EECS 336: Lecture 3: Introduction to Dynamic Programming Algorithms

Dynamic Programming Weighted Interval Scheduling
 "divide problem into small number of subproblems and memoize solution to avoid redundant computation"

Reading: 6.0-6.3
Announcements:

- homework due Wednesday midnight

Last Time:

- philosophy
- computational tractability
- runtime analysis \& big-oh

Today:

- Dynamic Programming (a derivation)
- Weighted interval scheduling

Example: Weighted Interval Scheduling

input:

- n jobs $J=\{1, \ldots, n\}$
- $s_{i}=$ start time of job i
- $f_{i}=$ finish time of job i
- $v_{i}=$ value of job i
compatibility constraint: Only one job can run at once.
output: Schedule $S \subseteq J$ if compatible jobs with maximum total value.

Find a First Decision

"make progress towards a solution"
Idea: job i is either in $\operatorname{OPT}(J)$ or not.

1. let $J^{\prime}=$ jobs compatible with i in J.
2. let $V=$ value of OPT if " $i \notin \mathrm{OPT}(J)$ "

$$
=\mathrm{OPT}(J \backslash\{i\})
$$

3. let $V^{\prime}=$ value of OPT if " $i \in \operatorname{OPT}(J)$."

$$
=v_{i}+\mathrm{OPT}\left(J^{\prime}\right)
$$

4. return $\operatorname{OPT}(J)=\max \left(V, V^{\prime}\right)$.

Note: subproblems: schedule J^{\prime} and $J \backslash\{i\}$.
Recurrence: $T(n)=2 T(n-1)+1$

$T(n)=O\left(2^{n}\right)$
Challenge 1: redundant computation

Example:

Note: $\operatorname{OPT}(\{3\})$ called twice!
Solution: memoize.
"when computing the value of a subproblem save the answer to avoid computing it again"

Result: runtime $=\#$ of subproblems \times cost to combine.

Challenge 2: could have too many subproblems. (could be exponential!)

Solution: require "succinct description" of subproblems.

Idea: for interval scheduling, process jobs in order of start time so subproblems suffixes of order.

- sort jobs by increasing start time, $s_{1} \leq s_{2} \leq \ldots \leq$ s_{n}.
- let next $[i]$ denote job with earliest start time after i finishes. (if none, set next $[i]=n+1$.)
- subproblems when processing job 1 :

$$
\begin{aligned}
& -J^{\prime}=\{\operatorname{next}[i], \operatorname{next}[i]+1, \ldots, n\} \\
& -J \backslash\{i\}=\{2,3, \ldots, n\}
\end{aligned}
$$

- suffix $\{j, \ldots, n\}$ is succinctly described by " j ". (only n subproblems)

Recursive Memoized Algorithm

Algorithm: Weighted Interval Scheduling:

1. sort jobs by increasing start time.
2. initialize array next $[i]$.
3. initialize $\operatorname{OPT}[i]=\varnothing$ for all i.
4. initialize $\operatorname{OPT}[n+1]=0$.
5. compute $\operatorname{OPT}(1)$.

Subroutine: OPT(i)

1. if $\operatorname{OPT}[i] \neq \varnothing$, return $\operatorname{OPT}[i]$.
2. $\operatorname{OPT}[i] \leftarrow \max \left(v_{i}+\mathrm{OPT}[\operatorname{next}[i]], \operatorname{OPT}[i+1]\right)$.
3. return $\mathrm{OPT}[i]$.

Correctness

"OPT (i) " is correct (by induction on i)

Runtime Analysis

- n subproblems
- constant time to combine
- initialization: sorting \& precomputing 'next' array
Runtime: $O(n)+$ initialization $=O(n \log n)$

Iterative DPs

"fill in memoization table from bottom to top"
Algorithm: iterative weighted interval scheduling

1. $\operatorname{OPT}[n+1]=0$
2. for $i=n$ down to 1 :

$$
\operatorname{OPT}[i]=\max \left(v_{i}+\operatorname{OPT}[\operatorname{next}[i]], \operatorname{OPT}[i+1]\right)
$$

Finding Optimal Schedule

"traverse memoization table to find schedule"
Algorithm: schedule

1. $i=1$
2. while $i<n$:
if $\operatorname{OPT}[i+1]<v_{i}+\operatorname{OPT}[\operatorname{next}[i]]$:
(a) schedule i.
(b) $i \leftarrow \operatorname{next}(i)$.
else: $i \leftarrow i+1$.

Key Ideas of Dynamic Programming

Subproblems must be:

1. succinct (only a polynomial number of them)
2. efficiently combinable.
3. depend on "smaller" subproblems (avoid infinite loops), e.g.,

- process elements "once and for all"
- "measure of progress/size."

Seven Part Approach

I. identify subproblem in English
$\operatorname{OPT}(i)=$ "optimal schedule of $\{i, \ldots, n\}$ (sorted by starting time)"
II. specify subproblem recurrence (argue correctness)
$\mathrm{OPT}(i)=\max \left(\mathrm{OPT}(i+1), v_{i}+\right.$ OPT(next[i]))
III. solve the original problem from subproblems

Optimal Interval Schedule $=\mathrm{OPT}(1)$
IV. identify base case
$\operatorname{OPT}(n+1)=0$
V. write iterative DP.
VI. runtime analysis.

$$
O(n)+\text { initialization }=O(n \log n)
$$

VII. implement in your favorite language (Python!)

