EECS 336: Lecture 16: Introduction to $\mathcal{N} \mathcal{P}$ hardness

 AlgorithmsP vs. NP (cont.): Review
Reading: Chapter 8; guide to reductions
Last Time:

- approximation
- metric TSP 2-approx
- knapsack 2-approx

Today:

- $\mathcal{N P}$ review
- requests?
"proof by contradition: solve hard problem Y with blackbox for X, so X must be hard"

One-call Reductions

1. forward instance construction: $y \Longrightarrow x^{y}$
2. backward certificate construction: x^{y} is yes \Longrightarrow y is yes.
3. forward certificate construction: y is yes $\Longrightarrow x^{y}$ is yes.

Conclusion: y is yes if and only if x^{y} is yes.

DRAW PICTURE

Compare:

- show
$-x^{y}$ is yes $\Longrightarrow y$ is yes.
$-x^{y}$ is no $\Longrightarrow y$ is no.
- show
$-x^{y}$ is yes $\Longrightarrow y$ is yes.
$-y$ is yes $\Longrightarrow x^{y}$ is yes.

Common Mistake: x^{y} is yes $\Longleftrightarrow y$ is yes.

Example: 3-SAT \Longrightarrow INDEP-SET
Part I: (erroneous)
Convert 3-SAT instance f to INDEP-SET instance $x^{f}=\left(V^{f}, E^{f}, \theta^{f}\right)$:

- Vertices $V^{f}=\left\{v_{j d}: j \in\{1, \ldots, m\}, d \in\right.$ $\{1, \ldots, 3\}\}$.
- Edges $E^{f}=\left\{\left(v_{j d}, v_{j^{\prime} d^{\prime}}\right): l_{j d}={ }^{"} z_{i}{ }^{"} \wedge l_{j^{\prime} d^{\prime}}={ }^{"} \bar{z}_{i}{ }^{"}\right\}$
- Target independent set size $\theta^{f}=m$ (the number of clauses).

Issue: can choose multiple vertices corresponding to same clause.

Goal: simple and small counter example.

- $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}\right)$
- $f(\mathbf{z})=\left(z_{1} \vee z_{2} \vee z_{3}\right) \wedge\left(z_{1} \vee z_{2} \vee \bar{z}_{3}\right) \wedge\left(z_{1} \vee \bar{z}_{2} \vee z_{3}\right)$ $\wedge\left(z_{1} \vee \bar{z}_{2} \vee \bar{z}_{3}\right) \wedge\left(\bar{z}_{1} \vee z_{2} \vee z_{3}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee z_{3}\right)$ $\wedge\left(\bar{z}_{1} \vee z_{2} \vee \bar{z}_{3}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee \bar{z}_{3}\right)$
Note: need to show x^{f} is "yes" but f is "no"

Deciding is as hard as optimizing

Proof: (reduction via binary search)

- given
- instance x of X
- black-box \mathcal{A} to solve X_{d}
- $\operatorname{search}(A, B)=$ find optimal value in $[A, B]$.
$-D=(A+B) / 2$
$-\operatorname{run} \mathcal{A}(x, D)$
- if "yes," $\operatorname{search}(A, D)$
- if "no," search (D, B)

Finding solution is as hard as deciding

Example: 3-SAT

1. if f is satisfiable $\exists \mathbf{z}$ s.t. $f(\mathbf{z})=T$
2. guess $z_{n}=T$
3. let $f^{\prime}\left(z_{1}, \ldots, z_{n-1}\right)=f\left(z_{1}, \ldots, z_{n-1}, T\right)$
4. simply f^{\prime} and convert from LE3-SAT to 3-SAT $\Longrightarrow g$
5. if g is satisfiable, repeat (2) on f^{\prime}
6. if f^{\prime} is unsatisfiable, repeat (2) on $f^{\prime \prime}\left(z_{1}, \ldots, z_{n-1}\right)=f\left(z_{1}, \ldots, z_{n-1}, F\right)$ simplified.
