EECS 336: Lecture 7: Introduction to Reductions Algorithms

Reductions: network flow, reduction, bipartite matching

Reading: 7.1, 7.5

Last Time:

• Interval Pricing

Today:

- Reductions
- Network flow
- Bipartite matching

"to solve problem Y given solution to problem X, transform instances from problem Y into instances of X, solve, transform solution back"

Problem X: Network Flow

"given a network with bandwidth constraints on links, how much data can we send from source to sink"

Def: a flow graph G = (V, E) is a directed graph with:

- c(e) =**capacity** if edge e.
- $s \in V$ is source.
- $t \in V$ is sink.

Def: a flow f in G is an assignment of flow to edges "f(e)" satisfying:

- capacity: $\forall e, f(e) \leq c(e)$
- conservation: $\forall v \neq s, t$,

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Def: the **value** of a flow is:

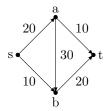
$$|f| = \sum_{e \text{ out of } s} f(e) = \sum_{e \text{ into } t} f(e)$$

Problem: Network Flow

input: flow graph $G, s, t, c(\cdot)$.

output: flow f with maximum value.

Example:



Maxflow = 30.

Theorem 1: there is an algorithm to compute the max flow in polynomial time.

Theorem 2: if capacities are integral, then there is a max flow that is is integral (on each edge) and algorithm finds it.

Problem Y: Bipartite matching

Def: G = (V, E) is a bipartite if exists partitioning of V into A and B s.t.,

- $u, v \in A \Rightarrow (u, v) \notin E$,
- $u, v \in B \Rightarrow (u, v) \notin E$,

Recall: a **matching** is a set of edges $M \subseteq E$ each node is connected by at most one edge in M

- a **perfect** matching is one where all nodes are connected by exactly one edge.
- a **maximum** matching is one with maximum cardinatlity.

Problem: bipartite matching

input: dipartite graph G = (A, B, E)

output: a maximum matching M.

Reducing bipartite matching to max flow

"use max flow alg to solve bipartite matching."

- 1. convert matching instance into flow instance.
- 2. run flow alg flow instance.
- 3. convert flow soln to matching soln with same value.
- 4. prove flow soln optimal iff matching soln optimal.
- (a) (convert flow soln to matching soln with same value; see step 3)
- (b) convert matching soln to flow soln with same value.

Note: (a) and (b) imply value of max flow = size of max matching.

Step 1:

- i. connect s to each $v \in A$ with capacity 1.
- ii. connect t to each $u \in B$ with capacity 1.
- iii. set capacity of each edge $e \in E$ to 1.

Step 2: compute (integral) max flow f

Step 3: matching $M = e \in E$: f(e) = 1

- |M| = |f|
- (capacity constraints imply matching)

Step 4: Proof:

• any matching M' can be turned into a flow f'with |f'| = |M'|

(send from s to each matched edge to t one unit of flow)

• any integral flow f' can be turned into a matching M' with |f'| = |M'|

 \Rightarrow size of output matching = value of max flow = size \Rightarrow output of reduction has value OPT(y). of max matching.

Runtime

 $T_{\text{matching}}(n,m) = O(n+m) + T_{\text{max flow}}(n,m)$

Reductions

Def: Y reduces to X in polynomial time (notation: $Y \leq_P X$ if any instance of Y can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of X.

Note: to prove correctness of general reduction, must show that correctness (e.g., optimality) of algorithm for X implies correctness of algorithm for Y.

Def: one-call reduction maps instance of Y to instance of X, solution of Y to solution of X.

(also called a Karp reduction)

Note: a one-call reduction gives two algorithms:

- I. contruction of X^Y instance from Y instance.
- II. construction of Y solution from X^Y solution (with same value.)

Note: the proof of correctness of a one-call reduction gives one algorithm:

III. construction of X^Y solution from Y solution (with same value.)

(Only need to consider X^Y instance not general X instance.)

Theorem: reduction from "I and II" is correct if I, II, and III are correct.

Proof:

- for instance y of Y, let instance of x^y of X^Y be outcome of I.
- II correct \Rightarrow OPT $(y) \ge$ OPT (x^y) .
- III correct \Rightarrow OPT $(x^y) \ge$ OPT(y).

$$\Rightarrow \operatorname{OPT}(y) = \operatorname{OPT}(x^y)$$