EECS 336: Lecture 5: Introduction to Framework Algorithms

Dynamic Programming (cont) Bellman-Ford
Reading: 6.4-6.8
"guide to dynamic programming" (Canvas)

Last Time:

- Dynamic Programming (a framework)
- Integer Knapsack

Today:

- Integer Knapsack (cont)
- Shortest Paths.

Recall: Integer Knapsack

intput:

- n objects $N=\{1, \ldots, n\}$
- $s_{i}=$ size of object i (integer)
- $v_{i}=$ value of object i
- $C=$ capacity of knapsack (integer)

output:

- subset $S \subseteq N$ of objects that
(a) fit in knapsack together
i.e., $\sum_{i \in S} s_{i} \leq C$
(b) maximize total value
i.e., $\sum_{i \in S} v_{i}$
I. identify subproblem in english

OPT $(i, D)=$ "optimal value of knapsack with capacity D with objects $\{i, \ldots, n\}$ "
II. specify subproblem recurrence

$$
\begin{aligned}
& \mathrm{OPT}(i, D)=\max (\underbrace{\operatorname{OPT}(i+1, D),}_{\text {if } s_{i} \leq D} \underbrace{v_{i}+\operatorname{OPT}\left(i+1, D-s_{i}\right)})
\end{aligned}
$$

III. solve the original problem (from subproblems)

Optimal Integer Knapsack $=\operatorname{OPT}(1, C)$
IV. identify base case
for all $D: \operatorname{OPT}(n+1, D)=0$
V. write iterative DP.
(see last thurs)
VI. runtime analysis.
$O(n C)$
VII. (for homework) implement iterative DP.
(any language most students can read. e.g., Python)

Recall Approach: Find a First Decision

"e.g., either object 1 is in the knapsack or not"

Alternative Approach: Isolate Previous Decisions

Suppose:

- already processed jobs $\{1, \ldots, i\}$, and
- used capacity D.

Note: previous decisions succinctly summarized by i and D

Part I: subproblem in english

$\operatorname{OPT}(i, D)=$ "value from remaining knapsack if

- alread processed jobs $\{1, \ldots, i\}$
- used capacity $D .{ }^{\prime \prime}$

Part II: recurrence

$$
\begin{aligned}
& \mathrm{OPT}(i, D)=\max (\mathrm{OPT}(i+1, D),_{\underbrace{v_{i}+\operatorname{OPT}\left(i+1, D+s_{i}\right)}_{\text {if } D+s_{i} \leq C})})
\end{aligned}
$$

Shortest Paths with Negative Weights

"e.g., currency exchange: nodes are currencies, path weights are exchange rates, minimize produce of path weights."

Note: to minimize product of path weights, can minimize sum of logs of path weights.

Example: $r_{1} r_{2}=2^{\log _{2} r_{1}} 2^{\log _{2} r_{2}}=2^{\log _{2} r_{1}+\log _{2} r_{2}}$
Note: if $r \leq 1$ then $\log r$ is negative.

Example:

Try Dynamic Programming

OPT (v)

$$
=\text { shortest path from } v \text { to } t
$$

$$
=\min _{u \in N(v)}[\underbrace{c(v, u)}_{\text {weight }}+\mathrm{OPT}(u)] .
$$

Example:

Subproblems have cyclic dependencies!

Imposing measure of progress

"parameterize subproblems to keep track of progress"
Lemma: if G has no negative cycles, then minimum cost path is simple (i.e., does not repeat nodes); therefore, it has at most $n-1$ edges.

Proof: (contradiction)

- let P be the min-cost path with fewest number of edges.
- suppose (for the contraction) that P is not simple.
$\Rightarrow P$ repeats as vertex v.
- no negative cycle \Rightarrow path from v to v nonnegative.
\Rightarrow can "splice out" cycle and not increase length.
\Rightarrow new path has fewer edges than p .
Idea: if simple path goes $s \rightsquigarrow v \rightarrow u \rightsquigarrow t$ then u - t path has one fewer edge than v - t path.

Part I: identify subproblem in english

$\operatorname{OPT}(v, k)$
$=$ "length of shortest path from v to t with at most k edges."

Part II: write recurrence

$\operatorname{OPT}(v, k)$

$$
=\min _{u \in N(v)}[c(v, u)+\operatorname{OPT}(u, k-1)]
$$

Correctness: lemma + induction.

Part IV: base case

- for all $k: \operatorname{OPT}(t, k)=0$
- for all $v \neq t: \operatorname{OPT}(v, 0)=\infty$.

Part V: iterative DP

Algorithm: Bellman-Ford

1. base case:
for all $k: \operatorname{OPT}[t, k]=0$
for all $v \neq t: \operatorname{OPT}[v, 0]=\infty$.
2. for $k=1 \ldots n-1$: for all v :
$\operatorname{OPT}[v, k]=\min _{u \in N(v)} \operatorname{OPT}[u, k-1]$.
3. return $\operatorname{OPT}[s, n-1]$.

Example:

	0	1	2	3
s	∞	∞	3	2
a	∞	2	1	1
b	∞	-2	-2	-2
t	0	0	0	0

Part VI: Runtime

(better accounting: $T(n, m)=O\left(n^{2}+n m\right)=O(n m)$)

Part III: solve original problem

- minimum cost path $=\operatorname{OPT}(s, n-1)$.

