EECS 336: Lecture 13: Introduction to \mathcal{NP} hardness Algorithms

P vs. NP (cont.): Review

Reading: Chapter 8; guide to reductions

Last Time:

• NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

Today:

- \mathcal{NP} review
- counter examples
- requests?

"proof by contradition: solve hard problem Y with blackbox for X, so X must be hard"

One-call Reductions

- 1. forward instance construction: $y \implies x^y$
- 2. backward certificate construction: x^y is yes \implies y is yes.
- 3. forward certificate construction: y is yes $\implies x^y$ is yes.

Conclusion: y is yes if and only if x^y is yes.

DRAW PICTURE

Compare:

• show

 $-x^y$ is yes $\implies y$ is yes.

 $-x^y$ is no $\implies y$ is no.

• show

 $-x^y$ is yes $\implies y$ is yes.

-y is yes $\implies x^y$ is yes.

Common Mistake: x^y is yes $\implies y$ is yes.

Example: 3-SAT \implies INDEP-SET

Part I: (erroneous)

Convert 3-SAT instance f to INDEP-SET instance $x^f = (V^f, E^f, \theta^f)$:

- Vertices $V^f = \{v_{jd} : j \in \{1, ..., m\}, d \in$ $\{1, ..., 3\}\}.$
- Edges $E^f = \{(v_{jd}, v_{j'd'}) : l_{jd} = "z_i" \land l_{j'd'} = "\bar{z}_i"\}$
- Target independent set size $\theta^f = m$ (the number of clauses).

Part II: counter example

Issue: can choose multiple vertices corresponding to same clause.

Goal: simple and small counter example.

- $\mathbf{z} = (z_1, z_2, z_3)$
- $f(\mathbf{z}) = (z_1 \lor z_2 \lor z_3) \land (z_1 \lor z_2 \lor \bar{z}_3) \land (z_1 \lor \bar{z}_2 \lor z_3) \land (z_1 \lor \bar{z}_2 \lor z_3) \land (z_1 \lor \bar{z}_2 \lor \bar{z}_3) \land (\bar{z}_1 \lor z_2 \lor z_3) \land (\bar{z}_1 \lor z_2 \lor \bar{z}_3) \land (\bar{z}_1 \lor z_2 \lor \bar{z}_3)$

Note: need to show x^f is "yes" but f is "no"

Deciding is as hard as optimizing

Proof: (reduction via binary search)

- given
 - instance x of X
 - black-box \mathcal{A} to solve X_d
- $\operatorname{search}(A, B) = \operatorname{find} \operatorname{optimal} \operatorname{value} \operatorname{in} [A, B].$

$$-D = (A+B)/2$$

- $-\operatorname{run} \mathcal{A}(x,D)$
- if "yes," search(A, D)
- if "no," search(D, B)

Finding solution is as hard as deciding

Example: 3-SAT

- 1. if f is satisfiable $\exists \mathbf{z} \text{ s.t. } f(\mathbf{z}) = T$
- 2. guess $z_n = T$
- 3. let $f'(z_1, ..., z_{n-1}) = f(z_1, ..., z_{n-1}, T)$
- 4. simply f' and convert from LE3-SAT to 3-SAT $\implies g$
- 5. if g is satisfiable, repeat (2) on f'
- 6. if f' is unsatisfiable, repeat (2) on $f''(z_1, ..., z_{n-1}) = f(z_1, ..., z_{n-1}, F)$ simplified.

Example: INDEP-SET