EECS 336: Lecture 8: Introduction to Recall: a flow graph G = (V, E) is a directed graph Algorithms

Network Flow: Ford-fulkerson, duality, minimum cut

Reading: 7.0-7.5

Announcements: midterm thursday

- closed book, closed notes.
- one handwritten cheat sheet.
- dynamic programming.
- focus:
 - writing Parts I-II.
 - writing Parts III-IV (given Parts I-II.)

Last Time:

- reduction
- Network flow defn
- Bipartite matching
- reduction: matching \Rightarrow flow.

Today:

- Network flow
- duality: max flow = min cut

- c(e) =capacity if edge e.
- $s \in V$ is source.
- $t \in V$ is sink.

Def: a flow f in G is an assignment of flow to edges "f(e)" satisfying:

- capacity: $\forall e, f(e) \leq c(e)$
- conservation: $\forall v \neq s, t,$

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Recall: the **value** of a flow is:

$$|f| = \sum_{e \text{ out of } s} f(e) = \sum_{e \text{ into } t} f(e)$$

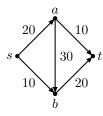
Recall: Max Network Flow Probem

input: flow graph $G, s, t, c(\cdot)$.

output: flow f with maximum value.

Network Flow

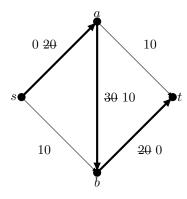
Example:



Max flow = 30.

Idea: repeatedly push flow on *s-t* paths until can't push anymore.

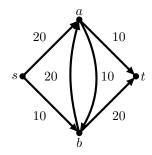
Example: Push 20 on P = (s, a, b, t)



Note: when pushing flow, we can undo flow already pushed.

Def: the residual graph G_f for flow f on G is the graph that represents capacity constraints for flows after pushing f.

Example: G_f



Construction: $G_f = (V, E_f), c_f(\cdot)$:

For each $e = (u, v) \in E$,

(if
$$f(e) = c(e)$$
 discard e)

• if f(e) < c(e),

- add e to E_f

$$-c_f(e) = c(e) - f(e)$$

• if f(e) > 0

- let e' = (v, u)

- add e' to E_f

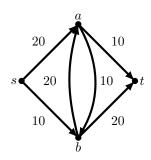
 $-c_f(e') = c(e') + f(e)$

Def: the residual capacity of e in E_f is $c_f(e)$.

Def: the <u>bottleneck</u> capacity of s-t path P in G_f is minimum residual capacity of any edge in P.

Def: an <u>augmenting path</u> P in a residual graph G_f is a path with positive bottleneck capacity.

Example: G_f after pushing 20 on P = (s, a, b, t)



Augmenting path P = (s, b, a, t) with bottleneck capacity 10.

Augment f with flow of 10 on P:

- $f(s,b) \leftarrow f(s,b) + 10$
- $f(a,b) \leftarrow f(a,b) 10$
- $f(a,t) \leftarrow f(a,t) + 10$

Note: can find augmenting paths with BFS.

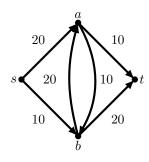
Algorithm: Augment f with P

- $b = \text{bottleneck}(P, G_f)$.
- for e in P:
 - if e a forward edge:

*
$$f(e) \leftarrow f(e) + b$$

- if e a back edge:
 - * let e' = back edge
 - * $f(e') \leftarrow f(e) b$.

Example: G_f after augmenting with P = (s, b, a, t)



No more augmenting paths!

Algorithm: Ford-fulkerson

- $f \leftarrow \text{null flow}$.
- $G_f \leftarrow G$.
- while exists s-t path P in G_f (by BFS)
 - augment f with P.
 - $-G_f$ ← residual graph for G and f.

• return f

Runtime

Each iteration:

- construct $G_f: O(m)$.
- find P: O(m).
- augmentation: O(n).
- (Total: O(m))

Fact: the value of flow increases by bottleneck capacity in each iteration.

Theorem: if C is upper bound on max flow and all capacities are integral then algorithm terminate in O(C) iterations with runtime O(mC).

Proof: (by "measure of progress")

- 1. bottleneck capacities integral:
 - current residual capacities intergal
 - \Rightarrow integral bottleneck capacity
 - \Rightarrow next residual capacities integral
 - induction!
- 2. bottleneck capacities ≥ 1
- 3. flow increases by 1 each iteration
- 4. terminate in $\leq C$ iterations.

Note: $C \leq \sum_{e \text{ out of } s} c(e)$.

Note: Clever choice of augmenting paths gives runtime $O(m^2 \log C)$.

Correctness

- 1. f is feasible.
- 2. f is optimal.

Lemma: f is feasible.

Proof: induction!

Max flow = min cut

"duality: for maximization problem there is a corresponding minimization problem"

Recall: an s-t cut (A, B) is partion of V into A and B with $s \in A$ and $t \in B$.

Def: the capacity of cut (A, B) is

$$c(A,B) = \sum_{e \text{ from } A \text{ to } B} c(e)$$

Goal: flow algorithm is optimal

Proof Approach: primal = dual.

Claim 1: any flow f and any cut (A, B) then $|f| \le c(A, B)$.

value of flow

Claim 2: for flow f^* with no augmenting path in G_{f^*} then exists cut (A^*, B^*) with $|f^*| = c(A^*, B^*)$

Picture:

Proof: (of theorem)

• all flows

$$|f| \underset{\text{by Claim 1}}{\leq} c(A^*, B^*) \underset{\text{by Claim 2}}{=} |f^*|$$

Corollary: value of max flow = capacity of min cut

Lemma: for any flow f, cut (A,B) then, $|f| = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$

Proof: (by picture, see text for formal proof)

Proof: (of Claim 1)

From Lemma:

$$|f| = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= c(A, B).$$

Proof: (of Claim 2) no s-t path in G_f :

- let A^* be vertices connected to s. $> (B^* = V \setminus A^*)$
- (A^*, B^*) is cut: $-s \in S^*$ $-t \in B^*$
- for all e = (u, v) out of A^* in G: $-e \notin G_f$ $\Rightarrow f^*(e) = c(e)$
- for all e = (u, v) in to A^* in G: $e' = (v, u) \notin G_f$ $\Rightarrow f^*(e) = 0$
- Lemma $\Rightarrow |f| = \sum_{e \text{ out of } A^*} f(e) \sum_{e \text{ into } A^*} f(e)$

$$= \sum_{e \text{ out of } A^*} c(e) - 0$$
$$= c(A^*, B^*).$$

Summary

- algorithm: augmenting paths in residual graph.
- correctness: max-flow min-cut theorem.
- many problems can be reduced to network flows.
- entire courses on network flows.