EECS 336: Lecture 16: Introduction to \mathcal{NP} hardness Algorithms

P vs. NP (cont.): Review

Reading: Chapter 8; guide to reductions

Last Time:

- approximation
- metric TSP 2-approx
- knapsack 2-approx

Today:

- \mathcal{NP} review
- requests?

"proof by contradition: solve hard problem Y with blackbox for X, so X must be hard"

One-call Reductions

- 1. forward instance construction: $y \implies x^y$
- 2. backward certificate construction: x^y is yes \Longrightarrow y is yes.
- 3. forward certificate construction: y is yes $\implies x^y$ is yes.

Conclusion: y is yes if and only if x^y is yes.

DRAW PICTURE

Compare:

- show
 - $-x^y$ is yes $\implies y$ is yes.
 - $-x^y$ is no $\implies y$ is no.
- show
 - $-x^y$ is yes $\implies y$ is yes.
 - -y is yes $\implies x^y$ is yes.

Common Mistake: x^y is yes $\implies y$ is yes.

Example: $3\text{-SAT} \implies \text{INDEP-SET}$

Part I: (erroneous)

Convert 3-SAT instance f to INDEP-SET instance $x^f = (V^f, E^f, \theta^f)$:

- Vertices $V^f = \{v_{jd} : j \in \{1,...,m\}, d \in$
- Edges $E^f = \{(v_{jd}, v_{j'd'}) : l_{jd} = "z_i" \land l_{j'd'} = "\bar{z}_i"\}$
- Target independent set size $\theta^f = m$ (the number of clauses).

Part II: counter example

Issue: can choose multiple vertices corresponding to same clause.

Goal: simple and small counter example.

•
$$\mathbf{z} = (z_1, z_2, z_3)$$

•
$$f(\mathbf{z}) = (z_1 \lor z_2 \lor z_3) \land (z_1 \lor z_2 \lor \bar{z}_3) \land (z_1 \lor \bar{z}_2 \lor z_3) \land (z_1 \lor \bar{z}_2 \lor z_3) \land (z_1 \lor \bar{z}_2 \lor z_3) \land (\bar{z}_1 \lor z_2 \lor z_3) \land (\bar{z}_1 \lor z_2 \lor \bar{z}_3) \land (\bar{z}_1 \lor z_2 \lor \bar{z}_3)$$

Note: need to show x^f is "yes" but f is "no"

Deciding is as hard as optimizing

Proof: (reduction via binary search)

$$-$$
 instance x of X

– black-box
$$\mathcal{A}$$
 to solve X_d

• search
$$(A, B)$$
 = find optimal value in $[A, B]$.

$$-D = (A+B)/2$$

$$-\operatorname{run} \mathcal{A}(x,D)$$

$$-$$
 if "yes," search (A, D)

$$-$$
 if "no," search (D, B)

Finding solution is as hard as deciding

Example: 3-SAT

1. if f is satisfiable
$$\exists \mathbf{z} \text{ s.t. } f(\mathbf{z}) = T$$

2. guess
$$z_n = T$$

3. let
$$f'(z_1,...,z_{n-1}) = f(z_1,...,z_{n-1},T)$$

4. simply
$$f'$$
 and convert from LE3-SAT to 3-SAT $\implies g$

5. if
$$g$$
 is satisfiable, repeat (2) on f'

6. if
$$f'$$
 is unsatisfiable, repeat (2) on $f''(z_1,...,z_{n-1}) = f(z_1,...,z_{n-1},F)$ simplified.

Example: INDEP-SET