EECS 336: Lecture 6: Introduction to $\,$ Example: Interval Pricing Algorithms

Dynamic Programming (cont) interval pricing

Reading: 6.5

Announcements:

 \bullet peer grading

Last Time:

• Approach: isolating previous decisions

• Shortest-paths (Bellman-Ford Alg)

Today:

 \bullet interval pricing

• summary of dynamic programming

• comparison to divide and conquer

input:

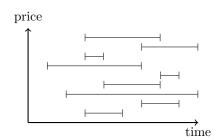
• $n \text{ customers } S = \{1, ..., n\}$

• T days.

• *i*'s ok days: $I_i = \{s_i, ..., f_i\}$

• *i*'s value: $v_i \in \{1, ..., V\}$

output:

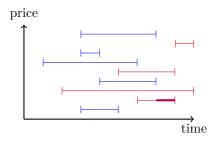

• prices p[t] for day t.

• consumer i buys on day $t_i = argmin_{t \in I_i} p[t]$ if $p[t] \leq v_i$.

• revenue = $\sum_{i \text{that buys}} p[t_i]$.

• goal: maximize revenue.

Example:



let's use dynamic programming. subproblem?

Question: What is "first decision we can make" to separate into subproblems?

Answer: day and p rice of smallest price.

Example:

Step I: identify subproblem in English

 $\mathrm{OPT}(s,f,p)=$ "optimal revenue from customers i with intervals $\{s_i,...,f_i\}$ contained within interval $\{s+1,...,f-1\}$ with minimum price at least p.

Step II: write recurrence

 $= \max\nolimits_{t \in \{s+1,\dots,f-1\}; q \in \{p,\dots,V\}} \operatorname{Rev}(s,t,f,p)$

 $+\mathrm{OPT}(s,t,q)$

 $+\mathrm{OPT}(t,f,q).$

Rev(s,t,f,p)= "the revenue from customers i with intervals $\{s_i,...,f_i\}$ contained within interval $\{s+1,...,f-1\}$ with minimum price at least p."

with

Step III: value of optimal solution

• optimal interval pricing = OPT(1, T, 0)

Step IV: base case

• OPT(s, s + 1, p) = 0.

• OPT(s, t, V + 1) = 0.

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

• precompute $\Re(s,t,f,p)$ in $O(T^3Vn)$ time.

• size of table: $O(T^2V)$

• cost of combine: O(TV)

• total: $O(T^3V(V+n))$

Note: without loss of generality T, V are O(n) so runtime is $O(n^5)$.

Note: can be improved to $O(n^4)$ with slightly better program.

Step VII: implementation

(exercise)

Summary of Dynamic Programming

"divide the problem into small number of subproblems and memoize solution to avoid redundant computation."

Finding Subproblems

- identify a first decision, subproblems for each outcome of decision.
- partition problem, summarize information from one part needed to solve other part.

Subproblem Properties

- 1. succinct (only a polynomial number of them)
- 2. efficiently combinable.
- 3. depend on "smaller" subproblems (avoid infinite loops), e.g.,
 - process elements "once and for all" [today]
 - "measure of progress/size" [coming soon]

Runtime Analysis

runtime = initialization + size of table \times cost to combine

Finding Solution

- write DP to identify value of optimal solution.
- traverse memoization table to determine actual solution.