
EECS 336: Lecture 5: Introduction to
Algorithms

Dynamic Programming (cont) Bellman-Ford

Reading: 6.4-6.8

“guide to dynamic programming” (Canvas)

Last Time:

• Dynamic Programming (a framework)

• Integer Knapsack

Today:

• Integer Knapsack (cont)

• Shortest Paths.

Recall: Integer Knapsack

intput:

• n objects N = {1, ..., n}

• si = size of object i (integer)

• vi = value of object i

• C = capacity of knapsack (integer)

output:

• subset S ⊆ N of objects that

(a) fit in knapsack together

i.e.,
∑

i∈S si ≤ C

(b) maximize total value

i.e.,
∑

i∈S vi

Framework

I. identify subproblem in english

OPT(i, D) = “optimal value of knapsack
with capacity D with objects {i, ..., n}”

II. specify subproblem recurrence

OPT(i, D) = max(OPT(i + 1, D),
vi + OPT(i + 1, D − si)︸ ︷︷ ︸

if si ≤ D

)

III. solve the original problem (from subproblems)

Optimal Integer Knapsack = OPT(1, C)

IV. identify base case

for all D: OPT(n + 1, D) = 0

V. write iterative DP.

(see last thurs)

VI. runtime analysis.

O(nC)

VII. (for homework) implement iterative DP.

(any language most students can read. e.g.,
Python)

1

Recall Approach: Find a First Decision

“e.g., either object 1 is in the knapsack or not”

Alternative Approach: Isolate Previous Deci-
sions

Suppose:

• already processed jobs {1, ..., i}, and

• used capacity D.

Note: previous decisions succinctly summarized by i
and D

Part I: subproblem in english

OPT(i, D) = "value from remaining knapsack if

• alread processed jobs {1, ..., i}

• used capacity D."

Part II: recurrence

OPT(i, D) = max(OPT(i + 1, D),
vi + OPT(i + 1, D + si)︸ ︷︷ ︸

if D + si ≤ C

)

. . .

Shortest Paths with Negative Weights

“e.g., currency exchange: nodes are currencies, path
weights are exchange rates, minimize produce of path
weights.”

Note: to minimize product of path weights, can
minimize sum of logs of path weights.

Example: r1r2 = 2log2 r12log2 r2 = 2log2 r1+log2 r2

Note: if r ≤ 1 then log r is negative.

Example:

a

s t

b

21

-25

3

Try Dynamic Programming

OPT(v)

= shortest path from v to t.

= minu∈N(v)[c(v, u)︸ ︷︷ ︸
weight

+OPT(u)].

Example:

a

s t

b

Subproblems have cyclic dependencies!

2

Imposing measure of progress

“parameterize subproblems to keep track of progress”

Lemma: if G has no negative cycles, then minimum
cost path is simple (i.e., does not repeat nodes);
therefore, it has at most n− 1 edges.

Proof: (contradiction)

• let P be the min-cost path with fewest number
of edges.

• suppose (for the contraction) that P is not simple.

⇒ P repeats as vertex v.

• no negative cycle ⇒ path from v to v non-
negative.

⇒ can “splice out” cycle and not increase
length.

⇒ new path has fewer edges than p.

Idea: if simple path goes s v → u t then u-t
path has one fewer edge than v-t path.

Part I: identify subproblem in english

OPT(v, k)

= “length of shortest path from v to t with
at most k edges.”

Part II: write recurrence

OPT(v, k)

= minu∈N(v)[c(v, u) + OPT(u, k − 1)]

Correctness: lemma + induction.

Part III: solve original problem

• minimum cost path = OPT(s, n− 1).

Part IV: base case

• for all k: OPT(t, k) = 0

• for all v 6= t: OPT(v, 0) =∞.

Part V: iterative DP

Algorithm: Bellman-Ford

1. base case:

for all k: OPT[t, k] = 0

for all v 6= t: OPT[v, 0] =∞.

2. for k = 1 . . . n− 1: for all v:

OPT[v, k] = minu∈N(v) OPT[u, k − 1].

3. return OPT[s, n− 1].

Example:

a

s t

b

21

-25

3

0 1 2 3
s ∞ ∞ 3 2
a ∞ 2 1 1
b ∞ -2 -2 -2
t 0 0 0 0

Part VI: Runtime

T (n, m) =
n2︷ ︸︸ ︷

"size of table"×
n︷ ︸︸ ︷

"cost per entry"

(better accounting: T (n, m) = O(n2 + nm) = O(nm))

3

	EECS 336: Lecture 5: Introduction to Algorithms
	Dynamic Programming (cont) Bellman-Ford
	Recall: Integer Knapsack
	Framework
	Recall Approach: Find a First Decision
	Alternative Approach: Isolate Previous Decisions
	Part I: subproblem in english
	Part II: recurrence

	Shortest Paths with Negative Weights
	Try Dynamic Programming
	Imposing measure of progress
	Part I: identify subproblem in english
	Part II: write recurrence
	Part III: solve original problem
	Part IV: base case
	Part V: iterative DP
	Part VI: Runtime

