
EECS 336: Lecture 7: Introduction to
Algorithms

Reductions: network flow, reduction, bipar-
tite matching

Reading: 7.1, 7.5

Last Time:

• Interval Pricing

Today:

• Reductions

• Network flow

• Bipartite matching

Reductions

“to solve problem B given solution to prob- lem A,
transform instances from problem B into instances of
A, solve, transform solution back”

Problem A: Network Flow

“given a network with bandwidth constraints on links,
how much data can we send from source to sink”

Def: a flow graph G = (V, E) is a directed graph
with:

• c(e) = capacity if edge e.

• s ∈ V is source.

• t ∈ V is sink.

Def: a flow f in G is an assignment of flow to edges
“f(e)” satisfying:

• capacity: ∀e, f(e) ≤ c(e)

• conservation: ∀v 6= s, t,

∑
e into v

f(e) =
∑

e out of v

f(e)

Def: the value of a flow is:

|f | =
∑

e out of s

f(e) =
∑

e into t

f(e)

Problem: Network Flow

input: flow graph G, s, t, c(·).

output: flow f with maximum value.

Example:

1

a

s t

b

1020

2010

30

Maxflow = 30.

Theorem 1: there is an algorithm to compute the
max flow in polynomial time.

Theorem 2: if capacities are integral, then there
is a max flow that is is integral (on each edge) and
algorithm finds it.

Problem B: Bipartite matching

Def: G = (V, E) is a bipartite if exists partitioning
of V into A and B s.t.,

• u, v ∈ A⇒ (u, v) /∈ E,

• u, v ∈ B ⇒ (u, v) /∈ E,

Recall: a matching is a set of edges M ⊆ E each
node is connected by at most one edge in M

• a perfect matching is one where all nodes are
connected by exactly one edge.

• a maximum matching is one with maximum
cardinatlity.

Problem: bipartite matching

input: dipartite graph G = (A, B, E)

output: a maximum matching M .

2

Reducing bipartite matching to max flow

“use max flow alg to solve bipartite matching.”

1. convert matching instance into flow instance.

2. run flow alg flow instance.

3. convert flow soln to matching soln with same
value.

4. prove flow soln optimal iff matching soln optimal.

(a) (convert flow soln to matching soln with same
value; see step 3)

(b) convert matching soln to flow soln with same
value.

Note: (a) and (b) imply value of max flow = size of
max matching.

Step 1:

i. connect s to each v ∈ A with capacity 1.

ii. connect t to each u ∈ B with capacity 1.

iii. set capacity of each edge e ∈ E to 1.

Step 2: compute (integral) max flow f

Step 3: matching M = e ∈ E : f(e) = 1

• |M | = |f |

• (capacity constraints imply matching)

Step 4: Proof:

• any matching M ′ can be turned into a flow f ′

with |f ′| = |M ′|

(send from s to each matched edge to t one unit
of flow)

• any integral flow f ′ can be turned into a matching
M ′ with |f ′| = |M ′|

⇒ size of output matching = value of max flow = size
of max matching.

Runtime

Tmatching(n, m) = O(n + m) + Tmax flow(n, m)

Reductions

Def: Y reduces to X in polynomial time (notation:
Y ≤P X if any instance of Y can besolved in a polyno-
mial number of computational steps and a polynomial
number of calls to black-box that solves instances of
X.

Note: to prove correctness of general reduction, must
show that correctness (e.g., optimality) of algorithm
for X implies correctness of algorithm for Y .

Def: one-call reduction maps instance of Y to instance
of X, solution of Y to solution of X.

(also called a Karp reduction)

Note: a one-call reduction gives two algorithms:

I. contruction of XY instance from Y instance.

II. construction of Y solution from XY solution
(with same value.)

Note: the proof of correctness of a one-call reduction
gives one algorithm:

III. construction of XY solution from Y solution
(with same value.)

(Only need to consider XY instance not gen-
eral X instance.)

Theorem: reduction from “I and II” is correct if I,
II, and III are correct.

Proof:

• for instance y of Y , let instance of xy of XY be
outcome of I.

• II correct ⇒ OPT(y) ≥ OPT(xy).

• III correct ⇒ OPT(xy) ≥ OPT(y).

⇒ OPT(y) = OPT(xy).

⇒ output of reduction has value OPT(y).

3

	EECS 336: Lecture 7: Introduction to Algorithms
	Reductions: network flow, reduction, bipartite matching

	Reductions
	Problem A: Network Flow
	Problem B: Bipartite matching
	Reducing bipartite matching to max flow
	Runtime
	Reductions

