EECS 336: Lecture 12: Introduction to Circuit Satisfiability Algorithms

Deriving NP: NP, CIRCUIT-SAT

Reading: 8.3

Last Time:

- decision problems
- \mathcal{NP} problems
- "Notorious Problem" NP
- NP \leq_P CIRCUIT-SAT

Today:

• CIRCUIT-SAT \leq_P LE3-SAT \leq_P 3-SAT

Example:

Problem: CIRCUIT-SAT

input: boolean circuit $Q(\mathbf{z})$

- directed acyclic graph G = (V, E)
- internal nodes labeled by logical gates: "and", "or", or "not"
- leaves labeled by variables or constants $T, F, z_1, ..., z_n$.
- root r is output of circuit

output:

- "Yes" if exists \mathbf{z} with $Q(\mathbf{z}) = T$
- "No" otherwise.

Theorem: CIRCUIT-SAT is \mathcal{NP} -hard.

Part I: forward instance construction convert NP instance (VP, p, x) to CIRCUIT-SAT instance Q.

- $VP(\cdot, \cdot)$ polynomial time \Rightarrow computer can run it in poly steps.
- each step of computer is circuit.
- output of one step is input of next step

- unroll p(|x|) steps of computation $\Rightarrow \exists$ poly-size circuit $Q'(\mathbf{x}, \mathbf{c}) = VP(x, c)$
- hardcode \mathbf{x} : $Q(\mathbf{c}) = Q'(\mathbf{x}, \mathbf{c})$

Part II-III: backward/forward certificate construction

• $\mathbf{c} \Leftrightarrow c$

LE3-SAT

Problem: LE3-SAT

"like 3-SAT but at ${f most}$ 3 literal per or-clause"

Note: \leq_P is transitive: if $Y \leq_P X$ and $X \leq_P Z$ then $Y \leq_P Z$.

Recall: NP \leq_P CIRCUIT-SAT

Plan: CIRCUIT-SAT \leq_P LE3-SAT \leq_P 3-SAT

Theorem: CIRCUIT-SAT \leq_P LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)

Part I: forward instance construction

convert CIRCUIT-SAT instance Q into 3-SAT instance f

- variables x_v for each vertex of Q.
- encode gates
 - **not:** if v not gate with input from u

need $x_v = \bar{x}_u$

$$\begin{array}{c|cccc}
x_v \setminus x_u & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

- \implies add clauses $(x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$
- or: if v is or gate from u to wneed $x_v = x_u \wedge x_w$

$x_v \setminus x_u x_w$	00	01	11	10
0	1	0	0	0
1	0	1	1	1

- \implies add clauses $(\bar{x}_v \lor x_u \lor x_w) \land (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w)$
- and: if v and gate from u to w
- \implies add clauses $(x_v \vee \bar{x}_u \vee \bar{x}_w) \wedge (\bar{x}_v \vee x_u) \wedge (\bar{x}_v \vee x_w)$
 - 0: if v is 0 leaf.

need
$$x_v = 0$$
 \implies add clause (\bar{x}_v)
need $x_v = 1$

• 1: if v is 1 leaf.

 \implies add clause (x_v)

• literal: if v is literal z_j

 \implies do nothing

• **root:** if *v* is root

need
$$x_v = 1$$

 \implies add clause (x_v) .

Runtime Analysis: construction is polynomial time.

• at most 3 clauses in f per node in Q.

Part II: backward certificate construction

convert LE3-SAT assignment \mathbf{x} to CIRCUIT-SAT assignment \mathbf{z}

1. read \mathbf{z} from \mathbf{x} corresponding to literals.

Claim: $f(\mathbf{x}) \implies Q(\mathbf{z})$

• f constrains variables x_i to "proper cir- cuit outcomes" and root is True.

$$\implies Q(\mathbf{z})$$
 is True.

 $\bf Part~III:$ forward certificate construction convert CIRCUIT-SAT assignment z to LE3-SAT assignment

 \mathbf{x}

- 1. simulate Q on \mathbf{z}
- 2. read \mathbf{x} from values of gates in circuit.

Claim: $Q(\mathbf{z}) \implies f(\mathbf{x})$

- by construction, $f(\cdot)$ encodes proper working **Theorem:** LE3-SAT \leq_P 3-SAT ciruit that evaluates to True.
- Since $Q(\mathbf{z})$ is true, and \mathbf{x} is from simulation of SAT instance f into 3-SAT instance f' $Q(\cdot), f(\mathbf{x})$ is true.

QED

Part I: forward instance construction convert LE3-

- $f' \leftarrow f$ rename variables to
- add variables w_1, w_2
- add w_i to 1- and 2-clauses

$$(l_1) \implies (l_1 \vee w_1 \vee w_2).$$

$$(l_1 \vee l_2) \implies (l_1 \vee l_2 \vee w_1).$$

• ensure $w_i = 0$ add variables y_1, y_2 and clauses:

$$(\bar{w}_i \vee y_1 \vee y_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee y_2)$$

$$(\bar{w}_i \vee y_1 \vee \bar{y}_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee \bar{y}_2)$$

• denote $\mathbf{x}' = (\mathbf{x}, w_1, w_2, w_3, y_1, y_2)$

Runtime Analysis: construction is polynomial time.

Part II: backward certificate construction

$$x' \implies x$$

1. read \mathbf{x} from \mathbf{x}' (all but last 4 variables).

Claim: $f'(\mathbf{x}') \to f(\mathbf{x})$

• Let
$$\mathbf{x}' = (\mathbf{x}, w_1, w_2, y_1, y_2)$$
.

•
$$f'(\mathbf{x}') = \text{true}$$

$$\implies$$
 by construction, $w_i = \text{False}$

$$\implies f'(\mathbf{x}, F, F, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow} f(\mathbf{x})$$

$$\implies f(\mathbf{x}) = \text{True}.$$

Part III: forward certificate construction

$$\mathbf{x} \implies \mathbf{x}'$$

1. set
$$\mathbf{x}' = (\mathbf{x}, F, F, F, F)$$

Claim:
$$f(\mathbf{x}) \to f'(\mathbf{x}')$$

•
$$f(\mathbf{x}) = \text{True}$$

- with $w_i = F$ and $y_i = F$ (or anything) these are true.

QED