
EECS 336: Lecture 2: Introduction to
Algorithms
Philosophy, Tractibility, Big-Oh

Reading: Chapters 2 & 3.

Announcements:

• all communication to course staff on Piazza.

• Lecture notes on Canvas (before class.)

• syllabus on canvas.

• Practice on “solved problems” in text.

• Prerequisites:

– EECS 212: Discrete math.

– EECS 214: Data Structures.

• Homework:

– work with partner

– must communicate solution well.

– automatically drop 3 lowest hw grades & 3
lowest peer reviews.

– peer review

∗ can you tell if algorithm and proof are
correct?

∗ communicate algorithms.

– solutions Friday, peer reviews Sunday,
grades Tuesday.

• Peer review logisitics

– 3 peer review per problem.

– 1 peer review is graded (random)

– detailed rubric provided.

• Exam dates on Canvas.

Last Time:

• motivation

• fibonacci numbers

Today:

• philosophy

• computational tractability

• runtime analysis & big-oh

1

Algorithm Design and Analysis
gives rigorous mathematical framework for thinking
about and solving problems in CS and other fields.

Goals

• quickly compute solutions to problems.

• identify general algorithm design and analysis
approaches.

• understand what makes problems tractable or
intractable.

Three Steps

1. problem modeling: abstract problem to essential
details.

2. algorithm design

3. algorithm analysis

• efficiency

• correctness, and

• (sometimes) “quality.”

Computational Tractability
“is a problem solvable by a computer?”

Def: problem is tractable if worst-case run-time to
compute so lution is polynominal in size of input.

Def: T(n) = worst case runtime of instances of size
n.

• size n measured in bits, or

• number of “components.”

Example: Fibonacci Numbers

fib(k) has n = log k bits.

• recursive : T (n) ≈ 22n

• dynamic program / iterative alg: T (n) ≈ 2n

• repeated squaring: T (n) ≈ n.

Question: why worst case?

• every instance?

• typical instances?

• random instances?

Question: Benefits?

• usually doable.

• often tight for typical or random instances.

• analyses “compose”

Question: why polynomial?

Answer: polynomial means algorithm scales well,
i.e., T (cn) ≤ dT (n).

Example:

T (n) =nk

T (cn) =(cn)k = ck︸︷︷︸
d

nk = dnk

Tractable vs. Brute-force

• brute-force: “try all solutions, output best one”

• often runtime of brute-force ≥ exponential time.

• tractable algorithms require exploiting structure
of problem.

Main goals for algorithm design

1. show problem is tractable: exists algorithm with
polynomial runtime.

2. show problem is intractable for all algorithms,
runtime is super-polynomial.

Question: Which is easier?

Answer: showing tractable.

2

Runtime Analysis
“bound T (n) for algorithm”

Big-Oh Notation

Def: T (n) is O(f(n)) if

∃n0, c > 0 such that ∀n > n0, T (n) < cf(n).

Question: why?

Answer:

• exact analysis is too detailed.

• constants vary from machine to machine.

Example:

T (n) =an2 + bn + d

=O(n)? O(n2)? O(n3)?
T (n) ≤an2 + bn2 + dn2

= (a + b + d)︸ ︷︷ ︸
c

n2

≤cn2

Fact 1: f = O(g) & g = O(h) =⇒ f = O(h)

Fact 2: f = O(h) & g = O(h) =⇒ f + g = O(h)

Fact 3: g = O(f) =⇒ g + f = O(f)

Proof: (of Fact 2)

f = O(h) =⇒ ∃c, n0 such that ∀n > n0, f(n) <
ch(n)

g = O(h) =⇒ ∃c′, n′
0 such that ∀n > n′

0, g(n) <
c′h(n)

=⇒ ∀n ≥ max(n0, n′
0), f(n) + g(n) ≤ (c′ + c)h(n)

=⇒ f + g = O(n)

QED

Note:

• be succinct: do not write O(n2 + 2), O(5n), etc.

• be tight: if T(n) is n2 do not say T(n) is O(n3).

Logarithms and Big-Oh

Def: logb n = l↔ bl = n

• log10 n = number of digits to represent n.

• log2 n = number of bits to represent n.

Fact 4: ∀b, c logb = O(logc n)

Fact 5: ∀b, x logb n = O(nx).

Proof: (of Fact 4)

logc n = l =⇒ n = cl

logb n = logb(cl)
= l logb(c)
= logc n logb c︸ ︷︷ ︸

d

= O(logc n)

QED

Common Runtimes

• O(log n) - logarithmic

• O(n) - linear

• O(nlogn)

• O(n2) - quadratic

• O(n3) - cubic

• O(nk) - polynomial

• O(2n) - exponential

• O(n!) - Uh-Oh

Lower Bounds

Def: T (n) is Ω(f(n)) if

∃n0, c > 0 such that ∀n > n0, T (n) > cf(n).

Exact Bounds

Def: T (n) is Θ(f(n)) if

T (n) is O(f(n)) and Ω(f(n)).

3

Graphs
“encode pair-wise relationships”

Examples: computer networks, social networks,
travel networks, dependencies.

G = (V︸︷︷︸
vertices

,

edges︷︸︸︷
E)

Example:

1 2

3

4

• V = {1, 2, 3, 4}

• E = {(1, 2), (2, 3), (3, 4), (2, 4)}

Concepts

• degree

• neighbors

• paths, path length

• distance

• connectivity, connected components

• directed graphs

Graph Traversals

“visit all the vertices in a connected component of
graph”

• Breadth First Search (BFS).

Example:

3 4

1 2

BFS from 1: 1, 2, 3, 4 or 1, 3, 2, 4.

• Depth First Search (DFS).

Example: DFS from 1: 1, 2, 4, 3 or 1, 3, 4, 2.

4

	EECS 336: Lecture 2: Introduction to Algorithms
	Philosophy, Tractibility, Big-Oh

	Algorithm Design and Analysis
	Computational Tractability
	Runtime Analysis
	Logarithms and Big-Oh
	Common Runtimes
	Lower Bounds
	Exact Bounds

	Graphs
	Graph Traversals

