
EECS 336: Lecture 13: Introduction to
Algorithms
P vs. NP (cont.): Review

Reading: Chapter 8; guide to reductions

Last Time:

• NP ≤P CIRCUIT-SAT ≤P LE3-SAT ≤P 3-SAT

Today:

• NP review

• counter examples

• requests?

NP hardness
“proof by contradition: solve hard problem Y with
blackbox for X, so X must be hard”

One-call Reductions

1. forward instance construction: y =⇒ xy

2. backward certificate construction: xy is yes =⇒
y is yes.

3. forward certificate construction: y is yes =⇒ xy

is yes.

Conclusion: y is yes if and only if xy is yes.

DRAW PICTURE

Compare:

• show

– xy is yes =⇒ y is yes.

– xy is no =⇒ y is no.

• show

– xy is yes =⇒ y is yes.

– y is yes =⇒ xy is yes.

Common Mistake: xy is yes 6 =⇒ y is yes.

Example: 3-SAT =⇒ INDEP-SET

Part I: (erroneous)

Convert 3-SAT instance f to INDEP-SET instance
xf = (V f , Ef , θf ):

• Vertices V f = {vjd : j ∈ {1, ...,m}, d ∈
{1, ..., 3}}.

• Edges Ef = {(vjd, vj′d′) : ljd = "zi"∧lj′d′ = "z̄i"}

• Target independent set size θf = m (the number
of clauses).

Part II: counter example

Issue: can choose multiple vertices corresponding to
same clause.

Goal: simple and small counter example.

1



• z = (z1, z2, z3)

• f(z) = (z1∨z2∨z3) ∧(z1∨z2∨ z̄3) ∧(z1∨ z̄2∨z3)
∧(z1 ∨ z̄2 ∨ z̄3) ∧(z̄1 ∨ z2 ∨ z3) ∧(z̄1 ∨ z̄2 ∨ z3)
∧(z̄1 ∨ z2 ∨ z̄3) ∧(z̄1 ∨ z̄2 ∨ z̄3)

Note: need to show xf is “yes” but f is “no”

Deciding is as hard as optimizing

Proof: (reduction via binary search)

• given

– instance x of X

– black-box A to solve Xd

• search(A,B) = find optimal value in [A,B].

– D = (A+B)/2

– run A(x,D)

– if “yes,” search(A,D)

– if “no,” search(D,B)

Finding solution is as hard as deciding

Example: 3-SAT

1. if f is satisfiable ∃z s.t. f(z) = T

2. guess zn = T

3. let f ′(z1, ..., zn−1) = f(z1, ..., zn−1, T )

4. simply f ′ and convert from LE3-SAT to 3-SAT
=⇒ g

5. if g is satisfiable, repeat (2) on f ′

6. if f ′ is unsatisfiable, repeat (2) on
f ′′(z1, ..., zn−1) = f(z1, ..., zn−1, F ) simpli-
fied.

Example: INDEP-SET

2


	EECS 336: Lecture 13: Introduction to Algorithms
	P vs. NP (cont.): Review

	\mathcal{NP} hardness
	One-call Reductions
	Common Mistake: x^y is yes \not\implies y is yes.
	Deciding is as hard as optimizing
	Finding solution is as hard as deciding


