EECS 336: Lecture 9: Introduction to Summary of Reduction Algorithms

P vs. NP: indep set, 3-sat, TSP

Announcements: midterm thursday

Reading: 8.0-8.3

"guide to reductions"

Last Time:

• max flow alg / ford-fulkerson

• duality: max flow = min cut

Today:

• reductions (cont)

tractability and intractability

• decision problems

• 3-SAT \leq_p INDEP-SET

Reduction Illustrated

Problems	Bipartite Matching	Network Flow
Instance	x = (A, B, E)	$y^x = (V^x, E^x, c^x, s^x, t^x)$
Solution	M	$\int f^x$

Def: Y reduces to X in polynomial time (notation: $Y \leq_P X$) if any instance of Y can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of X.

Note: to prove correctness of general reduction, must show that correctness (e.g., optimality) of algorithm for X implies correctness of algorithm for Y.

Def: one-call reduction maps instance of Y to instance of X, solution of Y to solution of X. (also called a Karp reduction)

Note: a one-call reduction gives two algorithms:

I. contruction of X^Y instance from Y instance.

II. construction of Y solution from X^Y solution (with same value.)

Note: the proof of correctness of a one-call reduction gives additional algorithm:

III. construction of X^Y solution from Y solution (with same value.)

Note: Only need to consider X^Y instance not general X instance.

Note: If solution not needed then reduction is Step I and proof is Steps II and II.

Theorem: reduction from "I and II" is correct if I, II, and III are correct.

Proof:

- for instance y of Y, let instance of x^y of X^Y be outcome of I.
- II correct \Rightarrow OPT(y) > OPT (x^y) .
- III correct \Rightarrow OPT $(x^y) >$ OPT(y).
- $\Rightarrow \mathrm{OPT}(y) = \mathrm{OPT}(x^y).$
- \Rightarrow output of reduction has value OPT(y).

Decision Problems

"problems with yes/no answer"

Def: A decision problem asks "does a feasible solution exist?"

Example: network flow in (V, E, c, s, t) with value at least θ .

Example: perfect matching in a bipartite graph (A, B, E).

Note: objective values for decision problem is 1 for "yes" and 0 for "no".

Note: II and III only need to check "yes" instances.

Theorem: perfect matching reduces to network flow decision problem.

Note: Can convert optimization problem to decision problem

Def: the decision problem X_d for optimization problem X has input (x, θ) = "does instance x of X have a feasible solution with value at most (or at least) θ ?"

Tractability and Intractability

Consequences of $Y \leq_p X$:

1. if X can be solved in polynomial time then so can Y.

Example: X = network-flow; Y = bipartite matching.

2. if Y cannot be solved in polynomial time then neither can X.

Reductions for Intractability

"reduce known hard problem Y to problem X to show that X is hard"

Problem Y: 3-SAT

input: blooen formula $f(\mathbf{z}) = \bigwedge_{j=1}^{m} (l_{j1} \vee l_{j2} \vee l_{j3})$

- literal l_{jk} is variable " z_i " or negation " \bar{z}_i "
- "and of ors"
- e.g., $f(\mathbf{z}) = (z_1 \vee \bar{z}_2 \vee z_3) \wedge (z_2 \vee \bar{z}_5 \vee z_6) \wedge \dots$

output:

• "Yes" if assignment \mathbf{z} with $f(\mathbf{z}) = T$ exists

e.g.,
$$\mathbf{z} = (T, T, F, T, F, ...)$$

• "No" otherwise.

Problem X: INDEP-SET

input: G = (V, E), k

ouput: "yes" if $\exists S \subset V$

- satisfying $\forall v \in S, (u, v) \notin E$
- $|S| \ge \theta$

Reduction

Lemma: $3\text{-SAT} \leq_p \text{INDEP-SET}$

Part 1: forward instance construction

convert 3-SAT instance f into INDEP-SET instance (V^f, E^f, θ^f) .

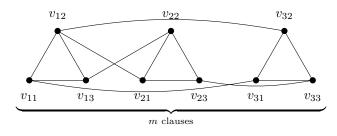
- goal: "at least one true literal per clause" \Leftrightarrow "independent set of size at least θ "
- literal $l_{ij} \Rightarrow \text{vertices } v_{ij} \in V^f$
- "all clauses true" $\Rightarrow \theta^f = m$
- "literal conflicts" \Rightarrow conflict edges.

$$\forall i: l_{jk} = "z_i" \text{ and } l_{j'k'} = "\bar{z}_i" \Rightarrow (v_{jk}, v_{j'k'}) \in E^f$$

• "one representative per clause" \Rightarrow clause edges. $\forall j \colon (v_{j1}, v_{j2}), \ (v_{j2}, v_{j3}), \ (v_{j3}, v_{j1}) \in E^f$

Example:

$$f(\mathbf{z}) = (z_1 \vee z_2 \vee z_3) \wedge (\bar{z}_2 \vee \bar{z}_3 \vee \bar{z}_4) \wedge (\bar{z}_1 \vee \bar{z}_2 \vee z_4)$$



Runtime Analysis: linear time (one vertex per literal.)

Part II: reverse certificate construction

construct assignment **z** from S^f

(if (V^f, E^f) has indep. set S^f size $\geq \theta^f = m$ then f is satisfiable.)

For each z_r :

• if exists vertex in S labeled by " z_r " set $z_r = T$

• else

set
$$z_r = F$$

Claim: if vertex in S is labeled by " \bar{z}_r " then no vertices in S are labeled by " z_r " and z_r is set to False.

(because of conflict edge between vertex labeled " \bar{z}_r " and all vertices labeleed " z_r ".)

Claim: S independent and $|S| \ge m \Rightarrow f(\mathbf{z}) = T$:

- S has |S| = m
 ⇒ S has one vertex per clause.
- for clause i and $v_{ij}inS$: if l_{ij} not negated, then z_i is true (by construction) if l_{ij} is negated then z_i is false (by claim)
- So f(z) = T.

Part III: forward certificate construction

construct independent set S from z

(if f is satisfiable then (V^f, E^f) has indep. set size $\geq m = \theta^f$.)

- let S' be nodes in (V^f, E^f) corresponding to true literals
- if more than one vertex in S' in same triangle drop all but one.
 - $\Rightarrow S$.
- |S| = m
- for all $u, v \in S$,
 - -u&v not in same triangle.
 - $-l_u$ and l_v both true
 - \Rightarrow must not conflict
 - \Rightarrow no (l_u, l_v) edge in (V^f, E^f) .
 - so S is independent.