EECS 336: Lecture 10: Introduction to Problem Y: 3-SAT Algorithms

P vs. NP: indep set, hamiltonian cycle, 3d matching

Reading: 8.4, 8.5, 8.6.

"guide to reductions"

Last Time:

- reductions (cont)
- tractability and intractability
- 3-SAT \leq_p INDEP-SET

Today:

- $3\text{-SAT} \leq_p \text{INDEP-SET}$
- 3-SAT \leq_p HAMILTONIAN-CYCLE
- 3-SAT \leq_p 3D-MATCHING

Reduction Illustrated

Problems	3-SAT	INDEP-SET
Instance	f	(V^f, E^f, θ^f)
Solution	\mathbf{Z}	S^f

input: boolean formula $f(\mathbf{z}) = \bigwedge_{j=1}^{m} (l_{j1} \vee l_{j2} \vee l_{j3})$

- literal l_{jk} is variable " z_i " or negation
- "and of ors"
- e.g., $f(\mathbf{z}) = (z_1 \vee \bar{z}_2 \vee z_3) \wedge (z_2 \vee \bar{z}_5 \vee z_5)$ $z_6) \wedge \dots$

output:

• "Yes" if assignment \mathbf{z} with $f(\mathbf{z}) = T$

e.g.,
$$\mathbf{z} = (T, T, F, T, F, ...)$$

• "No" otherwise.

Problem X: INDEP-SET

input: G = (V, E), k

output: "yes" if $\exists S \subset V$

- satisfying $\forall v \in S, (u, v) \notin E$
- $|S| \ge \theta$

Independent Set Reduction

Lemma: 3-SAT \leq_p INDEP-SET

Part 1: forward instance construction

convert 3-SAT instance f into INDEP-SET instance (V^f, E^f, θ^f) .

- goal: "at least one true literal per clause" \Leftrightarrow "independent set of size at least θ "
- literal $l_{ij} \Rightarrow \text{vertices } v_{ij} \in V^f$
- "all clauses true" $\Rightarrow \theta^f = m$
- "literal conflicts" \Rightarrow conflict edges.

$$\forall i: l_{jk} = "z_i" \text{ and } l_{j'k'} = "\bar{z}_i" \Rightarrow (v_{jk}, v_{j'k'}) \in E^f$$

• "one representative per clause" ⇒ clause edges.

$$\forall j: (v_{j1}, v_{j2}), (v_{j2}, v_{j3}), (v_{j3}, v_{j1}) \in E^f$$

Example:

$$f(\mathbf{z}) = (z_1 \vee z_2 \vee z_3) \wedge (\bar{z}_2 \vee \bar{z}_3 \vee \bar{z}_4) \wedge (\bar{z}_1 \vee \bar{z}_2 \vee z_4)$$

Runtime Analysis: linear time (one vertex per literal.)

Part II: reverse certificate construction

construct assignment **z** from S^f

(if (V^f, E^f) has indep. set S^f size $\geq \theta^f = m$ then f is satisfiable.)

For each z_i :

• if exists vertex in S labeled by " z_i " set $z_i = T$

• else

set
$$z_i = F$$

Claim: if vertex in S is labeled by " $\bar{z_i}$ " then no vertices in S are labeled by " z_i " and z_i is set to False.

(because of conflict edge between vertex labeled " \bar{z}_i " and all vertices labeled " z_i ".)

Claim: S independent and $|S| \ge m \Rightarrow f(\mathbf{z}) = T$:

- S has |S| = m
 ⇒ S has one vertex per clause.
- for clause j and $v_{jk}inS$: if l_{jk} is " z_i ", then z_i is true (by construction) if l_{jk} is " \bar{z}_i ", then z_i is false (by claim)

• So f(z) = T.

Part III: forward certificate construction

construct independent set S from z

(if f is satisfiable then (V^f, E^f) has indep. set size $\geq m = \theta^f$.)

- let S' be nodes in (V^f, E^f) corresponding to true literals
- if more than one vertex in S' in same triangle drop all but one.

 $\Rightarrow S$.

- |S| = m
- for all $u, v \in S$,
 - -u&v not in same triangle.
 - $-l_u$ and l_v both true
 - \Rightarrow must not conflict
 - \Rightarrow no (l_u, l_v) edge in (V^f, E^f) .
 - so S is independent.

Reductions From 3-SAT

Must Encode:

a) "at least one true literal per clause"

b) "true literals for each z_i either all " z_i " or all " \bar{z}_i "

Problem: Hamiltonian Cycle

input: directed graph (V, E)

output: "yes" if exists cycle C that visits each vertex exactly once.

Lemma: hamiltonian cycle is NP-hard

Proof: (reduction from 3-SAT)

Part I: construction

(turn 3-SAT formula f in to graph (V^f, E^f) with hamiltonian cycle iff f is satisfiable)

• idea: variable = isolated path, right-to- left = true, left-to-right = false.

• idea: clause is node, which needs to be hit by at most one literal being true.

• construction:

• left-right path per variable.

• splice in clause nodes.

Runtime: O(nm)

Part II: reverse certificate construction

• high-level: ensure "other paths" do not exist.

Part III: forward certificate construction

• high-level: confirm "desired path" exists.

Problem: Traveling Salesman (TSP)

Lemma: TSP is \mathcal{NP} -hard.

Proof: reduction from Hamiltonian Cycle

Part I: forward instance construction

• encode edges with cost 1

• encode non-edges with cost n.

Part II & III: exists HC iff TSP cost $\leq n$

Problem: 3D-MATCHING

Input: tripartite hypergraph (A, B, C, E) * vertices A, B, C, * edges $E \subset A \times B \times C$

Output: "yes" if exist prefect matching $M \subset E$

3D Matching

Lemma: $3\text{-SAT} \leq_p 3D\text{-MATCHING}$

Part I: forward instance construction

(convert 3-SAT instance f into 3D-MATCHING instance (A^f, B^f, C^f, E^f))

variable gadget i:

• vertices $a_{i1}, \ldots, a_{im}, b_{i1}, \ldots, b_{im}, c_{i1T}, \ldots, c_{imT}, c_{i1F}, \ldots, c_{imF}$

• true edges $\{(a_{ij}, b_{ij}, c_{ijT}) : j \in [m]\}$

• false edges $\{(a_{ij}, b_{ij}, c_{ijF}) : j \in [m]\}$

• m true tips, m false tips.

clause gadget j:

• two vertices a_i, b_i

literal edge l_{ik} :

• " z_i " $\Rightarrow (a_i, b_i, c_{iiT})$

• " \bar{z}_i " $\Rightarrow (a_j, b_j, c_{ijF})$

cleanup gadgets $r \in \{1, \dots, 2mn - m\}$:

• two vertices a'_r, b'_r

• edges $\{(a'_r, b'_r, c_{ijB}) : i \in [n], j \in [m], B \in \{T, F\}\}$

Parts II & III: see book.