EECS 336: Lecture 12: Introduction to Circuit Satisfiability Algorithms Deriving NP: NP, CIRCUIT-SAT Reading: 8.3 #### Last Time: - decision problems - \mathcal{NP} problems - "Notorious Problem" NP - NP \leq_P CIRCUIT-SAT #### **Today:** • CIRCUIT-SAT \leq_P LE3-SAT \leq_P 3-SAT ### Example: Problem: CIRCUIT-SAT **input:** boolean circuit $Q(\mathbf{z})$ - directed acyclic graph G = (V, E) - internal nodes labeled by logical gates: "and", "or", or "not" - leaves labeled by variables or constants $T, F, z_1, ..., z_n$. - root r is output of circuit #### output: - "Yes" if exists \mathbf{z} with $Q(\mathbf{z}) = T$ - "No" otherwise. **Theorem:** CIRCUIT-SAT is \mathcal{NP} -hard. Part I: forward instance construction convert NP instance (VP, p, x) to CIRCUIT-SAT instance Q. - $VP(\cdot, \cdot)$ polynomial time \Rightarrow computer can run it in poly steps. - each step of computer is circuit. - output of one step is input of next step - unroll p(|x|) steps of computation $\Rightarrow \exists$ poly-size circuit $Q'(\mathbf{x}, \mathbf{c}) = VP(x, c)$ - hardcode \mathbf{x} : $Q(\mathbf{c}) = Q'(\mathbf{x}, \mathbf{c})$ Part II-III: backward/forward certificate construction • $\mathbf{c} \Leftrightarrow c$ ## LE3-SAT Problem: LE3-SAT "like 3-SAT but at ${f most}$ 3 literal per or-clause" **Note:** \leq_P is transitive: if $Y \leq_P X$ and $X \leq_P Z$ then $Y \leq_P Z$. Recall: NP \leq_P CIRCUIT-SAT Plan: CIRCUIT-SAT \leq_P LE3-SAT \leq_P 3-SAT **Theorem:** CIRCUIT-SAT \leq_P LE3-SAT Example: **Proof:** (reduce from CIRCUIT-SAT) Part I: forward instance construction convert CIRCUIT-SAT instance Q into 3-SAT instance f - variables x_v for each vertex of Q. - encode gates - **not:** if v not gate with input from u need $x_v = \bar{x}_u$ $$\begin{array}{c|cccc} x_v \setminus x_u & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$ - \implies add clauses $(x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$ - or: if v is or gate from u to wneed $x_v = x_u \wedge x_w$ | $x_v \setminus x_u x_w$ | 00 | 01 | 11 | 10 | |-------------------------|----|----|----|----| | 0 | 1 | 0 | 0 | 0 | | 1 | 0 | 1 | 1 | 1 | - \implies add clauses $(\bar{x}_v \lor x_u \lor x_w) \land (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w)$ - and: if v and gate from u to w - \implies add clauses $(x_v \vee \bar{x}_u \vee \bar{x}_w) \wedge (\bar{x}_v \vee x_u) \wedge (\bar{x}_v \vee x_w)$ - 0: if v is 0 leaf. need $$x_v = 0$$ \implies add clause (\bar{x}_v) need $x_v = 1$ • 1: if v is 1 leaf. \implies add clause (x_v) • literal: if v is literal z_j \implies do nothing • **root:** if *v* is root need $$x_v = 1$$ \implies add clause (x_v) . Runtime Analysis: construction is polynomial time. • at most 3 clauses in f per node in Q. Part II: backward certificate construction convert LE3-SAT assignment \mathbf{x} to CIRCUIT-SAT assignment \mathbf{z} 1. read \mathbf{z} from \mathbf{x} corresponding to literals. Claim: $f(\mathbf{x}) \implies Q(\mathbf{z})$ • f constrains variables x_i to "proper cir- cuit outcomes" and root is True. $$\implies Q(\mathbf{z})$$ is True. $\bf Part~III:$ forward certificate construction convert CIRCUIT-SAT assignment z to LE3-SAT assignment \mathbf{x} - 1. simulate Q on \mathbf{z} - 2. read \mathbf{x} from values of gates in circuit. Claim: $Q(\mathbf{z}) \implies f(\mathbf{x})$ - by construction, $f(\cdot)$ encodes proper working **Theorem:** LE3-SAT \leq_P 3-SAT ciruit that evaluates to True. - Since $Q(\mathbf{z})$ is true, and \mathbf{x} is from simulation of SAT instance f into 3-SAT instance f' $Q(\cdot), f(\mathbf{x})$ is true. **QED** Part I: forward instance construction convert LE3- - $f' \leftarrow f$ rename variables to - add variables w_1, w_2 - add w_i to 1- and 2-clauses $$(l_1) \implies (l_1 \vee w_1 \vee w_2).$$ $$(l_1 \vee l_2) \implies (l_1 \vee l_2 \vee w_1).$$ • ensure $w_i = 0$ add variables y_1, y_2 and clauses: $$(\bar{w}_i \vee y_1 \vee y_2)$$ $$(\bar{w}_i \vee \bar{y}_1 \vee y_2)$$ $$(\bar{w}_i \vee y_1 \vee \bar{y}_2)$$ $$(\bar{w}_i \vee \bar{y}_1 \vee \bar{y}_2)$$ • denote $\mathbf{x}' = (\mathbf{x}, w_1, w_2, w_3, y_1, y_2)$ Runtime Analysis: construction is polynomial time. Part II: backward certificate construction $$x' \implies x$$ 1. read \mathbf{x} from \mathbf{x}' (all but last 4 variables). Claim: $f'(\mathbf{x}') \to f(\mathbf{x})$ • Let $$\mathbf{x}' = (\mathbf{x}, w_1, w_2, y_1, y_2)$$. • $$f'(\mathbf{x}') = \text{true}$$ $$\implies$$ by construction, $w_i = \text{False}$ $$\implies f'(\mathbf{x}, F, F, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow} f(\mathbf{x})$$ $$\implies f(\mathbf{x}) = \text{True}.$$ Part III: forward certificate construction $$\mathbf{x} \implies \mathbf{x}'$$ 1. set $$\mathbf{x}' = (\mathbf{x}, F, F, F, F)$$ Claim: $$f(\mathbf{x}) \to f'(\mathbf{x}')$$ • $$f(\mathbf{x}) = \text{True}$$ - with $w_i = F$ and $y_i = F$ (or anything) these are true. ## QED