EECS 336: Lecture 12: Introduction to
Algorithms

Deriving NP: NP, CIRCUIT-SAT

Reading: 8.3
Last Time:

¢ decision problems

o NP problems

e “Notorious Problem” NP
e NP <p CIRCUIT-SAT

Today:
e CIRCUIT-SAT <p LE3-SAT <p 3-SAT

Circuit Satisfiability

Example:

O

=~
N

o

Problem: CIRCUIT-SAT

’9

input: boolean circuit Q(z)
o directed acyclic graph G = (V, E)
o internal nodes labeled by logical gates:
“and”, “or”, or “not”
o leaves labeled by variables or constants
T, F, 21, ..., 2n.
e root 7 is output of circuit
output:
o “Yes” if exists z with Q(z) =T
e “No” otherwise.
Theorem: CIRCUIT-SAT is N'P-hard.

Part I: forward instance construction

convert NP instance (VP,p, z) to CIRCUIT-SAT in-
stance Q.

e VP(.,-) polynomial time
= computer can run it in poly steps.
e each step of computer is circuit.

e output of one step is input of next step

o unroll p(|x|) steps of computation LE3-SAT
= 3 poly-size circuit Q' (x,c) = VP(z,c)
e hardcode x: Q(c) = Q/(X, C) Problem: LE3-SAT

Part II-III: backward/forward certificate construc-

i “like 3-SAT but at most 3 literal per or-clause”
ion

e Cc&c Note: <p is transitive: if Y <p X and X <p Z
then Y <p Z.

Recall: NP <p CIRCUIT-SAT
Plan: CIRCUIT-SAT <p LE3-SAT <p 3-SAT
Theorem: CIRCUIT-SAT <p LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)
Part I: forward instance construction

convert CIRCUIT-SAT instance @ into 3-SAT in-
stance f

o variables x, for each vertex of Q.
e encode gates

— not: if v not gate with input from u

need x, = T,

Ty \ Ty | 0] 1
0 01
1 110

= add clauses (z, V xy) A (T V Zy,)
e or: if v is or gate from u to w

need x, = x, A Xy,

Ty \ TuZy | 00 | 01 | 11 | 10
0 1101100
1 0 1 1 1

= add clauses (T, V Ty VTw) ATy VTy) A(Xy V Tyy)
e and: if v and gate from u to w

= add clauses (T, V Ty VZTw) ATy VEy) A(Zy V Xoy)
e 0: if v is 0 leaf.

need z, =0
= add clause (z,)
need z, =1
e 1: if v is 1 leaf.
= add clause (z,)
o literal: if v is literal z;
—> do nothing

e root: if v is root

output

need z, =1
= add clause (z,).

Runtime Analysis:
time.

construction is polynomial

e at most 3 clauses in f per node in Q.
Part II: backward certificate construction

convert LE3-SAT assignment x to CIRCUIT-SAT
assignment z

1. read z from x corresponding to literals.
Claim: f(x) = Q(2)

e f constrains variables x; to “proper cir- cuit out-
comes” and root is True.

= Q(z) is True.

Part III: forward certificate construction convert
CIRCUIT-SAT assignment z to LE3-SAT assignment
X

1. simulate @) on z
2. read x from values of gates in circuit.

Claim: Q(z) = f(x)

o by construction, f(-) encodes proper working Theorem: LE3-SAT <p 3-SAT

ciruit that evaluates to True.
Part I: forward instance construction convert LE3-

« Since Q(z) is true, and x is from simulation of SAT instance f into 3-SAT instance f’

Q(), f(x) is true.

o f' < f rename variables to
QED

o add variables w1, wo
o add w; to 1- and 2-clauses
(1) = (L Vw Vws).
(1 Vi) = (L Vig V).
e ensure w; = 0 add variables y1, y» and clauses:
(w; Vy1 V y2)
w; Vg1 Vys)
i VY1 V)
)

(
(w
(w; VY1V Y2

o denote x' = (x, w1, we, w3, Y1, Y2)

Runtime Analysis: construction is polynomial
time.

Part II: backward certificate construction
x = x
1. read x from x’ (all but last 4 variables).
Claim: f'(x') — f(x)
o Let X' = (x, w1, wa,y1,Yy2)-
o fI(x') = true
—> by construction, w; = False

f)

implif;
d f/(X’FaF7ylay2) Slgy

= f(x) = True.
Part III: forward certificate construction
x = %
1. set x' = (x,F,F,F,F)
Claim: f(x) = f'(x)
. f(x) = True

simplify .
— f(x,wi,w2,y1,y2) — “clauses with

only w; and y;”

— with w; = F and y; = F (or anything) these
are true.

QED

	EECS 336: Lecture 12: Introduction to Algorithms
	Deriving NP: NP, CIRCUIT-SAT

	Circuit Satisfiability
	LE3-SAT

