EECS 336: Lecture 8: Introduction to
Algorithms

Network Flow: Ford-fulkerson, duality, mini-
mum cut
Reading: 7.0-7.5
Announcements: midterm thursday
e closed book, closed notes.
o one handwritten cheat sheet.
o dynamic programming.
o focus:
— writing Parts I-1I.
— writing Parts III-IV (given Parts I-II.)
Last Time:
e reduction
¢ Network flow defn
o Bipartite matching
e reduction: matching = flow.
Today:
¢ Network flow

e duality: max flow = min cut

Recall: a flow graph G = (V, E) is a directed graph
with:

e c¢(e) = capacity if edge e.
e s €V is source.
e t €V is sink.

Def: a flow f in G is an assignment of flow to edges
“f(e)” satistying:

o capacity: Ve, f(e) < c(e)

e conservation: Yv # s, t,
Yo=Y flo
e into v e out of v
Recall: the value of a flow is:

fl= Y fley= > fle)

e out of s e into t
Recall: Max Network Flow Probem
input: flow graph G, s,t,c(-).

output: flow f with maximum value.

Network Flow

a
Example: 20 .
S t
a
20 10 10 20
S t b
10 20
v Construction: Gy = (V, Ey),cs(+) :
For each e = (u,v) € E,
(if f(e) = c(e) discard e)
Max flow = 30.

. if f(e) < cle),
Idea: repeatedly push flow on s-t paths until can’t — add e to By

push anymore.
— cple) = c(e) — f(e)
o if f(e) >0

— let ¢/ = (v,u)

Example: Push 20 on P = (s,a,b,)

3 — add € to Ey

020 10 = cp(€') = c(e) + f(e)
Def: the residual capacity of e in Ey is cs(e).

s 3010 " Def: the bottleneck capacity of s-t path P in G is
minimum residual capacity of any edge in P.

Def: an augmenting path P in a residual graph Gy

10 200 is a path with positive bottleneck capacity.
y Example: Gy after pushing 20 on P = (s, a,b,t)

a

Note: when pushing flow, we can undo flow already 20 10

pushed.

Def: the residual graph Gy for flow f on G is the s t

graph that represents capacity constraints for flows

after pushing f. 10 20
b

Example: Gy

Augmenting path P = (s, b, a,t) with bottleneck ca-
pacity 10.

Augment f with flow of 10 on P:
o f(s,b) < f(s,b)+10
e f(a,b) « f(a,b) — 10
o fl(a,t) < f(a,t)+10
Note: can find augmenting paths with BFS.
Algorithm: Augment f with P
o b= bottleneck(P, Gy).
e forein P:
— if e a forward edge:
x f(e) « f(e)+b
— if e a back edge:
x let ¢/ = back edge
x f(e') «+ f(e) —b.
Example: Gy after augmenting with P = (s, b, a,t)

No more augmenting paths!
Algorithm: Ford-fulkerson
e f <« null flow.
e Gy G.
 while exists s-¢ path P in Gy (by BFS)
— augment f with P.
— G <+ residual graph for G and f.

e return f

Runtime

Each iteration:
o construct Gy : O(m).
e find P: O(m).
o augmentation: O(n).
o (Total: O(m))

Fact: the value of flow increases by bottleneck capac-
ity in each iteration.

Theorem: if C is upper bound on max flow and all
capacities are integral then algorithm terminate in
O(C) iterations with runtime O(mC).

Proof: (by “measure of progress”)
1. bottleneck capacities integral:
e current residual capacities intergal
— = integral bottleneck capacity
— = next residual capacities integral
e induction!
2. bottleneck capacities > 1
3. flow increases by 1 each iteration
4. terminate in < C iterations.
Note: C <> . o s cl€).

Note: Clever choice of augmenting paths gives run-
time O(m?log C).

Correctness

1. f is feasible.
2. f is optimal.
Lemma: f is feasible.

Proof: induction!

Max ﬂOW - min CU-t |f| = Ze out of A f(e) - Ze into A f(e)

< e
“duality: for maximization problem there is a corre- < 2 out or a F(€)
sponding minimization problem” < e out of 4 C(€)
Recall: an s-t cut (A, B) is partion of V into A and = c(4, B).

Bwiths€ Aandt€ 5. Proof: (of Claim 2) no s-t path in Gy:

Def: the capacity of cut (4, B) is let A* be vertices connected tos. > (B* = V'\ A*)

e (A*, B*) is cut:
c(A,B)= > cle) () ‘

e from A to B —ses”
Goal: flow algorithm is optimal —teB
Proof Approach: primal = dual. » forall e = (u,v) out of A" in G-
Claim 1: any flow f and any cut (A, B) then —e¢ Gy
[fl <c(AB). = [*(e) = c(e)
<~
value of flow o forall e = (u, 1}) in to A* in G:
glaim 2: f.or flow f* *WitE no augn*lenting Eat}i in — ¢ =(v,u) ¢ Gy
¢+ then exists cut (A*, B*) with |f*| = ¢(4*, B¥)
. = [*(e) =0
Picture:
* cuts * % e Lemma
o B j|f|:Z:eoutofA*vf(e)_z:eintoA"f(e)
Xx kK kkkk
* = Ze out of A* C(e) -0
Kokkokk Kok = c(A*, B).
* % % % %
* flows ok oK
Summary

Proof: (of theorem)

e all flows e algorithm: augmenting paths in residual graph.
v . e correctness: max-flow min-cut theorem.
fl < oABY) = |f
~ A e many problems can be reduced to network flows.
by Claim 1 by Claim 2

e entire courses on network flows.

Corollary: value of max flow = capacity of min cut

Lemma: for any flow f, cut (A, B) then, |f|] =
Ze out of A f(e) - Ze into A f(e)

Proof: (by picture, see text for formal proof)
Proof: (of Claim 1)

From Lemma:

	EECS 336: Lecture 8: Introduction to Algorithms
	Network Flow: Ford-fulkerson, duality, minimum cut

	Network Flow
	Runtime
	Correctness

	Max flow = min cut
	Summary

