EECS 336: Lecture 5: Introduction to
 Algorithms

Dynamic Programming (cont) Bellman-Ford

Reading: 6.4-6.8
"guide to dynamic programming" (Canvas)
Discussion: Peer grading
Last Time:

- Dynamic Programming (a framework)
- Integer Knapsack

Today:

- Sequence Alignment.
- Shortest Paths.

Sequence Alignment

"align sequences to optimize quality of alignment"
input:

- $\mathbf{a}=a_{1}, \ldots, a_{n}$ sequence of n symbols.
- $\mathbf{b}=b_{1}, \ldots, b_{m}$ sequence of m symbols.
- $\alpha_{i j}=$ cost of aligning a_{i} and b_{j}
- $\delta=$ gap cost.
output: alignment with minimum total cost.
example:
- $\mathbf{a}=$ "cab";
- $\mathbf{b}=$ "car";
- $\alpha=0$ for match, 1 for mismatch
- $\delta=0$
$\mathrm{OPT}=\ldots$

Framework

I. identify subproblem in English
$\operatorname{OPT}(i, j)=$ "minimal number of symbols to delete to align a_{i}, \ldots, a_{n} and $b_{j}, \ldots, b_{m} "$
II. specify subproblem recurrence (argue correctness)

$$
\begin{gathered}
\operatorname{OPT}(i, j)=\min \left\{\alpha_{i j}+\operatorname{OPT}(i+1, j+1)\right. \\
\delta+\operatorname{OPT}(i, j+1) \\
\delta+\operatorname{OPT}(i+1, j)\}
\end{gathered}
$$

III. solve the original problem from subproblems

Optimal Sequence Alignment $=\operatorname{OPT}(1,1)$
IV. identify base case
$\mathrm{OPT}(i, m+1)=\delta(n-i)$,
$\operatorname{OPT}(n+1, j)=\delta(m-j)$.
V. write iterative DP.
VI. runtime analysis.
$O(n m)+$ initialization $=O(n m)$
VII. implement in your favorite language (Python!)

Shortest Paths with Negative Weights
"e.g., currency exchange: nodes are currencies, path weights are exchange rates, minimize produce of path weights."

Note: to minimize product of path weights, can minimize sum of logs of path weights.

Example: $r_{1} r_{2}=2^{\log _{2} r_{1}} 2^{\log _{2} r_{2}}=2^{\log _{2} r_{1}+\log _{2} r_{2}}$
Note: if $r \leq 1$ then $\log r$ is negative.

Example:

Try Dynamic Programming

OPT(v)

$$
\begin{aligned}
& =\text { shortest path from } v \text { to } t \\
& =\min _{u \in N(v)}[\underbrace{c(v, u)}_{\text {weight }}+\operatorname{OPT}(u)]
\end{aligned}
$$

Example:

Subproblems have cyclic dependencies!

Imposing measure of progress

"parameterize subproblems to keep track of progress"

Lemma: if G has no negative cycles, then minimum cost path is simple (i.e., does not repeat nodes); therefore, it has at most $n-1$ edges.

Proof: (contradiction)

- let P be the min-cost path with fewest number of edges.
- suppose (for the contraction) that P is not simple.
$\Rightarrow P$ repeats as vertex v.
- no negative cycle \Rightarrow path from v to v nonnegative.
\Rightarrow can "splice out" cycle and not increase length.
\Rightarrow new path has fewer edges than p .
Idea: if simple path goes $s \rightsquigarrow v \rightarrow u \rightsquigarrow t$ then u - t path has one fewer edge than v - t path.

Part I: identify subproblem in english

$\operatorname{OPT}(v, k)$
$=$ "length of shortest path from v to t with at most k edges."

Part II: write recurrence

$$
\begin{aligned}
& \mathrm{OPT}(v, k) \\
& \quad=\min _{u \in N(v)}[c(v, u)+\operatorname{OPT}(u, k-1)]
\end{aligned}
$$

Correctness: lemma + induction.

Part III: solve original problem

- minimum cost path $=\operatorname{OPT}(s, n-1)$.

Part IV: base case

- for all $k: \operatorname{OPT}(t, k)=0$
- for all $v \neq t: \operatorname{OPT}(v, 0)=\infty$.

Part V: iterative DP

Algorithm: Bellman-Ford

1. base case:
for all $k: \operatorname{OPT}[t, k]=0$
for all $v \neq t: \operatorname{OPT}[v, 0]=\infty$.
2. for $k=1 \ldots n-1$: for all v :
$\mathrm{OPT}[v, k]=\min _{u \in N(v)} c(v, u)+\mathrm{OPT}[u, k-$ 1].
3. return $\operatorname{OPT}[s, n-1]$.

Example:

	0	1	2	3
s	∞	∞	3	2
a	∞	2	1	1
b	∞	-2	-2	-2
t	0	0	0	0

Part VI: Runtime

$T(n, m)=\overbrace{\text { "size of table" }}^{n^{2}} \times \overbrace{\text { "cost per entry" }}^{n}$
(better accounting: $\left.T(n, m)=O\left(n^{2}+n m\right)=O(n m)\right)$

