mathrm{X}_{\mathrm{t}}=\mathrm{Xt}-\rho \mathrm{Xt-1.{ }}^{5}$ (The firscobservation is arorped because no observation occurs before it.) Now regress $\mathrm{Y}^{*}$ on the transformed explanatory variable(s), $\mathrm{X}^{*}$. This new regression usually does not exhibit autocorrelated resicuals; if it does, then the procedure of transforming the variables can be repeated. The coefficients on all the X * variables will be the same as the coefficients on the corresponding onigina X variables. However, the coefficients will have the right standard errors and $p-v$ alues because autocorrelation in the residuals has been eliminated. We can rely on the new p-values rier detecrmining which variables are significant.

[^51]In Stata, you can correct for autocorrelation more easily by using Stata's built-in Prais-Winsten and Cochrane-Orcutt regression. To do this, click Statistics>Time series>Prais-Win sten regression or type db prais. Specify your dependent variable and independent rariabict(s). Check the boxes corresponding to "Cochrane-Orcutt transformation" and "Stop after the first iteration
 Note that these estimates agree with those produced using the manaid procedyre described above. ${ }^{7}$ Stata also lists the estimated coefficient on lagged residuals next to rho. Note that Stata estimates $\rho$ by regressing residuals on lagged residuals without a constant.

If you do not check the "Cochrane-Orcutt transformation" box, Stat will run the default PraisWinsten regression instead, where it keeps and ransforms the first observation into $\mathrm{Y}^{*}{ }_{1}=$ $\sqrt{1-\rho^{2}} \mathrm{Y}_{1}$; (Likewise for $\mathrm{X}^{*}{ }_{1}$.) For $\mathrm{t}<1, \mathrm{~F}_{\mathrm{*}}$ and $\mathrm{X}_{\mathrm{t}}$ are transformed using the method described in the previous paragraph. The d/fference between using the Prais-Winsten method and the Cochrane-Orcutt method is small when you have large samples.

Finally, if you do not check tic "Stop after the first iteration (twostep)" box, Stata will automatically repeat the transformation procedure until the estimate of $\rho$ becomes stable. Both iterative methods are theoretically equally valid.


Annther test for-autocorrelation is the Durbin-Watson test. In Stata, you can click User>Core

## Statistics>Model analysis, using most recent regression>Default Durbin-Watson statistic

${ }^{6}$ Altennat/vely, you can directly type the command prais depvar indepvars, corc twostep.
${ }^{7}$ There is one small difference. When you estimate the model $\mathrm{Y}_{\mathrm{t}}=\beta_{0}(1-\rho)+\beta_{1} \mathrm{X}_{\mathrm{t}}{ }_{\mathrm{t}}+\mathrm{u}_{\mathrm{t}}$ using Stata's built-in Cochrane-Orcutt transformation, the reported estimated constant is an estimate of $\beta_{0}$. On the other hand, if you estimate this model using the manual transformation described above, the reported estimated constant will correspond to the estimate of $\beta_{0}(1-\rho)$.
(ddw) or type db ddw. Stata reports the Durbin-Watson d-statistic, which can range between 0 and 4 and should be close to 2 if there is no autocorrelation. Positive autocorrelation tends to lower the value of the d-statistic, while negative autocorrelation raises the value.

## SUMMARY



Everything described thus far belongs to what we can call the "traditional ecenonetric analysis" of time series data. We can apply the same regression techniques that we use for crosssectional analyses. The only differences relative to a crose-sentional regression are the following:

1. New candidates for regressors like a time index, seaconal dummies and lagged $\mathbf{x}$ variables
2. The potential problem of autcored residuals (resulting in incorrect standard error estimates)

### 9.5 Time Series Analysis

We can alse use - different approach to analyzing time series data, called time series analysis.
Time series analysis, il its purest form, ignores ordinary explanatory variables and, instead, focuses on estimating he dynamic behavior of the dependent variable alone. In other words, time series analysis is the science (and sometimes art) of extrapolation from a series of numbers, $\mathrm{Y}_{1}$, $\mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{r}}$, vithout using any X variables except time and seasonality.

For example, one simple method of extrapolation (forecasting $\mathrm{Y}_{\mathrm{T}+1}$ based on $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{T}}$ ) is linear trend extrapolation. You can do this by regressing Y against a time index. Another method, exponential trend extrapolation, is carried out by regressing $\ln (\mathrm{Y})$ on a time index. To make both models fit better, we can enrich them each with seasonal dummies. what iollews, we discuss more sophisticated, but similarly atheoretical (i.e., no underlyin model or theory) methods.

There are at least three reasons for interest in such simplistic, naïre methods of forecasting. First, in practice, collecting data on potential explanatory variahles to arry nut a proper regression analysis is sometimes too expensive; the only data readily available may be a series of observations regarding the dependent variable. Secont, even if ye can obtain the extra information and build a proper regression model, time series forecasts are cheap, require little effort to produce and can serve as a useful benchmark for comparison purposes; running a time series analysis may uncover patternstiat we will explain using regression methods. Third, a sophisticated time series forecast (for exarnple, the ARIMA model, which we will describe below) may well outperffom an unsophisticated (or incorrectly specified) econometric model. In the 1970s and 1980s, time series models became popular after several studies showed the superiority of ARIM $A$ models over standard econometric models in particular applications.

Econorretric methods have since improved (e.g., in handling autocorrelation) and are generally preferred over extrapolation methods when available.

The ARIMA model of time series analysis (also called the Box-Jenkins method after its inventors in 1970) fas two building blocks: autoregression (AR) and moving average (MA).

A variable $Y$ is a ${ }^{\text {th }}$-order autoregressive series, $\operatorname{AR}(p)$ for short, if it can be written in the following way:

$$
\mathrm{Y}_{\mathrm{t}}=\Phi_{1} \mathrm{Y}_{\mathrm{t}-1}+\Phi_{2} \mathrm{Y}_{\mathrm{t}-2}+\ldots+\Phi_{\mathrm{p}} \mathrm{Y}_{\mathrm{t}-\mathrm{p}}+\varepsilon_{\mathrm{t}}
$$

$\Phi_{1}, \Phi_{2}, \ldots, \Phi_{\mathrm{p}}$ are the parameters of the $\operatorname{AR}(\mathrm{p})$ process, and $\varepsilon_{\mathrm{t}}$ is an independent error term.

In other words, the current value of Y only depends on its pas values (up tp p lags). A variable Y is a $\mathrm{q}^{\text {th }}$-order moving average series, $\mathrm{MA}(\mathrm{q})$ for short, if it cam be writien in the following way:

$$
\overline{Y_{\mathrm{t}}}=\varepsilon_{\mathrm{t}}+\theta_{1} \varepsilon_{\mathrm{t}-1}+\theta_{2} \varepsilon_{\mathrm{t}-2}-.+\theta_{\mathrm{q} \varepsilon_{\varepsilon-\mathrm{c}}}
$$

$\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{q}}$ are the parameters of the (q) process, and the $\varepsilon$ terms are independent errors. In other words, the current value of $Y$ is a weighted sum of current and past (unobservable) disturbances.


The ARIMA (p,d,q) model is more general than AR or MA. First, we difference the original series d times. Differencing a series means that we replace $\mathrm{Y}_{\mathrm{t}}$ with $\mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}-1}$; that is, we consider the increments of the series instead of the series itself. We call the original Y series an ARIMA(p,d,q) process if, after differencing it d times, the resulting series $\mathrm{Y}^{*}$ can be written in

$$
\mathrm{Y}_{\mathrm{t}}^{*}=\Phi_{1} \mathrm{Y}_{\mathrm{t}-1}+\Phi_{2} \mathrm{Y}_{\mathrm{t}-2}+\ldots+\Phi_{\mathrm{p}} \mathrm{Y}_{\mathrm{t}_{\mathrm{t}-\mathrm{p}}+\theta_{1} \varepsilon_{\mathrm{t}-1}+\theta_{2} \varepsilon_{\mathrm{t}-2}+\ldots+\theta_{q} \varepsilon_{\mathrm{t}-\mathrm{q}}+\varepsilon_{\mathrm{t}}}
$$

ARIMA( $\mathrm{p}, \mathrm{d}, \mathrm{q}$ ) can be thought of as a model where the $\mathrm{d}^{\text {th }}$ difference of Y follows an $\operatorname{AR}(\mathrm{p})$ process such that the error term is MA(q).

There is no reason as to why a variable $Y$ should follow an ARIMA process. AFIMviA is nct supported by any formal economic theory; it is a general class of random prycesses widely used in practice for forecasting without using explanatory variables. For exarnple, if y is generated by the famous "random walk" process, then it is ARIMA with $p=0, \lambda=1$, and $q=0$. If one decides to model Y as an ARIMA(p,d,q) process with a given p , d, and q , then a computer program (such as Stata) can estimate the parameters $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{\mathrm{p}}$, and $\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{q}}$ Given these parameters, you can forecast future values or see how the past (ot/served) values of Y fit the ARIMA model.

In Stata, you can compute the parameters of a general ARIMiA(p,d,q) process by clicking
Statistics>Time series>ARIMA and ARMAX models or typing db arima. This will open the following dialog box:



Select your dependent variable and independent variable(s) from the respective drop-down lists. Check the box next to "Sypress constant term:" and enter corresponding values for $\mathrm{p}, \mathrm{d}$, and q in the "ARIMA(p,d,q) specification" fieid. Click $\mathbf{O K}$, and Stata will display its ARIMA regression result. ${ }^{8}$ Under the Ceef. ceinimn, you can find Stata's estimates for $\Phi_{\mathrm{p}}$ and $\theta_{\mathrm{q}}$ in the $\mathbf{a r} \mathbf{L p}$. and ma Lq. rows, respectively.


The main rractical question that remains is how to choose the parameters $\mathrm{p}, \mathrm{d}$, and q for an ARIMA model and forecast. Time series analysts would probably say that this is the "art" part of frecastirg. The most important guideline is to keep these parameters as low as possible (parsimony). In general, choose d, the number of times the series is differenced, to make the

[^52]series stationary, which means that the mean, variance, and other properties of $\mathrm{Y}^{*}$ must not depend on time. Usually $\mathrm{d}=1$ or $\mathrm{d}=2$ suffices.

To find the "right" parameters p and q , time series analysts usually look at a dizgram called a correlogram. To create this diagram, for all $\mathrm{k}=1,2, \ldots$, we compute $\rho_{\mathrm{k}}$, the correfation coeificient between $\mathrm{Y}^{*}$ and $\mathrm{Y}^{*}$ lagged k times, and plot $\rho_{\mathrm{k}}$ against k . The correlog am shovid fall off to numbers close to zero as k increases; otherwise, $\mathrm{Y}^{*}$ is not stationazy and peeds to te differenced further. A correlation coefficient $\rho_{\mathrm{k}}$ on the correlogram is called significan if it is greater in absolute value than $2 / \sqrt{T}$, where T is the number of observations.


The pattern on the correlogram suggests the appropriate numberis for p and q . For example, if $\rho_{1}$ (respectively, $\rho_{1}$ and $\rho_{2}$ ) are significant but the subsequent $\rho_{\mathrm{k}}$ values look random, then $\mathrm{Y}^{*}$ is an MA(1) (respectively, MA(2)) process. If the sorreregram declines geometrically, then $\mathrm{Y}^{*}$ can be modeled as an $\operatorname{AR}(1)$ process. If exhibits wave, ten $\operatorname{AR}(2)$ or a higher order AR process is required. If the correlogram appears to deci ine geometrically but the sign of $\rho_{1}$ does not match the signs of the rest of the $\rho_{k}$ values, then ARIM $/(1, \mathrm{~d}, 1)$ is suggested.


We summarize ARIMA by working out an example. The Kodak file contains the annual gross revenues of Eastuan Kodak Cu. between 1975 and 1999 (in billions of constant 1982 dollars). Plotting the data in Figure 9.5, there is no visible trend, so we do not difference the series (d=0).


Figure 9.5. Kodak annual revenues.

Next, we look at the correlogra in Figure 9.6 This graph can be generated in Stata by clicking Graphics>Time-series graphs>Cormelogranı (ac) or typing db ac, choosing Revenue as the variable, and typing 7 in the "Number of autocorrelations to compute" field. ${ }^{9}$

'Alternativeity, you can directly type the command ac Revenue, lags(7). Note that instead of plotting $\rho_{\mathrm{k}}$, the corretetion coefficient between $\mathrm{Y}^{*}$ and $\mathrm{Y}^{*}$ lagged k times, against k , the ac command plots the autocorrelations of $\mathrm{Y}^{*}$ against its lags. Although autocorrelation is defined as the correlation between a time series variable and its lags, it is calculated using a slightly different formula than the standard formula used to calculate the correlation coefficient between two generic variables. You can refer to Stata's PDF manuals for the respective formulas that Stata uses to calculate $\rho_{\mathrm{k}}$ and autocorrelations.


Figure 9.6: Correlogrann of Kodak revenues.

The decline in $\rho_{\mathrm{k}}$ appears to be steady (and approximately linear); the first two $\rho_{\mathrm{k}}$ values are significant (greater than $2 \sqrt{25}=.4$ in absolate value), but the rest do not appear to be random either (this is not an $\overline{M 1 A}$ process). $\operatorname{AR} \operatorname{AR}(1)$ process seems to be appropriate. When we run the $\operatorname{AR}(1)$ regression in Stata, we find that the estimated $\operatorname{AR}(1)$ process can be written in the


[^53]To check how well the AR(1) process fits the data, we can estimate Kodak's revenues for the years 1976-1999 and calculate the mean absolute deviation (MAD) from the actual observations. To do this in Stata, you can type the following commands after running the $\operatorname{AR}(1)$ regression: 1) predict residual, residuals; 2) generate abs_residual=abs(residual); and 3) summarize abs_residual. The Mean value is the MAD and turns out to be 0.761931 , or abeut $\$ 0.76$ billion. As a comparison, the average level of Revenue in the smpre is aboyt $\$ 11$ billion (both in constant 1982 dollars).

## SUMMARY



Though there is no theoretical reason why a particular variable nigh/t follow a linear or exponential trend, the techniques we have seen are useful. Predicting future performance using these methods has its drawbacks. Howeve, the advantages mentioned earlier (including the value of the ARIMA model when the on'y data available are for the dependent variable and for establishing a baseline) make knowledge of this approach worthwhile.

NEW TERMS


A regression model using dummy variables to account for seasonality.
Each season is assumed to have a fixed effect on the dependent variable A regression model which assumes each season affects the dependent variable by a certain percentage

An index used to seasonalize and deseasonalize the dependent variable and predictions in a multiplicative seasonality model

Time series data Consecutive observations of a set of variables

Time index

Lagged variables

A variable that increases by one every time period. Used to model a linear trend over time

Variables that use values from a previous time period to expain outcomes in the current time period

A problem where the error terms are not inaependent
Autocorrelated residuals
Cochrane-Orcutt test A test for autocorrelation using the residuals
Linear trend extrapolation A time series method used to modeitinear tuends in Y over time
Exponential trend extrapolation A time series method used to model linear trends in
$\ln (\mathrm{Y})$ over time


ARIMA or Box-Jenkins method
A time series method employing autoregression (AR) and moving average (MA) echniques

Stationary
A model where the properties of $\mathrm{Y}^{*}$ do not depend on time
Correlogram
A diagram usea to determine the proper time series parameters

## NEW STATA FUNCTIONS

## Statistics $>$ Time series>Setup and utlities>Declare dataset to be time-series data

Equivalently, you may type db tsset. This command opens the tsset dialog box. You can select the variable that you want to declare as a time index from the "Time variable" field.


Aiternatively, you can directly type the command tsset varname.

## Statistics>Time series>Prais-Winsten regression

Equivalently, you may type db prais. This command opens the prais dialog box, where you can ask Stata to implement either the Cochrane-Orcutt transformation or the Prais-Winsten transformation to correct for autocorrelation by checking/unchecking the "Coch/ane-Orcutt transformation" box. Check the "Stop after the first iteration (twostep)" boy if you want Stata tos transform your variables only once, as described at the end of Section 8.4. Note that you need to declare a time index variable using the tsset command before running tie prais command.


Alternatively, you can directly type the command prais denvar indervarc, corctwostep. Omitting the corc option will implement the Prais-Winsten transformation instead.

## User>Core Statistics>Model analysis, using most recent regression>Default Durbin-Watson

 statistic (ddw)Equivalently, you may type db ddw. Click OK in the ensuing ddw dialog box, and Stata will report the Durbin-Watson d-statistic with which you can use to detect autocorrelation in the residuals. The d-statistic ranges between 0 and 4 and should be close to 2 if there is no autocorrelation. Positive autocorrelation tends to lower the value of the d-statistic, while negative autocorrelation raises the Filue.

## Statisti s>Time series>ARIMA and ARMAX models

Equiva'ently, you may type db arima. This command opens the arima dialog box, where you can specify the dependent variable, independent variable(s) (if any), and the order numbers for p , a, q according to your model. Stata reports the estimated values for $\Phi_{\mathrm{p}}$ and $\theta_{\mathrm{q}}$ in the $\mathbf{a r} \mathbf{L p}$. and mas. Lp. rows, respectively. Note that you need to declare a time index variable by using the tsset command before running an ARIMA(p,d,q) regression.

Alternatively, you can directly type the command arima depvar indepvars, arima(p,d,q).

## Graphics>Time-series graphs>Correlogram (ac)

Equivalently, you may type db ac. This command opens the ac dialog box, where youcan select the variable for which you want to generate a correlogram. You can specify the number of lags in the "Number of autocorrelations to compute" field. Note that you need to declaye a time index variable using the tsset command before generating a correlogram.

Alternatively, you can directly type the command ac varname, $\operatorname{lags}(4)$

## CASE EXERCISES



## 1. Harmon Foods

Read the Harmon Foods case and prepare ans vers to the five questions listed in Section 9.3 of this chapter.

## 2. Paradise tax

The governor of the state or Hawaii is bound by the state constitution to budget no more funds than the amsunt projected by the State Council on Revenues. Part of this revenue is from the transie.t accommodations tax, which is a hotel tax. Forecasting the tax revenues from this and other tourism taxes are important to the state as well as the major businesses operating in the vourism industry. The data in the hawaiiTAT ${ }^{11}$ file contains information from 1990 through the summer of 2003 regarding the quarterly collection of this tax as well as statistics such as visitor days (the number of days spent by visiting tourists each quarter) and the average daily room rate.

[^54]Furthermore, a seasonal index based on visitor arrivals by plane (no tourists swim or drive to the islands though a tiny percentage arrives by boat) has been constructed as well.

Develop an additive and a multiplicative model to forecast the state's collectior/ of tic transient accommodations tax. Which model do you feel is the better choice to make prediction for the fall of 2003 when the room rates are expected to average $\$ 133$ per night with 14,000,000 visitor days? Provide estimates from each model and justify your choice.

## 3. Restaurant Planning



The owners of Blue Stem, an upscale restaurant in a tiendy area of Chicago, have gathered data on its nightly receipts. Over the year, the restayrant occasionally offers a free dessert promotion to ticket holders from the theater next aoor. The promotions occur mostly on the weekends, which are the most popular nights for diming out. The restaurant would like to separate the promotion effect from the weekerd effect, so it can determine if the promotion is worthwhile. The data are available in trin bluestene ${ }^{12}$ file.

An industry group has provided a nightly index reflecting the relative popularity of different nights for higher end restaurants in the city.


Develon twe models, one using additive and one using multiplicative techniques, to test the


[^55]
## CASE INSERT 3

## NOPANE ADVERTISING STRATEGY

In this case, we will look at the advertising strategy for a drug, Nopane. The orand inanager is faced with the choice of advertising level, copy, and region in the face of intense competition. The assignment is to read the case and answer the following questions. For the first three, you can use the regressions included with the case; however, you will need to conduct your own analysis using Stata to respond to the additional questions.

## Questions to Prepare



1. What does Regression 1 in the case sa, about the merits of "emotional" vs. "rational" copy? What does Regression 3 say about the two types of copy? What is the interpretation of the coefficient on copy in Regression 1? Regression 3?
2. Assuming Alison Silk's hypothesis is correct, which of the regressions is most relevant for choosing an advereising strategy? Why?
3. Asaswer question 2, assuming instead that Stanley Skamarycz's hypothesis is correct.
4. Given the data from the case (in the nopane file), what national advertising strategy (i.e., whi h copy and which one of the three levels of ad spending) would you advocate? Each additional unit sold per 100 prospects over a six-month period yields a profit (net of
production and delivery costs, but not net of advertising costs) of $\$ 10$. Provide support for your position.
5. Instead of a single national campaign, Ms. Silk knows it would be poss ble (mugh more costly) to have one campaign for the East and West Coast states an anotker for the middle of the country. Comment on the desirability of splittine up the campaign.

Hints: Remember omitted variable bias. For questions 4 and 5 you may want o think about using dummy variables and/or slope dummy variables.


The Nopane Advertising Strategy case is located in the packet of cases bundled to the back of this text. ${ }^{1}$


[^56]
## CASE INSERT 4

## THE BASEBALL CASE

Singha Field is home to the BK Lions professional baseball team. The tear s new marketing director, Noelle Amsley, has been trying to develop a better understanding the key drivers of attendance at the ballpark to increase ticket revenues, optimize concessior inventovies and staffing, and schedule the timing of promotional giveaways.


The stadium is capable of holding almost 41,000 fans. The exact number is hard to pin down due to the sale of standing-room-only tickets and VIP ticket comping. The data for this case are included in the file baseball case.

## PART A: REGRESSION ANALYSIS



Noelle's first model uses three concents to predict attendance: time of day, temperature, and day of the week. Specifically, she has dummy variable for night games, the day's high temperature, and three dंemmies indicating if the game takes place on a Friday, Saturday, or Sunday, respectively.

1. Use Regression 1 to estimate attendance for a Sunday afternoon game where the tentperature is 82 degrees.

| endance nightgame temp_f Friday Saturday Sunday |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | 55 | df MS |  |  | Number of obs $=$ $F(5,86)=$ Prob $>\mathrm{F}$ R-squared <br> Adj R-squared Root MSE | $=92$ |
| Mode 1 | 1.0736e+09 | 521 | 9715 |  |  | ¢ 0.0000 |
| Residual | $2.0606 \mathrm{e}+09$ | $86 \quad 239$ | 7. 5 |  |  | -0.3426 |
| Total | $3.1342 \mathrm{e}+09$ | 91344 | 9. 6 |  |  | 1894.9 |
| Attendance | coef. | std. Err. | t | $P>\|t\|$ | [95\% conf | Interva $]$ |
| nightgame | 2514.662 | 1381.219 | 1.82 | 0.072 | -231.1106 | 5260.434 |
| temp_f | 186.1147 | 38.75908 | 4.80 | 0.000 | 109.0542 | 263.1652 |
| Friday | 3572.419 | 1458.08 | 2.45 | 0.016 | 673.551. | 6470.986 |
| Saturday | 6451.255 | 1641.437 | 3.93 | 0.000 | 3188.127 | 9714.324 |
| sunday | 4313.778 | 1488.045 | 2.90 | 0.005 | 1355.641 | 7271.914 |
| _cons | 19354.18 | 2716.616 | 7.12 | 0.900 | 13953.73 | 24754.64 |
| Regression 1 |  |  |  |  |  |  |

A quick look at the model analysis output from Stata (cl/cking User>Core Statistics>Model Analysis, using most recent regression>Residuals, outliers, and influential observations (inflobs) or typing db inflobs) shows six oytlieis among the 92 data points. Two of them are day games on very cold weekdays where the madel predicts the lowest possible turnout. However, these particular games nearly sold fut. Noelle kichs he self: They're both the opening day of the season, a special game for basebal fans.

Adding a new dummv variable caned opening_day that equals one on the first home game of the season and zero otheivise proauces Regression 2.


2. Use Regression 2 to estimate the attendance for a Sunday afternoon game where the temperature is 82 degrees and it is not opening dəv.
3. Compare your results from questions $\_$and?. Explain why your estimate changes between the two models.

The team management resentry began using a more sophisticated pricing structure to improve its revenues. Instead charging tite sanns set of prices for every game, there are two different pricing schemes: full-price tickets and cheap tickets. For games where management anticipates a lower lever of interest, it charges the cheap ticket prices in order to stimulate demand. Regression 3 shows the significant effect of cheap_tickets on attendance, but the coefficient is confusing to


| - regress Attendance cheap_tickets |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df | MS |  | Number of obs F( 1, 90) Prob $>\mathrm{F}$ R-squared Adj R-squared Root MSE | $\begin{array}{lr} = & 92 \\ = & 26.21 \\ = & 0.0000 \\ = & 0.2255 \\ = & 0.2169 \end{array}$ |
| Mode 1 <br> Residual | $\begin{array}{r} 706837350 \\ 2.4274 \mathrm{e}+09 \end{array}$ | $\begin{array}{rr} 1 & 706837350 \\ 90 & 26970798.6 \end{array}$ |  |  |  |  |
| Total | $3.1342 \mathrm{e}+09$ | 91344 | 859.6 |  |  | $=.5193 .3$ |
| Attendance | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Conf | Interval] |
| cheap_tick~s | -7957.35 | 1554.374 | -5.12 | 0.000 | 11045. 39 | -4869. 314 |
| _cons | 35638.73 | 584.2966 | 60.99 | 0.000 | 34.77,93 | 36799.54 |

Regression 3
4. Do these results violate the law of demand that says all else being $\epsilon$ qual, a lower price should increase the quantity demanded?


Noelle's colleague, Andrew Groden, is interested in leanning how two other factors are driving attendance: promotional giveaways such is free hat day; and popular opponents, such as the team's historic rivals, the ML Tigers, as well as their cross-town rivals, the Pachyderms. To test these factors' significance, Noel/e has added three dummy variables called promo, Tigers, and Pachyderms, which are added to her earlie regression to produce Regression 4. She quickly informs Andrew that the first ewo are signifi ant, but the Pachyderms do not seem to be a big draw to the ballparr.

Andrew diagrees. 'It's just because those games were all scheduled on days that were already popular. Five of the six times they played were on Fridays or the weekends, and all of the games were in the summer when the weather is usually perfect! Those games increased the interest in the ganes, but there just weren't enough seats available in the ballpark to see the effect."
5. Does Andrew's theory sound reasonable? Why would a team schedule games against a popular rival, knowing that it did not need to encourage attendance on those dates?


Regression 5 adds two more variables to Noelle's model. Ene is school, which equals one whenever the local public school system is session (keeping thousands of potential fans away from many games) and zero otherwise/ Th othe variable she adds is cheap_tickets, as was used in Regression 3.

6. Is the variable cbean_tickets significant in this regression? Interpret the coefficient and its significance in the context of this new regression.


7. Use Regression 5 to make a forecast/of attendance for a Saturday night game against the Tigers that is not on opening day. Also the temperature is 89 degrees, there are full-price tickets, a promotional giveaway, and scinool is out of session. Provide a 95\% prediction interval for your answef. Do you have any concerns about your forecast?

## PART B: NON-LINEARITYES



Noelle has been studying Regression 5. She is concerned about the Breusch-Pagan Test, which indicates/ heteroskedasticity problem with the model. She becomes more concerned after conducting a semi-lpg nodel, Regression 6, which failed to fix the problem. Noelle suspects that alinear nodel may not be the most appropriate fit to the data; in particular, she is worried about the large number of games that are pushing the stadium's capacity limits.


Both linear and logarithmic models are unbounded, meaning they don't have an upper limit. Regression 1, for instance, predicts more than 42,000 fans for a Saturday afternoon game with a temperature of around 88 degrees (not un/easonabie for a summer day) even though that exceeds the capacity of the stadium by mre than a thousana people. A regression of lnAttendance using the same independent variables predicts more than 43,000 fans.

The problem as Nofile sees it is that none of the models she has learned about seems right for the $\langle$ pattern she observed in the detaset: attendance getting closer and closer to a maximum value as "conditionc" improve. Taking temperature as the independent variable, Noelle plots Attendance versus Гemperature with two different fits. These fits include one linear and one curving up toward the capacity. These plots are seen in Figures 1 and 2.

Loeking thigure 2 gives Noelle an idea. Though a semi-log model, $\mathrm{Y}=\mathrm{a} \cdot \mathrm{e}^{\mathrm{bx}}$ does not have a maximurin when the constant a is positive, it does have a minimum. Y will never fall below zero.


Figure 2

Flipping Figure 2 upside-down by plotting Empty Seats versus Temperature gives Noelle the graph in Figure 3, which looks just like the kind of graph where a semi-log model fits peifectly! Taking a log of the empty seats and plotting it versus Temperature gives her Figuro 4. Empty seats were computed using 41,000 as the capacity. Regression 7 uses the same dependent variable but adds the entire collection of independent ones as Noelle had done previousiy.


## Log Empty Seats



Figure 4
8. How does the semi-log/moder of emty seats used in Regression 7 compare to the models used in Regressions 5 and 6? Briefly d scuss the pros and cons of using this last model.
9. Use Regre sion 7 to predict at endance for a Saturday night game against the Tigers that is not opening day Also, the temperature is 89 degrees, there are full-price tickets, a pomotional giveaway, and school is out of session. In addition to a single attendance number, previce a $95 \%$ prediction interval for your answer.


# APPENDIX: A STATA MINI-MANUAL 

This Stata mini-manual is a complement, not a substitute, for the other resources available for you in learning Stata. Do not worry if some of the terminology used in this manual is unfamiliar. Fhe purpose here is to instruct you on the mechanics of using Stata, not in enderstandirg the statistics: this is what the text is all about!

## GETTING STARTED WITH STATA

## Loading the Core Statistics Custom Menu

Stata is statistical software that enables you te do easily many of the statistical calculations required for this course. It is quite a powerfel and flexible program, and is likely to meet your statistics needs not only througho it your education, but also throughout your career. To start Stata, you can either:


1. Double-click to open a Stata .do file (of commands), or
2. Dorivie-click to open a Stata .dta file (of data), or
3. Double-clirk ( or otherwise start) the Stata executable.

In this text, we will be making extensive use of the custom Core Statistics menu and will assume throighoat the text that you have loaded it into Stata. To load this menu, follow these steps: Run Stata. There will be a command line. Type the command
do http://kellogg.northwestern.edu/stata/menu.do and hit enter (you will need an internet connection). In the dialog box that appears, check "Core Statistics" only. After the dialog box executes, the custom menu will be installed under the User Menu in Stata. It only needs to be installed once, and will appear there each time you start Stata.

## Using Menus, Dialog Boxes and Typed Commands

Throughout this manual, commands on the main menu and sub-menus will be separated by the > sign. For example, clicking User>Core Statistics>Univariate Statistics>standard (ktabstat) means doing this:



You can cick on User, then Core Statistics, then Univariate Statistics, then Standard
(ktabstat) (cnce each), or click on User, hold the mouse button down as the sub-menus pop up, and release the button when you have gotten to Standard (ktabstat).

You can also open most Stata command dialog boxes by typing db dialogboxname in the Command box. For example, typing db ktabstat will open the ktabstat dialog box.

A third and commonly used alternative for carrying out Stata commands is to type commands directly into the Command box. This method is most efficient for frequently usea commands that have few options (e.g., running a regression). For more complicated tarks, such/as senerating a graph with customized title, legends, scales, etc., it is generally easier tu use the dialog box instead. Note that whenever you use a dialog box to run a command, Stata will display the corresponding direct command at the top of the output. When this text lists a direct command (such as regress depvar indepvars), the italicized potion refers to he following:

## Logging Your Work

It is generally a good idea to record the work that you have done in Stata so you can refer to it in the future/f necessary. You can use Stata's $\log$ command to store all of your commands and outputs in a plain text file. To start logging your work, click User>Record your work>Open $\mathbf{L o g}$ (log using) or type db log. (Stata's native menu option is File>Log>Begin....) Type the
name that you want for your new $\log$ file, select $\mathbf{L o g}(* \cdot \mathbf{l o g})$ as the file type, and click Save. After you have started a log file, all output in Stata's Results window will be recorded.

If you want to record your work using an existing log file, you can open the $\log$ daiaiog oox. double-click on the desired file, and select "Append to existing file" in the ensumg Stata Log Options window.

Alternatively, you can type the direct command $\log$ using new filt name. $\log$ to create a new log file. Stata will store this file in the default data folder unless you sperify the directory in which you want to save your log file (in this case the direct conmand wsold be log using directory\newfilename.log). The direct command for appending to an existing $\log$ file is $\log$ using filename.log, append. However, it is/ger erally easier to open or create a log file by using the $\mathbf{l o g}$ dialog box instead.

To stop logging your work, you cän click User>Record your work>Close Log (log close) or File $>$ Log $>$ Close. You may also type the direch command $\log$ close. Any open log will be closed automatically when vou exit Stata.

## Opening/Starting a Data File



When stata starts, it will have an empty data sheet in the Data Editor. This is where you enter all the data tuat yourish to analyze. Usually, you will want to load a data file into Stata. To do this, Cick User>I oad Data...>Stata Dataset (use) or type db use. ${ }^{1}$ You will see a window like the one below. Choose the folder that your data file is in, choose the data file and click Open. For

[^57]example, in the following window, you can import the capm.dta dataset into Stata by clicking
Open.


Once your data are in place, heData Browser (or Data Editor) should look like this:



There are other ways to input data into stata. In blank Data Editor, you may copy and paste or type in data manually. Often, you may have data alreacy entered in a spreadsheet that you want to import into Stata. To import data from an Excel spreadsheet, for example, you can do one of the following:

1. Directly copy and paste the entire dataset from your Excel spreadsheet into Stata's Data Editor. Eefore eonying the data, you should first format your spreadsheet so that the first row contains variable names. When you paste your data into the Data Editor, Click "Treat first row as variable names" in the Paste Clipboard Data prompt. Click File $>$ Save in the Data Editor or click User>Save Data... $>$ Stata Dataset (save) ${ }^{2}$ in the Stata main window to save your dataset as a .dta file.

Save your Excel spreadsheet as a comma separated file by clicking File>Save As... in Excel. Select CSV (Comma delimited) as your file type and click Save. Next, open Stata and click User>Load Data...>ASCII (text) data created by a

[^58]
## spreadsheet (insheet) (or type db insheet). ${ }^{3}$ Select Comma Separated Values

 (*.csv) from the file type drop-down list. Browse for your file, choose Commadelimited data from the "Delimiter" field, check the box next to "Preserve variable case" and click OK. Open the Data Browser to verify that your dat has ieen imported correctly.

A few things to keep in mind when you are converting and importing a .esv file:

1. You need to format an Excel spreadsheet properly be ore saving ii as a comma delimited file. The first row in your spreadsheet should contain variable names, and there can be no empty rows or columns rvithin your dait. Your dataset should not contain non-numeric symbols such as commas and the dollar sign. When you have missing data, you should leave he appropriate cell(s) blank instead of entering placeholders such as N/A.
2. Stata does not allow spaee(s) within a variable name. For example, a variable with the name Avg Terıp in Excer will be imported as AvgTemp into Stata.
3. Stata stores the names of all inipo/ted variables in lowercase unless you check the "Preserve variabie case" box in the insheet dialog box.
4. If you choose Tse default as your "Storage type" in the insheet dialog box, Stata will store any variabie that contains decimal values as a float variable. Because a floai varicble has about 7 digits of accuracy, and because Stata may store a value of 5.6 as 5.5999999, you may encounter rounding discrepancies as you work with Latasels converted using the default float storage type. One solution to this problem is to select the Force double storage type when importing a .csv file. This option keeps variables with decimal values accurate up to 16 digits.
[^59]
## Exporting a Data File

Sometimes you may need to export a datasheet from Stata to another spreadsheet program such as Excel. To do so, you can use one of the following methods:


1. Open your .dta file in Stata. Go to the Data Editor and select the entire dataset Copy and paste the dataset into Excel and save the spreadsheet in a desired file format such as .xls or .csv.
2. Open your .dta file in Stata. Click User>Save Data...>ASCII (text) data readable by a spreadsheet (outsheet) or type db outsheet. ${ }^{4}$ Click on the Save As... button to specify the name and location for your data file and choose Comma Separated Values (*.csv) as the file type. Select Comma-separated (instead of tab-separated) (ormat in the "Delimiter" field and click OK. You can open the new .csv file in Excel to verify that your dataset has been exported correctly.


## Basic Statistics and Critical Values

With Stata, you can easily bidin some basic statistical quantities. As an example, open the adsales.dta data file. Click User >Core Statistics>Univariate Statistics>Standard (ktabstat) (or type dr/ktabstat) to generate useful summary statistics for each variable in the file. ${ }^{5}$ The output oons like that in Figure A.1.

[^60]

If you want Stata to calculate statistics other than the ones incluad in the ktabstat command, or if you want Stata to display basic statistics only for specific variables in your dataset, you can click User>Core Statistics>Univariate Stat stics>Custom (tabstat) or type db tabstat) instead. ${ }^{6}$ This command allows you to select up to eight statistics that you want Stata to display for your specified variable(s). The dirart command is tabstat varlist, $\mathbf{s}(\ldots)$, where you can specify the names of summary statistics in the (...) portion of the command. For the complete list of summary statistics, type heh tabstat into the Stata Command box and refer to the Options>statistics section. Note that the tabstat command will not work for string, or nonnumeric, variables. Therefore, if there is any string variable present in your dataset, it is generally easier to yse the kitastat command instead, as it is programmed to convert string variables to numeric variables temporarily prior to calculating summary statistics. Your original dataset will not be aifected by this temporary conversion.

To inind the correlation coefficients between all pairs of variables in your dataset, you can click User $>$ Core Statistics>Bivariate Statistics>Correlations (correlate) (or type db correlate),

[^61]leave the "Variables" field empty, and click OK. Stata's native menu option is

## Statistics>Summaries, tables, and tests>Summary and descriptive statistics>Correlations

 and covariances, and the direct command is correlate. If there are some non-numeric variables in your data, correlate will return an error message. If you want Stata to compye corclation coefficients for selected variables (e.g., the non-numeric ones) only, you can specify those variables in the correlate dialog box. ${ }^{7}$ Again, using the adsales.dta dat we prodyce the output in Figure A.2.

Figure A.2: Correlations for adsales.dta data.

Here, 0.9555 is the correlation between expend and sales.

To perform a 1-Sample t-ist ins Stata, you can click Statistics>Summaries, tables, and tests>Classical tests of hypotheses>0) ne-sample mean-comparison test (see Chapter 2). ${ }^{8}$ To compare the means of two nopulations using a 2-Sample t-test, click Statistics>Summaries, tables, and tests>C'assical tests of hypotheses>Two-sample mean-comparison test (see Chapter $2, .{ }^{9}$ We will usually assume the variances of the variables in a 2 -sample t-test are differeat so you will -heck the box next to "Unequal variances." The dialog box for a 2-sample t(est look like this:

[^62]

Specify your variables and click $\mathbf{O K}$, ard Stata will return the test statistic as well as the p-values corresponding to the alternative hypotheses that ehe difference in population means is less than, not equal to, or greater than 0 .

## Regression



In this section, we will use the capm.dta data.


The conmend you will probably use most frequently is the regress command. You can access the dialog box for this command by clicking User>Core Statistics>Regression (regress) (or type db regress). ${ }^{0}$ S ata's native menu option is Statistics>Linear models and related>Linear regression. Clicking on the menus will open the following dialog box:

[^63]

In this example, we will choose smstic as our dependent variable and sp500, crpbon, and tbill as our independent variables


When you clik $\mathbf{O K}$, Stata will display the regression output as in Figure A.3.


Figure A.3: Regression of smstk on sp500, crpbon, and tbill.

From the output above, we can see that our regression equation is
smstk $=-0.0012814+1.364617 *$ sp500 $+1.546602 *$ cribon $-2.537447 *$ tbill. Stata lists the standard errors, t-ratios, p-values, and 95 \% confidence intervals for eacin coefficient in the Std. Err., t, $\mathbf{P}>|\mathbf{t}|$, and $\mathbf{9 5 \%}$ Conf. Interval columns, respestively. Under the $\mathbf{S S}$ column, you can find explained sum of squares, residual sum of squares, anc total sum of squares in rows Model, Residual, and Total, respectively The degrees of freedom of the error term is listed in the Residual row and the df calumn. The number of observations, F-ratio, p-value (Prob > F), $\mathrm{R}^{2}$, adjusted $\mathrm{R}^{2}$, and the standard erros of the regression (Root MSE) are listed in the top right corner. The p-value (Prob >F) lised just above the $\mathrm{R}^{2}$ in the regression output is for the hypothesis test with the null hypothesis that the coefficients for all the variables are equal to zero. The p-value of zero says we Lar reje.t the null hypothesis with high confidence, and thus have strong evidence that at eas one of the independent variables is related to the dependent variable.

To have Statal calculate the beta-weights for each coefficient, you can click the Reporting tab in the regress dialog box and check the box next to "Standardized beta coefficients." You can alternatively type the direct command regress depvar indepvars, beta.

To make predictions using your most recently performed regression, first open the Data Editor. Suppose we want the predicted value for smstk where $\mathbf{s p 5 0 0}=0.05$, crpbon $=0.01$ and $\mathbf{t b i l l}=$ 0.02 . Enter these numbers into an empty row in the cells corresponding to each variable we leave a blank row above our entry to remind ourselves where the original data ends; iry this case we will enter our new set of values in row 242). Minimize or exit the Data Editor. Next, cick User_Core Statistics>Prediction, using most recent regression or type db conffat. Click OK, and you will obtain the following output:


As you can see, Stata has generated new ariables corresponding to fitted or predicted values (predicted), the standard error of the estimeted mean(se_est_mean), the standard error of prediction (se_ind_pred), as well as 95\% cpnf dence and prediction intervals (CIlow/CIhigh and PIlow/PIhigh, respectively).

To change the confidente level for these intervals, open the confint dialog box again and type the confidence Ieve' you want in tire "Confidence level in \%" field. Click OK, and Stata will regene ate the varıbles listed in the previous paragraph using the new confidence level.

To do predictions for more than one set of values, simply enter each set of values for the independent/variables in a separate row in the Data Editor. Suppose we want to make predictions for $\mathbf{s p} 505=0.05$, crpbon $=0.01$, and tbill $=0.02$, as well as $\mathbf{~ s p 5 0 0}=0.02$, crpbon $=-0.02$, and tbill $=0.03$. After you have entered these values in the Data Editor and clicked User>Core

Statistics>Prediction, using most recent regression (confint), the Data Browser should look like this:

|  | date | sp500 | smstk | crpbon | govtbon | tbill | predicted | se_est_mean | se_ind_pred | CIlow | CI/ $/ \mathrm{Tg}$. | pl | PIhigh |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 240 | 4512 | . 007951 | . 013374 | . 009617 | . 015746 | -. 003379 | . 0330164 | . 0060293 | . 0660326 | . 0211382 | ,0448946 | -. 0970722 | 163105 |
| 241 | . | . | - | - | . | - | - | - | - | - | . | - |  |
| 242 | - | . 05 | . | . 01 | . | . 02 | . 0316666 | . 0130438 | . 067038 | . 0059695 | . $09 \times 1237$ | -. 1004027 | $1637) 58$ |
| 243 | . | . 02 | . | -. 02 | . | . 03 | -. 0810445 | . 0266192 | . 0709403 | -.1334/62 | -.028602? | -. 2208017 | 15/7127 |

If you want to generate only predicted values, only the standard error of the estimatad mean, or only the standard error of prediction after running a regressior, you can click

Statistics>Postestimation>Prediction, residuals, etc. or typo db predict. Ir the "New variable name" field, type in the name for which you want your predicted values or standard errors to be displayed as, and choose the appropriate variable fron the "Droduce l list:
a. To generate predicted valyes, hoose "Linear prediction (xb)."
b. To generate the stand ard grior or the estimated mean, choose "Standard error of the prediction."
c. To generate the s andard error of prediction, choose "Standard error of the forecast


The corresponding direct commands are:

## a. predict newvar, $\mathbf{x b}$

b. predict newvar, stdp
predict newvar, stdf

Nete that Stzta's native predict command does not automatically generate the confidence and prediction intervals for fitted values. Therefore, it is generally more convenient to use the prediction (confint) command from the Core Statistics custom menu instead.

After performing a regression, you can use some other advanced options by clicking User>Core Statistics>Model Analysis, using most recent regression. This will expand the submeru from which you can select the respective commands that will calculate variance inflation factors for the coefficients, display the test statistic and p-value for the Breusch-Pagan het/roskedasticity test.) plot residuals against predicted values, identify outliers and high leverage points, arid calculate the Durbin-Watson d-statistic for detecting autocorrelation. ${ }^{11}$ The esmesponding netive menu options in Stata and the direct commands for each of the options in the Analysis submenu are the following:
i) Variance Inflation Factors (vif) (or type do vif)

- Stata menu: Statistics>Linear models and related $>$ Regression diagnostics>Specification eests, etc. (or type db estat) $\rightarrow$ Variance inflation factors for the independen variables (vif)
- Direct command: iif
ii) Breusch-Pagan hete oskedasticity test (hettest) (or type db hettest)
- Stata me،u: Statistics>I:near models and related $>$ Regression diagnostics $>$ Specification tests, etc. (or type db estat) $\rightarrow$ Tests for heteruskeáasticity (nettest)
- Direct command: hettest
iii) Plot residuals vs predicted values (rvfplot) (or type db rvfplot)

Straa rhenu: Graphics $>$ Regression diagnostic plots $>$ Residual-versus-fitted

- Direct command: rvfplot
iy) Residuals, outliers and influential observations (inflobs) (or type db inflobs)

[^64]- Stata menu: Statistics>Postestimation>Predictions, residuals, etc. (or type db predict) $\rightarrow$ You can have Stata generate residuals, studentized residuals, Cook's distance, and leverage using this dialog box.
- Direct command: inflobs
v) Default Durbin-Watson Statistic (ddw) (or type db ddw)
- Stata menu: Statistics $>$ Linear models and related $>$ Fegression diagnostics $>$ Specification tests, etc. (or type db estat) $\rightarrow$ Durbin Watson d statistic (dwatson - time series only). Note that you need to declare a time index variable prior to using this command. See the Other Stata

Commands>Declaring a Time Index Variablesection for instruction on declaring time index variables.

- Direct command: ddw


## Graphs



In this section, we will use the adsales.dte data. Load this file into Stata by clicking User>Load
Data...>Stata Data Set (use) or type db use.

To plot one variable in your date against another, such as Y vs. X , click User>Core Statisti $s>$ Sivarate Statistics>Bivariate Plots (twoway) or type db twoway. ${ }^{12}$ Click Create..., choose Basic plots $\rightarrow$ Scatter, and choose the corresponding variables from the Y/X variable dron-down lists Eor example, to plot sales against expend, you should have a dialog box that looks like this:

[^65]

If you want the regression line to apnear on your grapr, first click Accept to close the Plot 1 dialog box. Next, click Create... gain and select Fit plots $\rightarrow$ Linear prediction. Choose sales and expend as your Y and X variables, respectively, and click Accept $\boldsymbol{\rightarrow}$ OK. You should obtain a scatterplot as well as the regression line of sales versus expend as shown in Figure A.5.



To save this graph, you can click rile>Save ol right-click on the graph and select Save As.... Doing so saves your graphas a sph sile by dsfault, which can be opened only in Stata. To insert a graph into a different file or program, you can right-click on the graph, select Copy, and paste that graph into the desired incation.

You ma have noticed that when you generated the scatterplot and regression line for sales versus expend by following the instructions above, your graph does not have a title or a y-axis label as showin in rigure A.5. You can easily add these elements as well as make various other adjustmer.ts oo your graph by using Stata's Graph Editor. For example, to add the title "Scatterp/ot" to the graph in Figure A.5, click File>Start Graph Editor from the Stata Graph
window. ${ }^{13}$ In the Object Browser window, double click title under Graph>positional titles and type "Scatterplot" in the "Text" field. Click OK, and your scatterplot will now have an appropriate title:


Similarly, double click title under Graph>yaxis1 from the Object Browser and type "sales" to label the y .axis aecorcingly.

To adit the y-axis (x-axis), right-click on yaxis1 (xaxis1) from the Object Browser and select Axis Propertics. You can adjust various aspects of the axes such as scaling, fonts, and label orientation.

[^66]Note that instead of editing a graph after it has been generated, you can specify graph properties in advance via the optional tabs in the twoway dialog box. For more information on editing graphs, you can refer to Stata's accompanying manual or type help graph editor inte the Command box.

In general, it is easier to use dialog boxes instead of direct commands to geterate gaphs in Stata because of the various graph options available. Nevertheless, you call use these following commands to generate common graphs:

- Scatterplot: twoway scatter varY varX
- Connected graph: twoway connected varY var
- Graph of regression line: twoway lfit varY var $\boldsymbol{X}$
- Graphing regression line on top of a scatterplot: twoway (scatter varY varX) (lfit varY $\operatorname{var} X)$

In evaluating a regression, the graph of residuall versus predicted (or fitted) values will often be useful. Here is how to geiente such a graph for a regression of expend against sales. First, run a regression where expend is thre dependent variable and sales is the independent variable. Then, click User>Core Statistics>Modei Analysis, using most recent regression>Plot residuals vs predicted values (rvfplot) (ortype db rvfplot). ${ }^{14}$ Click $\mathbf{O K}$ in the ensuing dialog box, and you will obtair the graph shown in Figure A. 6 of residuals against the fitted values.

[^67]

Figure A.6: Plot of residuals s. pedicted values from regression of expend on sales.

Alternatively, you may type the d/rect comnard rvfplot after running a regression.

## Getting P-values



In this section, we will use the mewspapers.dta data. A regression of Sunday against Daily generates the output in Figure A.7.

| - regress Sunday Daily |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df |  | MS |  | Number of obs $=r$ 35 <br> $F(1$, $33)$ $=$ <br> Prob $>$ $\mathbf{2 1 1 . 1 9}$  <br> R-Squared $=0.0000$  <br> Adj R-squared $=0.8649$  <br> Root MSE $=0.8608$  <br>  $=43.86$  |  |
| Mode1 | 4370974.89 | 1 | 437 | 74.89 |  |  |  |
| Residual | 683001.518 | 33 |  | . 0157 |  |  |  |
| Total | 5053976.41 | 34 | 148646. 365 |  |  |  |  |
| sunday | Coef. | std. | Err. | t | $P>\|t\|$ | [95\% こonf | Interval] |
| Daily | 1. 351173 | . 0929 | 771 | 14.53 | 0.000 | 1. $16<01$ | 1. 540337 |
| _cons | 24.76346 | 46.98 | 668 | 0.53 | 0.602 | C 83155 | 120.3586 |

Figure A.7: Regression of Sunday on Daily.

The p-value of 0.000 corresponding to Daily in Figure A. 7 is for one paticular hypothesis test, where the null hypothesis is that $\beta_{1}$, the coefficient of Diry, is equa to zero. This p-value says we can reject the null with high confidence-we can be (virtuàily) $100 \%$ confident $\beta_{1}$ is not zero. If we wanted to test some other null hypothesis-for example, $\beta_{1}=1.1$-we would have to do the test manually. The t -statistic for this test $\mathrm{t} / \mathrm{s}$ the following:


Now we can use Stata ttal function to look up the p-value corresponding to this value of $t$. The full syntax for his function is display ttail( $\mathbf{n}$, $\mathbf{t}$ ), where Stata will compute the area to the right of $\mathbf{t}$ under a t-distribution with $\mathbf{n}$ degrees of freedom. In this example, $\mathbf{n}$ equals the residual degrees of freearm ( -33 ), and $t$ is our $t$-statistic ( $=2.7015$ ). Since we are talking about the probability associated with a two-tailed test, we need to multiply the value ttail(33, 2.7015) by 2 . Type display 2 :ttail(33, 2.7015) into the Command box, and you should get the value 0.0108128 . Thus, the p-value for the test is 0.0108128 ; that is, if the coefficient on Daily were 1.1, there would only be a $1.081 \%$ chance of obtaining a coefficient as far away from 1.1 as 1.351173
because of randomness in the data. We would reject the null hypothesis at any confidence level up to about $99 \%$ (or any significance level down to about $1 \%$ ).

We can also use Stata's invttail function instead of a table to find critical valuer of t. The full syntax for this function is display invttail( $\mathbf{n}, \mathbf{p}$ ), where Stata will calculate he value $x$ for which the probability of falling to the right of that value is $\mathbf{p}$ under a t -distribution with/ $\mathbf{n}$ degrees of freedom. To find the t-statistic corresponding to $\alpha=.10$ for our twos-atited test, you can type display invttail(33, 0.05) into the Command box (remember that $p=.10 / 2=0.05$ since we are interested in a two-tailed test). The result tells us the t-statistic is 1.6923603 . So, we would reject the null with $\alpha=.10$ if we obtained a t-statistic greater than 1.6923603 or less than -1.6923603 (which we did). This additionally tells us that for a one-sidod tes with a 'greater than' alternative, we would reject the null with $\alpha=.05$ if we obtained at-statistic greater than 1.6923603 , and for a one-sided test with a 'less-than' alternative, we weuld reject the null with $\alpha=.05$ if we obtained a t -statistic less than -1.6923603 .


We can also use Stata's formalan function in place of a z-table. The full syntax for this function is display normal(z), where shata will calculate the area to the left of $\mathbf{z}$ under the standard normal distribution. Suppose we wate to look up the p-value corresponding to a test statistic of $\mathrm{z}=2.7$ for a one-sided test with a 'less-than' alternative. Type display normal(2.7) into the Command box, and you should geì $0.99653303(=\mathrm{P}(\mathrm{Z}<2.7))$.

Suppose we wanted to find the z-statistic corresponding to $\alpha=.10$ for a two-tailed test. We can do chis using Stata's invnormal(p) function. The full syntax for this function is display invnormal(p), where Stata will return the value $x$ for which the probability of falling to the left of that value under the standard normal distribution is $\mathbf{p}$. For this example, we want the number $x$
such that there is a $5 \%$ (i.e., $\alpha / 2 \%$ ) chance of being greater than $x$, or, equivalently, a $95 \%$ $(\mathrm{p}=0.95)$ chance of being less than $x$. Type display invnormal(0.95) in the Command box, and the result tells us the appropriate z-statistic is 1.6448536 .

## Creating New Variables

Sometimes, you will need to make a new variable out of the ones given inn tile. For example, you may want to use the logarithm of a variable as a predictor or esponse. As an example, create a new column, which includes the logarithm of the variable expend. Fo uo this, first open the adsales.dta data. Next, click User>Manipulate Variables and $\boldsymbol{O b}>$ Generate New Variable (generate) or type db generate. ${ }^{15}$ Type the name you want to give to the new variable, say Inexpend, into the "New variable name" field 「ype $\ln (\mathbf{e x p e n d})$ into the "Contents of new variable: Specify a value or an expresson" ${ }^{\text {Field. }}{ }^{16}$ You should have a dialog box that looks like this:


[^68]

Click OK and open the Data Browser. Yo/r datasheet will look like this:



Now we are dnne. We created a new variable called Inexpend. Each observation in Inexpend is the logarit/im of the corresponding observation in expend.

Note that you call also open the generate dialog box within the Data Editor by clicking
Data>Create or change data>Create new variable. You can see new variables generated live when using this method.

Many other functions are available in the Expression builder dialog box (accessible via the Create... button in the generate dialog box) that you can use to manipulate data. For more information on data generating options, you can type help generate into the Command box or refer to Stata's accompanying manual on data management.

Another type of variable we may want to create using Stata is a seasonal dummy variable. In the soda.dta dataset, we have the dummy variables winter, spring, and summer. Wirter, for example, is a column with the following sequence of numbers

$$
10001000100 \mathrm{C} 1000
$$

There is a one for each row of data that cor/esponds to a winter quarter, and a zero for any other quarter. One way to construct a variable li/ke this is to open the Data Editor, type a $\mathbf{1}$ into the first cell of an empty column, and type mree zaroes into the second, third, and fourth cells. Then, copy these four cells and paste them by choosing the appropriate cells as a destination. In the soda example, you need to paste this rattern thee nore times. Stata automatically names a new variable "var\#" when you innially enter data manually into a new column. To rename your variable, right-click oin the variable name at the top of the column, and click Variable Properties.. Tvpe in the name that you want and click Apply, and your new variable will be renamed apropritely The direct command for renaming a variable is rename oldvar newvar.

Maneally entering data with repeated patterns can be very tedious, especially when you have a very large dataset. Fortunately, you can use the fill() function of the egen command to generate a varteble rwith repeating patterns easily. For example, suppose we want to generate an additional column of data in the soda.dta dataset, say, winter1, that is identical to the winter variable. To
do this using the fill() function, click User>Manipulate Variables and Obs>Extended
Generate New Variables (egen) or type db egen. ${ }^{17}$ Type winter1 in the "Generate variable" field, select Fill pattern from list of egen functions, and enter $\mathbf{1 0 0 0 1 0 0 0}$ in the "Nunber list that provides the pattern" field (you should generally enter a pattern twice so that Staia understands exactly what pattern you would like it to repeat). ${ }^{18}$ You shouldave a dialog box that looks like this:

圆 egen - Extensions to generate



OK
Cancel
Submit

Click OK and examine the Data Browser. You will see that Stata has generated the variable
winter1 with the sequence 1000 repeated four times.

[^69]
## Other Stata Commands

## Keeping Track of Edited Data

The snapshot command in Stata is very useful in recording the changes that you have made to your dataset. Every time you create a snapshot, Stata will save a copy of your dataset up to thak moment. Therefore, if you make any editing error or simply want to restore yoar dataset to an earlier state, you can select the appropriate snapshot that you wan to returs to.


For example, suppose we want to edit the adsales.dta data. The riginà datzset contains 172 observations, and we want to add the $173^{\text {rd }}$ observation where eyper $\mathrm{d}=2.2$ and sales $=16.79$ (for illustrative purpose only). Open the Data Editor. Befoee making any changes, you can create a snapshot of the original dataset by clicking/ Tools>Snapshots... or clicking the Snapshots tab. This will expand the Snapshots window on tere of the Data Editor. Click on the Add button (shown below):




Enter a name, say, original, to remind ourselves what the data snapshot contains. Click OK, and you can see in the Snapshots list that Stata has created the first snapshot of your data. Now we can proceed to enter new values in the adsales dataset. Suppose, however, that we acciden ally entered 2.2 in cell expend[172] instead of expend[173]. The original value in ceil expend[172], 2.507401228, is now lost, and we want to rectify this mistake. To do this, cick on the Snapshots tab again. Select the snapshot that you want to restore to (originalintins case) and click on the Restore button as shown:

Data Editor (Edit) - [adsales]


Click Yes, and Stata will restore our data back to its original state.

The direct command for creating a snapshot is snapshot save, label('snapshotname"); the direct emmend for restoring to an earlier snapshot is snapshot restore snapshot\#, where snapshot\# corresponds to the number under the \# column in the Snapshots list.

The byifif/in Option

The by, if, and in options are useful for specifying particular portions of data that you want to use. Specifically, the by varlist option repeats a command for groups of observations defined as having the same values for the variables in varlist. The if $\boldsymbol{\operatorname { e x p }}$ option specifies that a command is carried out only for observations satisfying the expression in $\exp$. The in option specifites a range of data for which you want to carry out a command.


As an example, consider the California Strawberries case from Section - .2, where we want to run the regression of Time versus Boxes separately for the Monterey and the Bakersfield systems. Open the california.dta dataset, which contains a dummv variable Plant that equals 0 if the data come from the Monterey plant and 1 if the data come from the Bakrrsfield plant. We can utilize the Plant variable and the by/if/in options to run the separtete regressions in three different ways. The corresponding direct commands are the folowing:

1. Using the by option:

## a. by Plant, sort: regress Time Boxes

2. Using the if option:

## a. regress Thine boxes if Plant $=0$

b. regress Time Boxes if Plant==1
3. Using the in eption:
a. regress Time Boxes in 1/15
b. Regress Time Boxes in 16/30

You shpuld try these three sets of commands and verify that they produce the same regression outnut. Nete that the by option sorts the data by the value of Plant before doing the regression. It cieesn't matter in this example (because the data is already sorted in this way), but more generally you should be careful not to save the data in its sorted form if you wish to maintain the original observation order.

The if $\exp$ option is also frequently used in generating or manipulating variables. For example, in Case Exercise 4 of Chapter 1, we wanted to create a new variable called half_plus that equals 1 if Acceptance_Rate is greater than 50 percent and equals 0 otherwise. To do this, you can click User $>$ Manipulate Variables and Obs>Generate New Variable (generate) or type ut generate. Type half_plus into the "Variable name" field, and type $\mathbf{1}$ into the "Specify a vaive or an expression" field. Switch to the $\mathbf{i f} / \mathbf{i n}$ tab and type Acceptance_Rat $>\mathbf{0}$. ints the "If: (expression)" field. ${ }^{19}$ You should have a dialog box that looks like ttins.


Click OK and open the Data Brewser Voa can see below that half_plus has a value of 1 for all observations wher_ Acceptance_Rate is greater than 0.5, or 50 percent:


[^70]|  | Store_Number | Acceptance~e | half_plus |
| ---: | ---: | ---: | ---: |
| 1 | 80 | .6185 | 1 |
| 2 | 104 | .4138 | . |
| 3 | 117 | .5462 | 1 |
| 4 | 210 | .3197 | . |
| 5 | 226 | .631 | 1 |
| 6 | 238 | .2924 | . |
| 7 | 256 | .3766 | . |
| 8 | 294 | .419 | . |
| 9 | 297 | .4346 | . |
| 10 | 404 | .4668 | . |
| 11 | 422 | .2618 | . |
| 12 | 449 | .4101 | . |
| 13 | 648 | .513 | 1 |
| 14 | 682 | .6569 | 1 |



For any observation where Acceptance_Rate is less than or equal to 0.5, Stata has left a corresponding blank cell in the half_plus colamn. To replace the empty cells with 0 , you can click User>Manipulate Variables and Gbs>Replece/Change Existing Variables (replace) or type db replace. Select half_plys in the "Variable" Meld, and enter $\mathbf{0}$ in the "New contents: (value or expression)" field. $S$ vitch to the iy/in tab, and type half_plus==. in the "If: (expression)" field. ${ }^{20}$ You shold have a dial ${ }^{\text {g }}$ box that looks like this:


[^71]Click OK and look at the Data Browser again. You should see that all previous empty cells in the half_plus column have now been replaced with 0 's instead.


There are many other expressions that you can use with the if option to automate the task of data analysis and/or data manupulation. You can explore them by typing help if into the Command box or by referring to Stata's pdf manuals.

## Declaring a Time Index Variable



When analyzing time series data in State, you first need o designate or generate a time index variable by using the asset command. If you want to declare an existing variable as a time index, you can click Statistics $>$ Time series $>$ Setup ard utilities $>$ Declare dataset to be time-series data or type db tasset, and select the desired variable from the "Time variable" field. The direct command is tasset varname.


An easy way to generate generic the ne index variable is by first typing the command generate newvar=[_n] where newvar is whatever name you want to give to the variable. This command generates a new variable with values corresponding to the observation numbers of your dataset. Then, declare newvar as a tire alex by using either the tasset dialog box or the direct command asset newvar.
To stop designating a variable as a time index, you can click the "Clear time-series settings" button in he tasset dialog box or type the direct command asset, clear.

## Doing Calculations in Stat

You can use Stata's display command as a hand calculator. For example, to calculate $\ln (2) / 5$, you can type display $\ln (\mathbf{2}) / \mathbf{5}$ into the Command box and get 0.13862944 . The abbreviation di can also be used in place of display.

## Everything else

Stata is capable of many tasks not discussed here. As you work throug the problerns in this book, you will become more familiar with the program and a few of its many apabilities. To learn more about a particular command, you can type help cornmandname in the Command box. The Stata User's Guide (in the pdf manual that comes with Stata) also provides a comprehensive description of its commands. The Stata FAQ website (h/p://wwwiata.com/support/faqs/ or click Help>Stata Web Site>Frequently Asked Questions) and the Stata listserver (http://www.stata.com/statalist/) are also good online sources for technical and/or statistical questions.

## Prediction Intervals

What is a prediction interval?

A prediction interval is a confidence interval for a particular observation, rather than for the population mean, $\mu$. In Chapter 1, you learned the formulas for confidence intervals for $\mu$. The formulas for prediction intervals differ in two important ways fro $n$ those fermulas:

1. We can only calculate prediction intervals easily if we assume that the population is normally distributed.

2. For prediction intervals, we need to take/nt/ account the variance of an individual observation (the population variance) as well as the variance of $\bar{X}$. For confidence intervals concerning $\mu$, it was only necessary to consider the variance of $\bar{X}$.


How do we calculate a $(-\alpha)-00 \%$ prediction interval?


Assume our sample of size n is i.i.d. and is drawn from a normally distributed population.

1. If we know the fopulation standard deviation, $\sigma$, the P.I. is the following:

$$
\bar{X} \pm z_{\alpha / 2} \sigma \sqrt{\frac{1}{n}+1}
$$



## Correlation

Usually, the value of a random variable conveys some information regarding the value of another random variable. For example, if you know the height of someone, this gives you some idea about this person's weight. Typically, a taller person is heavier than a norrer parson. This is not always the case, but it is fair to say that height and weight are positively correlated. Examples of positively correlated random variables abound, such as sales and advertising expenditures, the price of a Coke and the price of a Pepsi, inflation and the increase in the rioney supply, education and wages. In all these examples, the random variables are positively correlated because the probability of a high realization of one random variable is kigher when the realization of the other random variable is high than when the realization of the other random variable is low.


A plot of two positively correlated variables may leok ike this:


An extreme case of positively correlated variables is the case of two variables perfectly and positively correlated. In this extreme case, one variable is a positive linear transformation of the other, such as the price of a hamburger measured in cents and the price of a hariourger measured in dollars. One random variable is the other multiplied by 100 .


Analogously, two random variables are negatively correlated if one is itikely to be ebove average when the realization of the other random variable is low and below average when the realization of the other random variable is high. Examples of negatively correlated rado in variables also abound: inflation and contraction in the money supply, rages and poverty, and health and cigar consumption.

A plot of negatively correlated random/variable may look like this.


An extreme case of negatively correlated variables is the case of two variables perfectly and negatively correlated. In this extreme case, one variable is a negative linear transformation of the other.


Two random variables are independent if the realization of one random variable does not affect the proballity distibution of the other random variable. A typical example of two independent randont variables is given by tossing two different coins. Two independent random variables are nst correited. covariance by the product of the sample standard deviation of x and the sample standard deviation of y :

$$
r_{x y}=s_{x y} /\left(s_{x} s_{y}\right)
$$

The components are as follows:
$\mathrm{r}_{\mathrm{xy}}=$ sample correlation coefficient
$\mathrm{s}_{\mathrm{xy}}=$ sample covariance
$\mathrm{s}_{\mathrm{x}}=$ sample standard deviation of x
$\mathrm{s}_{\mathrm{y}}=$ sample standard deviation of y

The correlation coefficient of two variables is always between -1 and 1 . If it is -1 , the two variables are perfectly negatively correlated. If $t$ is 1 , the two variables are perfectly positively correlated.


Using Stata, you can find the correlation ccefficients between all possible pairs of variables in your dataset. To do this, cirick User>Core Staistics>Bivariate Statistics>Correlations (correlate) or type db correiate. For example, using the adsales.xls data, we produce the following output:


Here, 0.9555 is the correlation between expend and sales.

If your dataset contains more than two variables, Stata will return a table giving the correlation between any pair. If any of the variables are non-numeric, correlate will return an error. To avoid this, you can specify in the correlate dialog box exactly which variables you would like to see the correlations among.


## Properties Of Logarithms

In this section, we outline some of the mathematical properties of logarithms, logs frorh here on, we will need to use in this text. In this book (as in most real-world applications) we will ase only natural logs. Natural logs are called "natural" because they use the naty ral number $\mathbf{e}=\mathbf{2 . 7 1} \ldots$ We will use the notation In for natural logs. Other common notations are inge or log though the latter more often refers to a different kind of logarithm, i.e., log base 10 .

Definition: the natural logarithm of a number $x$ is the number $y$ that satisfies: $e^{y}=x$.


So, $y=\ln x$ means $y$ is the power you have to raise e to in order to get $x$. It's okay if the $\log$ of something is negative. It means you need to raise e to a negative number to get that value. On the other hand, there is no number you can raise e te and get -1 ; $\ln -1$ is not defined. In fact, $\ln x$ is not defined for any negative x .


Fractional values for the log are possihle.


Negati e tractions are ;llowed as well. $\ln x=-0.5$ means that $x$ is the $-1 / 2$ power of e or 1 over the squat ront of e. One general rule is that as $x$ goes up, $\ln x$ goes up as well, but not nearly as fast as x does. In fact, as $x$ goes up geometrically, $\ln x$ goes up linearly.

Raising something to a power 'undoes' the $\log$ as in this example:

$$
\mathrm{e}^{\ln \mathrm{x}}=\mathrm{x} \text {, e.g., } \mathrm{e}^{\ln 4}=4
$$

The same holds in the opposite order as well:

$$
\ln \mathrm{e}^{\mathrm{x}}=\mathrm{x}, \text { e.g., } \ln \mathrm{e}^{2}=2
$$

## SUMMARY OF PROPERTIES OF LOGS



There are a handful of properties of logs that get used a lot in generar and in t/his book in particular. Here are some of the most important ones.


Property 1: Exponentiation and logs are inyerses in that they undo each other. In particular, for any positive number $x$, the following is trye:


Example: $\quad e^{\ln e}=e^{1}=e$ and $\ln \left(e^{1}\right)=\ln (e)=1$.

Property 2: Logs of proakcts are sums:

$$
\ln \left(x^{*} y\right)=\ln (x)+\ln (y)
$$

This is trye because you can add exponents in products as in this example.

$$
\ln \left(e^{2} e\right)=\ln \left(e^{3}\right)=3=2+1=\ln \left(e^{2}\right)+\ln (e)
$$

Property 3: Logs of powers are products:

$$
\ln \left(x^{y}\right)=y \ln (x)
$$



This is the same as property 2 above when you multiply the same thing together $y$ times as in this example:



[^0]:    ${ }^{1}$ In Chapter 4, we will revisit the connection between variance and risk in the context of capital budgeting and the CAPM model.

[^1]:    ${ }^{2}$ Note that in the actual Stata output, zero is omitted before the decimal. We have added a zero here to distinguish the decimal in the output from the period in front of the actual command.

[^2]:    ${ }^{3}$ See the Appendix for instructions on loading, converting, and saving data files in Stata.
    ${ }^{4}$ As you can see from Figure 1.13, the analogous typed Stata command is ktabstat.

[^3]:    ${ }^{5}$ It is exactly a normal distribution only when the population is normally distributed. However, as long as the sample size is not too small, a result known as the Central Limit Theorem tells us that the sampling distribution is approximately normal.

[^4]:    ${ }^{6}$ This is exactly true only when the population is normally distributed but is often a good approximation if it is not.

[^5]:    ${ }^{7}$ Alternatively, you can directly type the command ci servicetime into the Command box.

[^6]:    ${ }^{11}$ To do this in Stata, first open njbank.dta. Then, you can type the following commands: 1) generate No_Cash=1 if Cash_Out==0, and 2) replace No_Cash=0 if No_Cash==. (make sure to include the period after $==$ ). Open the Data Browser to verify that the new data are generated correctly.

[^7]:    ${ }^{1}$ Alternatively, you can directly type the command $\mathbf{t}$ test sales $=\mathbf{2 8 0}$.

[^8]:    ${ }^{5}$ Alternatively, you can type the direct command prtesti size 1 pl size 2 pr, where size\# and p\# corresponds to the sample size and the sample proportion of population \#.

[^9]:    ${ }^{6}$ The Field Poll, Tuesday, Sept 9th, 2003.

[^10]:    ${ }^{7}$ Alternatively, you can directly type the command ttest sp500_1 == sp500_2, unpaired unequal.

[^11]:    ${ }^{8}$ See the Appendix for more detail on generating a variable with repeated patterns.
    ${ }^{9}$ Alternatively, you can directly type the command ttest smstk, by(January) unequal.

[^12]:    ${ }^{10}$ All data from Survey Adds Up Return on Pro Bowl in the Honolulu Advertiser, 2/13/03.
    ${ }^{11}$ From Internet Movie Database at http://www.imdb.com

[^13]:    ${ }^{12}$ See http://www2.hawaii.gov/DBEDT/.

[^14]:    ${ }^{13}$ From Forbes, 10/6/2003, Vol. 172 Issue 7, p136

[^15]:    ${ }^{1}$ Alternatively, you can directly type the command twoway scatter Price Income. After the graph is generated, you can click File>Start Graph Editor to edit your graph (such as adding titles and changing the scales of the axes). See the Appendix for more information on using the Graph Editor.

[^16]:    ${ }^{2}$ Alternatively, you can directly type the command regress Price Income. See the list of new Stata commands at the end of the chapter for more explanation.

[^17]:    ${ }^{4}$ This graph can be generated in Stata by typing the following commands: 1)generate price1 =
    0.333*Income; 2) twoway (scatter Price Income) (lfit Price Income) (line price1 Income) (or using the twoway dialog box to generate the equivalent command); and 3) using the Graph Editor to change the label in the legend to read 'rule of thumb' rather than Price1.

[^18]:    ${ }^{1}$ Principles of Corporate Finance, 7/e. Richard A. Brealey and Stewart C. Myers. McGraw-Hill, 2003.

[^19]:    ${ }^{2}$ Derived sing data from The Center for Research in Security Prices at http. Mgsb/wwv.uchicago.edu/research/crsp/.
    ${ }^{3}$ We also obtain the intercept of the best-fit line, usually called the asset's alpha. The estimated alpha shows oy best estimate of the excess return of the given asset if the market excess return were 0 . According to the CAPM equation, the intercept should be 0 (verify this for yourself).
    ${ }^{4}$ The estimated intercept is about $.25 \%$ monthly, or $3 \%$ annually. In practice (finance), the intercept is usually omitted when computing the asset's expected excess return. That is, the estimated beta is plugged into the CAPM formula as if the constant estimate were zero. We do it the same way below.

[^20]:    ${ }^{5}$ Using the perpetuities formula, which says that the value of $\$ 1$ per year in perpetuity is $\$(1 / r)$. If you have not seen this, you can read about it in any standard finance text.

[^21]:    ${ }^{1}$ You can access this data in the newfridge file. Source: Consumer Reports, July 2003, Vol. 68, No. 7.

[^22]:    ${ }^{3}$ Before using the confint dialog box, you need to enter the values for prediction of 20, 50, 90, and 110 in the SIZE column as well as 0 's in the LOWconst and LOWslope columns (since we are interested in CEO positions) in some blank rows (we chose rows 98 through 101).

[^23]:    ${ }^{4}$ To generate the predicted values for lower-level management, change the values for prediction in the LOWconst and LOWslope columns to those shown in rows 98 through 101 of Figure 5.13. Then, use the confint dialog box again.

[^24]:    constant and slope coefficients (respectively) of two regressions.

[^25]:    ${ }^{5}$ BEUnemployment $=$ Belgium*Unemployment

[^26]:    ${ }^{6}$ DEUnemployment $=$ Germany*Unemployment
    ${ }^{7}$ ESUnemployment=Spain*Unemployment

[^27]:    ${ }^{1}$ From Statistics for Business and Economics, by Heinz Kohler, Thomson Learning, 2002.

[^28]:    ${ }^{2}$ Data adapted from Anscombe, F.J., Graphs in Statistical Analysis, American Statistician, (27) February 1973, pp17-21.

[^29]:    ${ }^{3}$ You may also type db confint instead.

[^30]:    ${ }^{5}$ Alternatively, you can type rvfplot into the Command box and generate the graph without using the dialog box.

[^31]:    6 "Pay for Play: Are Baseball Salaries Based on Performance?" by Mitchell R. Watnik, The Journal of Statistics Education, Volume 6, Number 2 (July 1998).

[^32]:    ${ }^{7}$ US Department of Justice, Bureau of Justice Satistics at http://www.ojp.usdoj.gov/bjs/dtdata.htm\#crime.
    ${ }^{8}$ See http://www.brewersofeurope.org.

[^33]:    ${ }^{1}$ Dubuque is a trademark of Hormel Foods Corporation.
    ${ }^{2}$ Ball Park is a brand of Sara Lee Corporation.
    ${ }^{3}$ Oscar Mayer is a trademark of Kraft Foods Corporation.

[^34]:    ${ }^{4}$ Alternatively, you can directly type in the command correlate. See the list of new Stata functions at the end of the chapter for more details.

[^35]:    ${ }^{5}$ Alternatively, you can directly type the command testparm varlist, where varlist contains the name(s) of the added variable(s).

[^36]:    ${ }^{6}$ Alternatively, you can directly type the command klincom pbpreg+pbpbeef-poscar.

[^37]:    ${ }^{7}$ The direct command would be klincom -10*poscar+15*pbpreg+9*pbpbeef.
    ${ }^{8}$ The direct command would be klincom $-10 *$ poscar $+15 *$ pbpreg+ $9 *$ pbpbeef +0.001 .

[^38]:    ${ }^{9}$ Alternatively, you can directly type the command vif or db vif.

[^39]:    ${ }^{10}$ The corresponding menu path for this command is Statistics>Postestimation>Linear combinations of estimates. Equivalently, you may type db lincom.

[^40]:    ${ }^{11}$ From "Pay for Play: Are Baseball Salaries Based on Performance?" by Mitchell R. Watnik. The Journal of Statistics Education, Volume 6, Number 2 (July 1998)

[^41]:    ${ }^{12}$ Merritt, Jennifer. Business Week, 10/21/2002 Issue 3804, p84

[^42]:    ${ }^{1}$ Colonial Broadcasting Co., Harvard Business School Case, Product \#9-894-011.

[^43]:    ${ }^{1}$ We will use Stata's $\ln (\mathbf{x})$ function to do logarithmic calculations. To calculate $\ln (1)$, for example, you can type display $\ln (\mathbf{1})$ in the Stata Command box.

[^44]:    ${ }^{2}$ You can generate these variables in Stata by typing the following commands: 1) generate $\operatorname{lnexpend}=\boldsymbol{\operatorname { l n }}($ expend); 2) generate $\operatorname{lnsales=\operatorname {ln}(\text {sales});~and~3)~generate~} \operatorname{expendsquared=expend\wedge 2.~}$

[^45]:    ${ }^{3}$ Similarly, you can type the following commands to regenerate Clhigh_corrected, PIlow_corrected, and PI_high_corrected: 1)replace CIhigh_corrected=exp(CIhigh)*exp(e(rmse) ${ }^{\wedge}$ 2/2), 2)replace PIlow_corrected=exp(PIlow), and 3) replace PI_high_corrected=exp(PIhigh).

[^46]:    ${ }^{4}$ The corresponding typed command is hettest.

[^47]:    ${ }^{5}$ Source: The Internet Movie Database, http://www.imdb.com.

[^48]:    ${ }^{1}$ To generate this graph, click User>Core Statistics>Bivariate Statistics>Bivariate Plots (twoway) or type db twoway to open the twoway dialog box. Click Create... to specify your dependent and independent variables, and select Connected in the "Basic plots: (select type)" field. The direct command for this example is twoway connected sales quarter.

[^49]:    ${ }^{2}$ It is an estimated error term because it is calculated using the estimated regression line. The true error term is how far the data point lies from the true regression line.

[^50]:    ${ }^{3}$ To set an existing time variable (e.g., the variable quarter from the soda file) as a time index in Stata, you can type the command tsset varname. See the list of new Stata functions at the end of the chapter for more details.

[^51]:    Niternatively, you can type the direct command predict varname, residuals after running a regression.
    ${ }^{5}$ To geneate $\mathrm{Y}^{*}$ in Stata, you can type the following command after obtaining the coefficient $\rho$ by regressing residuals on residual_1: generate varname $=\mathbf{Y}_{\mathbf{t}} \mathbf{-}_{\mathbf{-}} \mathbf{b}\left[\right.$ residual_1]* $\mathbf{Y}_{\mathbf{t}}[\mathbf{n} \mathbf{n} \mathbf{1 ]}$. varname is the name that you would give for $\mathbf{Y}_{\mathbf{t}}, \mathbf{Y}_{\mathbf{t}}$ is the name of your Y variable, and _b[residual_1] is where Stata stores the estimated coefficient $\rho$ from the regression of residual on residual_1. $\mathrm{X}_{\mathrm{t}}$ can be generated similarly.

[^52]:    ${ }^{8}$ Alternatively, you can directly type the command arima depvar indepvar, noconstant arima(p,d,q). Omit indepvar if you are not including any explanatory variable.

[^53]:    ${ }^{10}$ To run this regression, you can directly type the command regress Revenue L1.Revenue after declaring Year as your time index variable using the tsset command. L1.Revenue equals Revenue lagged one period. In the boxed AR(1) equation, Revenue_1=L1.Revenue.

[^54]:    ${ }^{11}$ Derived from http://www2.hawaii.gov/DBEDT/.

[^55]:    ${ }^{12}$ Source: Linda Hall, Co-owner Blue Stem Restaurant

[^56]:    ${ }^{1}$ Nopane Advertising Strategy, Harvard Business School Case, Product \#9-893-005.

[^57]:    ${ }^{1}$ Alternatively, you can click File>Open...

[^58]:    ${ }^{2}$ Alternatively, you may type db save.

[^59]:    ${ }^{3}$ Stata's native menu option is File>Import> ASCII data created by a spreadsheet.

[^60]:    ${ }^{4}$ Stata's native menu path is File>Export>Comma- or tab-separated data.
    ${ }^{5}$ Alternatively, you may directly type the command ktabstat.

[^61]:    ${ }^{6}$ Stata's native menu option is Statistics>Summaries, tables, and tests>Tables> Table of summary statistics (tabstat).

[^62]:    ${ }^{7}$ The direct command is correlate varlist.
    ${ }^{8}$ The direct command is test varname $==$ \#.
    ${ }^{9}$ The direct command is test varname1 $==$ varname2, unpaired unequal.

[^63]:    ${ }^{10}$ The direct command is regress depvar indepvar(s).

[^64]:    ${ }^{11}$ The Jarque-Bera non-normality test is also included in the Model Analysis submenu, although we will not be using this command in this text.

[^65]:    ${ }^{12}$ Stata's native menu option is Graphics> Twoway graph (scatter, line, etc.).

[^66]:    ${ }^{13}$ You can also right-click on the graph and select "Start Graph Editor."

[^67]:    ${ }^{14}$ Stata's native menu option is Graphics>Regression diagnostic plots>Residual-versus-fitted.

[^68]:    ${ }^{15}$ Stata's native menu option is Data>Create or change data>Create new variable.
    ${ }^{16}$ Alternatively, in the generate dialog box you may click Create... and select Mathematical $>\ln ()$. You need to type expend in place of $\mathbf{x}$ inside the $\ln ()$ expression.

[^69]:    ${ }^{17}$ The native menu option in Stata is Data>Create or change data>Create new variable (extended).
    ${ }^{18}$ Alternatively, you can directly type the command egen winter=fill(10001000).

[^70]:    ${ }^{19}$ The direct command is generate half_plus=1 if Acceptance_Rate>0.5.

[^71]:    ${ }^{20}$ The direct command is replace half_plus=0 if half_plus==..

