
EECS 336: Lecture 3: Introduction to
Algorithms

Dynamic Programming Weighted Interval
Scheduling

Reading: 6.0-6.3

Announcements:

• homework due Wednesday midnight

Last Time:

• philosophy

• computational tractability

• runtime analysis & big-oh

Today:

• Dynamic Programming (a derivation)

• Weighted interval scheduling

Dynamic Programming

“divide problem into small number of subproblems and
memoize solution to avoid redundant computation”

Example: Weighted Interval Scheduling

input:

• n jobs J = {1, ..., n}

• si = start time of job i

• fi = finish time of job i

• vi = value of job i

compatibility constraint: Only one job can run at
once.

output: Schedule S ⊆ J if compatible jobs with
maximum total value.

Find a First Decision

“make progress towards a solution”

Idea: job i is either in OPT(J) or not.

1. let J ′ = jobs compatible with i in J .

2. let V = value of OPT if “i /∈ OPT(J)”

= OPT(J \ {i}).

3. let V ′ = value of OPT if “i ∈ OPT(J).”

= vi + OPT(J ′)

4. return OPT(J) = max(V, V ′).

Note: subproblems: schedule J ′ and J \ {i}.

Recurrence: T (n) = 2T (n− 1) + 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

︸ ︷︷ ︸
n levels

T (n) = O(2n)

Challenge 1: redundant computation

Example:

1 3
| - - - | | - - - |

| - - - - - - |
2

{1,2,3}

{2,3} {3}

{3} ∅ ∅ ∅

∅ ∅

Note: OPT({3}) called twice!

Solution: memoize.

“when computing the value of a subproblem save the
answer to avoid computing it again”

Result: runtime = # of subproblems × cost to com-
bine.

Challenge 2: could have too many subproblems.
(could be exponential!)

Solution: require “succinct description” of subprob-
lems.

Idea: for interval scheduling, process jobs in order of
start time so subproblems suffixes of order.

• sort jobs by increasing start time, s1 ≤ s2 ≤ ... ≤
sn.

• let next[i] denote job with earliest start time after
i finishes. (if none, set next[i] = n + 1.)

• subproblems when processing job 1:

– J ′ = {next[i],next[i] + 1, ..., n}

– J \ {i} = {2, 3, ..., n}

• suffix {j, ..., n} is succinctly described by “j”.

(only n subproblems)

Recursive Memoized Algorithm

Algorithm: Weighted Interval Scheduling:

1. sort jobs by increasing start time.

2. initialize array next[i].

3. initialize OPT[i] = ∅ for all i.

4. initialize OPT[n + 1] = 0.

5. compute OPT(1).

Subroutine: OPT(i)

1. if OPT[i] 6= ∅, return OPT[i].

2. OPT[i]← max(vi + OPT[next[i]], OPT[i + 1]).

3. return OPT[i].

Correctness

“OPT(i)” is correct (by induction on i)

2

Runtime Analysis

• n subproblems

• constant time to combine

• initialization: sorting & precomputing ‘next’ ar-
ray

Runtime: O(n)+ initialization = O(n log n)

Iterative DPs

“fill in memoization table from bottom to top”

Algorithm: iterative weighted interval scheduling

1. OPT[n + 1] = 0

2. for i = n down to 1:

OPT[i] = max(vi + OPT[next[i]],OPT[i + 1]).

Finding Optimal Schedule

“traverse memoization table to find schedule”

Algorithm: schedule

1. i = 1

2. while i < n:

if OPT[i + 1] < vi + OPT[next[i]]:

(a) schedule i.
(b) i← next(i).

else: i← i + 1.

Key Ideas of Dynamic Programming

Subproblems must be:

1. succinct (only a polynomial number of them)

2. efficiently combinable.

3. depend on “smaller” subproblems (avoid infinite
loops), e.g.,

• process elements “once and for all”

• “measure of progress/size.”

Seven Part Approach

I. identify subproblem in English

OPT(i) = “optimal schedule of {i, ..., n}
(sorted by starting time)”

II. specify subproblem recurrence (argue correct-
ness)

OPT(i) = max(OPT(i + 1), vi +
OPT(next[i]))

III. solve the original problem from subproblems

Optimal Interval Schedule = OPT(1)

IV. identify base case

OPT(n + 1) = 0

V. write iterative DP.

VI. runtime analysis.

O(n) + initialization = O(n log n)

VII. implement in your favorite language (Python!)

3

	EECS 336: Lecture 3: Introduction to Algorithms
	Dynamic Programming Weighted Interval Scheduling

	Dynamic Programming
	Example: Weighted Interval Scheduling
	Find a First Decision
	Recursive Memoized Algorithm
	Correctness
	Runtime Analysis
	Iterative DPs
	Finding Optimal Schedule
	Key Ideas of Dynamic Programming
	Seven Part Approach

