
EECS 336: Lecture 14: Introduction to
Algorithms

Greedy Algorithms: Interval Scheduling

Reading: 4.1, [4.5]

Last Time:

• CIRCUIT-SAT ≤P LE3-SAT ≤P 3-SAT

Today:

• Greedy Algorithms

• Interval Scheduling

• [Minimum Spanning Tree (MST)]

Greedy Algorithms

• build solution in steps.

• each step myopically optimal

• hard part: prove final solution is optimal

Question: For what problems are greedy algorithms
optimal?

1

Interval Scheduling

“sharing a single resource”

• n jobs

• one machine

• requests: job i needs machine between s(i) and
f(i).

Goal: schedule to maximize # of jobs scheduled.

Examples: Greedy by . . .

• “start time”

- - - - - - - - - - - - - - -
- -

• “smallest size”

- - - - - - - - - - - - - - - - - -
- - - - - -

• “fewest incompatibilities”

- - - - - - - - - - - - - - - - -
- - - - - - - - -
- - - - - -
- - - - - -

Note: important to be able to find counterexamples
quickly.

Greedy Algorithm for Interval Scheduling

Idea: scheduling the earliest finish time first, leave
the least constraint on remaining schedule.

Def: jobs i and j are

• incompatible if [s(i), f(i)] ∨ [s(j), f(j)] 6= ∅

• otherwise compatible.

• set S is compatible if all i, j ∈ S are compatible.

Examples:

- - - - - o r - - - - o r - - -
- - - - - - - - - - - - - -

Algorithm: Greedy by Min. Finish Time

1. S = ∅

2. Sort jobs by increasing finish time.

3. For each job j (in sorted order):

• if j if compatible with S

– schedule: j : S ← S ∪ {j}

• else discard j

Analysis

Runtime

T (n)≤ n log n︸ ︷︷ ︸
sort

+

check compatibility︷ ︸︸ ︷∑
j

j

≈ n log n + n2

= O(n2).

Idea: Job j in alg. is compatible if it is compatible
with last scheduled job.

T (n) = n log n + n

= Θ(n log n)

Correctness

“schedule is compatible and optimal”

Lemma 1: schedule of algorithm is compatible

Proof: (by induction, straightfoward)

Def:

2

• let i1, ..., ik be jobs scheduled by greedy

• let j1, ..., jm be jobs scheduled by OPT

Goal: show k = m.

Approach: “Greedy Stays Ahead”

Lemma 2: for r ≤ k, f(ir) ≤ f(jr)

Proof: (induction on r)

base case: r = 0

• add dummy job 0 with s(0) = f(0) = −∞

• only change: OPT and GREEDY schedule
dummy

• so f(i0) = f(j0)

inductive hypothesis: f(ir) ≤ f(jr)

inductive step:

• Let I = {jobs starting after f(ir)}

J = {jobs starting after f(jr)}

• IH =⇒ J ⊆ I

• GREEDY =⇒ f(ir+1) = minj∈I f(j)

≤ minj∈J f(j)

≤ f(jr+1)

Theorem: Greedy alg. is optimal

Proof: (by contradiction)

• OPT has job jk+1 but greedy terminates at k.

• lemma 2 (with r = k)

=⇒ f(ik) ≤ f(jk) (1)

• jk+1 is compatible with jk

=⇒ f(jk) ≤ s(kk+1) (2)

• (1) & (2)

=⇒ f(ik) ≤ s(jk+1)

=⇒ jk+1 is compatible with ik

=⇒ alg doesn’t terminate at k

Greedy by Value

“to pick a feasible set with maximum total value”

Algorithm: Greedy-by-Value

1. S = ∅

2. Sort elts by decreasing value.

3. For each elt e (in sorted order):

if {e} ∪ S is feasible

add e to S

else discard e.

Minimum Spanning Tree

“maintaining minimal connectivity in a network, e.g.,
for broadcast”

input:

• graph G = (V, E)

• costs c(e) on edges e ∈ E

output: spanning tree with minimum total cost.

Def: a spanning tree of a graph G = (V, E) is
T ⊆ E s.t.

• (V, T) is connected.

• (V, T) is acyclic.

Note: Greedy-by-Value = Kruskal’s Alg

Example:

1
5 2

4

6
3

Runtime

Θ(m log n)

• Θ(m log n) to sort.

3

• check connectivity with union-find data structure

amortized O(log∗ n) runtime per operation.

(recall l = log∗ n⇔ n = 2222︸︷︷︸
l times

)

total O(m log∗ n) runtime.

Correctness

“output is tree and has minimum cost”

Goal: understand why greedy-by-value works.

Lemma 1: Greedy outputs a forest.

Proof: Induction.

Lemma 2: if G is connected, Greedy outputs a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for MSTs

Approach: “greedy stays ahead”

Proof: (by contradiction of first mistake)

• Greedy and OPT have n− 1 edges (Fact 1)

• Let I = {i1, ..., in−1} be elt’s of Greedy. (in
order)

• Assume for contradiction: c(I) > c(J)

• Let r be first index with c(jr) < c(ir)

• Let Ir−1 = {i1, ..., ir−1}

• |Ir−1| < |Jr| & Augmentation Lemma

⇒ exists j ∈ Jr \ Ir−1

such that Ir−1 ∪ {j} is acyclic.

• Suppose j considered after ik (k ≤ r − 1)

• Ik ⊆ Ir−1

⇒ Ik ∪ {j} ⊆ Ir−1 ∪ {j}

• Ir−1 ∪ {j} acyclic & Fact 2

⇒ all subsets are acyclic

⇒ Ik ∪ {j} acyclic

⇒ j should have been added.

4

Structural Observations about Forests

Def: G′ = (V, E′) is a subgraph of G = (V, E) if
E′ ⊆ E.

Def: An acyclic undirected graph is a forest

Fact 1: and MST on n vertices has n− 1 edges.

Lemma 1: If G = (V, F) is a forest with m edges
then it has n−m connected components.

Proof: Induction (on number of edges)

case case: 0 edges, n CCs.

IH: assume true for m.

IS: show true for m + 1.

• IH =⇒ n−m CCs

• add new edges.

• must not create cycle

⇒ connects two connected components.

⇒ these 2 CCs become 1 CC.

⇒ n−m− 1 CCs.

QED

Lemma 2: (Augmentation Lemma) If I, J ⊂ E are
forests and |I| < |J | then exists e ∈ J \ I such that
I ∪ {e} is a forest.

Proof:

Lemma 1

⇒ # CCs of (V, I) > # CCs of (V, J) ≥ # CCs of
(V, I ∪ J)

⇒ add elements e ∈ J to I until # CCs change.

[PICTURE]

⇒ (V, I ∪ {e}) is acyclic.

Fact 2: subgraphs of acyclic graphs are acyclic

5

	EECS 336: Lecture 14: Introduction to Algorithms
	Greedy Algorithms: Interval Scheduling

	Greedy Algorithms
	Interval Scheduling
	Greedy Algorithm for Interval Scheduling
	Analysis

	Greedy by Value
	Minimum Spanning Tree
	Runtime

	Correctness
	Structural Observations about Forests

