EECS 336: Lecture 18: Introduction to Algorithms

Online Algorithms ski renter, secretary

Announcements:

- final
- thursday, 12-2pm
- cumulative
- 1 page handwritten cheat-sheet

Last Time:

- pseudo polynomial time
- Knapsack PTAS

Today:

- online algorithms
- ski renter
- secretary

Approximation Algorithms
"show algorithm's solution is always close to optimal solution"

Challenge: for hard problems optimal solution is complex.

Approach:

1. relax constraints and solve relaxed optimally.
2. fix violated constraints.
3. show "fixed solution" is close to "relaxed solution"

Algorithms Flow Chart

Online Algorithms

"algorithms that must make decisions without full knowledge of input"
(e.g., if input is events over time, then algorithm doesn't know future)

Ski Renter

input:

- cost to buy skis: B.
- cost to rent skis: R.
- daily weather d_{1}, \ldots, d_{n} with $d_{i}=$ $\left\{\begin{array}{ll}1 & \text { if good weather } \\ 0 & \text { if bad weather }\end{array}\right.$ (let $\left.k=\sum_{i} d_{i}\right)$
ouput: schedule for renting or buying skis. online constraint: on day i do not know d_{i+1}, \ldots, d_{n}.

Note: optimality is impossible because don't know future.

Idea: approximate "optimal offline" algorithm
Algorithm: OPT (offline)

- if $k R<B$, buy on day 1 .
- else, rent on each good day.

Performance: $\mathrm{OPT}=\min (k R, B)$.
Def: an online algo is β-competitive with optimal offline alg, OPT, if on all inputs x for X,

- minimization: $\operatorname{ALG}(x) \leq \beta \operatorname{OPT}(x)$.
- maximization: $\operatorname{ALG}(x) \geq \mathrm{OPT}(x) / \beta$.

Challenge:

- if we buy first day we ski:
- for $d=(1,0,0, \ldots, 0)$
- $\mathrm{OPT}=R ; \mathrm{ALG}=B \gg R$
- if we rent each time we ski
- for $d=(1,1,1, \ldots, 1)$
- $\mathrm{OPT}=B ; \mathrm{ALG}=R n \gg B$

Algorithm: "Rent to buy"
"rent unless total rental cost would exceed buy cost, then buy"

Example: $\mathrm{R}=1, \mathrm{~B}=3$

| d | 101 | 1 | 1 | 1 | 1 | 1 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{ALG}=\underbrace{3 R+B}_{\leq 2 B}, \mathrm{OPT}=B$
Theorem: ALG $\leq 2 \mathrm{OPT}$ (Alg is 2-competitive)
Proof:
case 1: $k R \leq B$

- Alg: $k R$
- OPT: $k R$

$$
\Rightarrow \mathrm{ALG}=\mathrm{OPT} \leq 2 \mathrm{OPT}
$$

case 2: $k R>B$

- Alg: total rental $+B \leq 2 B$
- OPT: B

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Note: competitive analysis gives very strong approximation result.

Secretary Problem

input:

- sequence of candidates $1, \ldots, n$.
- ordering on candidate qualities.
output:
- "hire" / "no hire" decisions.
- to hire best candidate.
online constraint: must make hire / no hire decision for i before seeing $i+1, \ldots, n$.

Fact: "optimal offline" always hires best secretary.
Claim: no deterministic algorithm approximates optimal offline.

Proof: two candidates
case 1: Alg hires 1

- 2 is better.
case 2: Alg doesn't hire 1
- 1 is better.

Idea: consider randomized algorithms.
(maximize probability of hiring the best candidate.)
Claim: randomized algorithm is n-competitive offline.

Proof:

- Alg: for all i, pick i th secretary with probability $1 / n$.
- Alg is right with probability $1 / n$.
- OPT is always right.
$\Longrightarrow n$-competitive.

Example: $n=3$
$123132 \quad 312 \quad 213 \quad 231 \quad 321$
(a)
(a)
(b) (b)
(b)

Two algs for example:
(a) take i candidate for some i

$$
\Rightarrow \mathbf{P r}[\text { success }]=1 / 3
$$

(b) look at 1st, condition choice of 2 nd or 3 rd.

- if 2 nd better than 1 st, hire 2 nd
- else, hire 3rd.
$\Rightarrow \mathbf{P r}[$ success $]=1 / 2$

Algorithm: Secretary Alg

- interview k candidates but make no offers
- hire next secretary that is better than any of first k.

Lemma: For $k=n / 2$ alg is 4 -competitive.

Proof:

- hire best when 2 nd best in first half and 1st best in second half.
- Recall: $\operatorname{Pr}[A \& B]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]$.
- $\operatorname{Pr}[2$ nd best in first half $]=1 / 2$
- $\operatorname{Pr}[1$ st best in second half $\mid 2$ nd best in first half] $=\frac{n / 2}{n-1} \geq 1 / 2$
$\Rightarrow \operatorname{Pr}[$ hire best $]$
$\geq \mathbf{P r}[2$ nd in 1 st $1 / 2] \operatorname{Pr}[1$ st in 2 nd $1 / 2 \mid 2$ nd in 1 st $1 / 2] \geq 1 / 4$.

Question: what is best k ?
Theorem: for $k=1 / e$ alg is e-competitive and this is best possible.

Claim: no algorithm hires best candidate with probability $\Omega(1 / n)$.
Idea: consider randomized inputs.
Assumption: candidates arrive in a uniformly random order.

