EECS 336: Lecture 14: Introduction to
Algorithms

Greedy Algorithms: Interval Scheduling
Reading: 4.1, [4.5]
Last Time:

e NP review

« finding a solution

e reverse certificate construction counter examples
Today:

e Greedy Algorithms

o Interval Scheduling

o [Minimum Spanning Tree (MST)]

Greedy Algorithms
e build solution in steps.
¢ each step myopically optimal
e hard part: prove final solution is optimal

Question: For what problems are greedy algorithms
optimal?

Interval Scheduling
“sharing a single resource”
e n jobs
o one machine

o requests: job ¢ needs machine between s(i) and
f(@).
Goal: schedule to maximize # of jobs scheduled.

Examples: Greedy by ...

e “start time”

Note: important to be able to find counterexamples
quickly.
Greedy Algorithm for Interval Scheduling

Idea: scheduling the earliest finish time first, leave
the least constraint on remaining schedule.

Def: jobs i and j are
 incompatible if [s(7), f(i)] V [s(4), f(5)] # O

e otherwise compatible.

e set Sis compatible if all 4, j € S are compatible.

Examples:

Algorithm: Greedy by Min. Finish Time

1. S=0
2. Sort jobs by increasing finish time.
3. For each job j (in sorted order):
o if j if compatible with S
— schedule: j: S+ SU{j}

e else discard j

Analysis
Runtime
check compatibility
~
T(n) <nlogn+ Zj
——— S

sort
~ 2
~nlogn+n

= 0(n?).

Idea: Job j in alg. is compatible if it is compatible
with last scheduled job.

T(n)=nlogn+n
= O(nlogn)

Correctness
“schedule is compatible and optimal”
Lemma 1: schedule of algorithm is compatible
Proof: (by induction, straightfoward)
Def:

e let i1, ...,1; be jobs scheduled by greedy

e let j1,..., jm be jobs scheduled by OPT
Goal: show k =m.

Approach: “Greedy Stays Ahead”

Lemma 2: for r <k, f(i,) < f(4r)
Proof: (induction on r)
base case: r =0
o add dummy job 0 with s(0) = f(0) = —o0

e only change: OPT and GREEDY schedule

dummy
* so f(io) = f(jo)
inductive hypothesis: f(i,) < f(j,)
inductive step:
o Let I = {jobs starting after f(i,)}
J = {jobs starting after f(j,)}
e IH= JCI
« GREEDY = f(ir11) = minjes £(j)
< minje; f(j)
< flr41)
Theorem: Greedy alg. is optimal
Proof: (by contradiction)
e OPT has job jx41 but greedy terminates at k.

e lemma 2 (with r = k)

= f(ix) < f(r) (1)

e jr+1 is compatible with ji

= fUr) < s(krt1) (2)
« (1) &(2)

= f(ix) < 8(Jrs1)

= jk+1 is compatible with i,

— alg doesn’t terminate at k

Greedy by Value
“to pick a feasible set with maximum total value”
Algorithm: Greedy-by-Value

1. S=0

2. Sort elts by decreasing value.

3. For each elt e (in sorted order):

if {e} U S is feasible
add e to S

else discard e.

Minimum Spanning Tree

“maintaining minimal connectivity in a network, e.g.,
for broadcast”

input:
e graph G = (V, E)
o costs c(e) on edges e € E
output: spanning tree with minimum total cost.

Def: a spanning tree of a graph G = (V, E) is
T C FE s.t.

o (V,T) is connected.
o (V,T) is acyclic.
Note: Greedy-by-Value = Kruskal’s Alg

Example:

Runtime
©(mlogn)
e ©(mlogn) to sort.

o check connectivity with union-find data structure

amortized O(log" n) runtime per operation. Correctness
(recall I = log* n < n = 2222) “output is tree and has minimum cost”

! times Goal: understand why greedy-by-value works.
total O(mlog” n) runtime. Lemma 1: Greedy outputs a forest.
Proof: Induction.
Lemma 2: if G is connected, Greedy outputs a tree.
Proof: (by contradiction)
Theorem: Greedy-by-Value is optimal for MSTs
Approach: “greedy stays ahead”
Proof: (by contradiction of first mistake)

¢ Greedy and OPT have n — 1 edges (Fact 1)

o Let I = {i1,...,in—1} be elt’s of Greedy. (in
order)

o Assume for contradiction: ¢(I) > ¢(J)
o Let r be first index with ¢(j,) < ¢(ir)
o Let Iy = {i1, .oy ir_1}
o |I_1] < |J:| & Augmentation Lemma
= exists j € J. \ [,—1
such that I._; U {j} is acyclic.
o Suppose j considered after iy (k <r —1)
e I C I
= I, U{j} C L1 U{j}
o I._1U{j} acyclic & Fact 2
= all subsets are acyclic
= I;; U{j} acyclic
= j should have been added.

Structural Observations about Forests

Def: G' = (V,E’) is a subgraph of G = (V, E) if
E' CE.

Def: An acyclic undirected graph is a forest
Fact 1: and MST on n vertices has n — 1 edges.

Lemma 1: If G = (V, F) is a forest with m edges
then it has n — m connected components.

Proof: Induction (on number of edges)
case case: 0 edges, n CCs.
TH: assume true for m.
IS: show true for m + 1.
e I[H = n—m CCs
e add new edges.
e must not create cycle
= connects two connected components.
= these 2 CCs become 1 CC.
=n—m—1CCs.
QED

Lemma 2: (Augmentation Lemma) If I, J C E are
forests and |I| < |J| then exists e € J \ I such that
I'U{e} is a forest.

Proof:

Lemma 1

= # CCs of (V,I) > # CCs of (V,J) > # CCs of
(V,I1UJ)

= add elements e € J to I until # CCs change.
[PICTURE]
= (V, T U{e}) is acyclic.

Fact 2: subgraphs of acyclic graphs are acyclic

	EECS 336: Lecture 14: Introduction to Algorithms
	Greedy Algorithms: Interval Scheduling

	Greedy Algorithms
	Interval Scheduling
	Greedy Algorithm for Interval Scheduling
	Analysis

	Greedy by Value
	Minimum Spanning Tree
	Runtime

	Correctness
	Structural Observations about Forests

