EECS 336: Lecture 11: Introduction to Intractability Algorithms

Deriving NP: NP, CIRCUIT-SAT

Reading: 8.3

Last Time:

- 3-SAT \leq_P INDEP-SET
- 3-SAT \leq_P HC
- 3-SAT \leq_P 3D-MATCHING

Today:

- decision problems
- \mathcal{NP} problems
- "Notorious Problem" NP
- NP \leq_P CIRCUIT-SAT

Goal: a framework for showing problems are intractable.

Challenge: lower bounds for algorithms are very difficulty to prove.

Approach: reduce believed hard problem to new problem to show that new problem is probably also hard.

Challenge: problems look quite different, e.g., 3-SAT, HC, INDEP-SET

Approach: decision problems.

Decision Problems

"problems with yes/no answer"

Def: A decision problem asks "does a feasible solution exist?"

Example: is there satisfying assignment \mathbf{z} for 3-SAT formula f?

Example: is there independent set S in INDEP-SET graph (V, E) with size at least θ ?

Note: Can convert optimization problem to decision problem

Def: the decision problem X_d for optimization problem X has input $(x, \theta) =$ "does instance x of X have a feasible solution with value at most (or at least) θ ?"

Fact: $X_d \leq_P X$

Proof: obvious.

Theorem: $X \leq_P X_d$

Proof:

- identify reasonable range for OPT, e.g., [1, h]
- binary search with X_d solver.

QED.

Note: This is not a one-call reduction.

A notoriously hard problem

"one problem to solve them all"

Note: all example problems have **short certificates** that could easily verify "yes" instances.

Def: \mathcal{NP} is the class of problem that have short (polynomial sized) certificates that can easily (in polynomial time) verify "yes" instances.

Historical Note: $\mathcal{NP} = \underline{\text{non-deterministic}}$ polynomial time

"a nondeterministic algorithm could guess the certificate and then verify it in polynomial time"

Defs:

- Problem $\underline{X \text{ is in } \mathcal{NP}}$ if exists short easily-verifiable certificate.
- Problem <u>X is \mathcal{NP} -hard</u> if $\forall Y \in \mathcal{NP}, Y \leq_{\mathcal{P}} X$.
- Problem <u>X is in \mathcal{NP} </u> if $X \in \mathcal{NP}$ and X is \mathcal{NP} -hard.

Lemma: INDEP-SET $\in \mathcal{NP}$

Lemma: 3-SAT $\in \mathcal{NP}$

Lemma: $HC \in \mathcal{NP}$

Goal: show INDEP-SET, SAT, NP are \mathcal{NP} complete.

Note: Not all problems are in \mathcal{NP} .

E.g., unsatisfiability, chess

Notorious Problem: NP

input:

- decision problem verifier program VP.
- polynomial $p(\cdot)$.
- decision problem instance: x

output:

- "Yes" if exists certificate c such that VP(x, c) has "verified = true" at computational step p(|x|).
- "No" othersiwe.

Fact: NP is \mathcal{NP} -complete.

Note: Unknown whether $\mathcal{P} = \mathcal{NP}$.

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Plan:

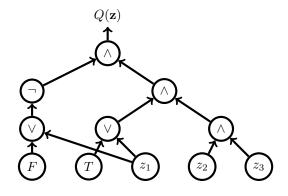
1. NP $\leq_{\mathcal{P}} \dots \leq_{\mathcal{P}} 3$ -SAT

- 2. 3-SAT $\leq_{\mathcal{P}}$ INDEP-SET
- 3. 3-SAT $\leq_{\mathcal{P}}$ HC $\leq_{\mathcal{P}}$ TSP
- 4. 3-SAT $\leq_{\mathcal{P}}$ 3D-MATCHING

show INDEP-SET, SAT, NP are \mathcal{NP} - Agenda: Find a first simple \mathcal{NP} -complete problem.

Circuit Satisfiability

Example:



Problem: CIRCUIT-SAT

input: boolean circuit $Q(\mathbf{z})$

- directed acyclic graph G = (V, E)
- internal nodes labeled by logical gates:
 "and", "or", or "not"
- leaves labeled by variables or constants

 $T, F, z_1, ..., z_n$.

• root r is output of circuit

output:

- "Yes" if exists \mathbf{z} with $Q(\mathbf{z}) = T$
- "No" otherwise.

Theorem: CIRCUIT-SAT is \mathcal{NP} -hard.

Part I: forward instance construction

convert NP instance (VP, p, x) to CIRCUIT-SAT instance Q.

• $VP(\cdot, \cdot)$ polynomial time

 \Rightarrow computer can run it in poly steps.

- each step of computer is circuit.
- output of one step is input of next step
- unroll p(|x|) steps of computation
 - $\Rightarrow \exists$ poly-size circuit $Q'(\mathbf{x}, \mathbf{c}) = VP(x, c)$
- hardcode **x**: $Q(\mathbf{c}) = Q'(\mathbf{x}, \mathbf{c})$

Part II-III: backward/forward certificate construction

• $\mathbf{c} \Leftrightarrow c$