EECS 336: Lecture 2: Introduction to Today:

Algorithms

Philosophy, Tractibility, Big-Oh
Reading: Chapters $2 \& 3$.

Announcements:

- Lecture notes on Canvas (before class.)
- Practice on "solved problems" in text.
- Prerequisites:
- EECS 212: Discrete math.
- EECS 214: Data Structures.
- Homework:
- work with partner
- must communicate solution well.
- automatically drop 3 lowest hw grades \& 3 lowest peer reviews.
- peer review
* can you tell if algorithm and proof are correct?
* communicate algorithms.
- solutions Wednesday, peer reviews Friday, grades Monday.
- Peer review logisitics
- reviews assigned Thursday morning, due Friday evening.
- 3 peer review per problem.
- 1 peer review is graded (random)
- detail rubric provided.
- Exam dates on Canvas.

Last Time:

- motivation
- fibonacci numbers
- philosophy
- computational tractability
- runtime analysis \& big-oh

Algorithm Design and Analysis

gives rigorous mathematical framework for thinking about and solving problems in CS and other fields.

Goals

- quickly compute solutions to problems.
- identify general algorithm design and analysis approaches.
- understand what makes problems tractable or intractable.

Three Steps

1. problem modeling: abstract problem to essential details.
2. algorithm design
3. algorithm analysis

- efficiency
- correctness, and
- (sometimes) "quality."

Computational Tractability

"is a problem solvable by a computer?"
Def: problem is tractable if worst-case run-time to compute so lution is polynominal in size of input.

Def: $T(n)=$ worst case runtime of instances of size n.

- size n measured in bits, or
- number of "components."

Example: Fibonacci Numbers
fib(k) has $\mathrm{n}=\log \mathrm{k}$ bits.

- recursive : $T(n) \approx 2^{2^{n}}$
- dynamic program / iterative alg: $T(n) \approx 2^{n}$
- repeated squaring: $T(n) \approx n$.

Question: why worst case?

- every instance?
- typical instances?
- random instances?

Question: Benefits?

- usually doable.
- often tight for typical or random instances.
- analyses "compose"

Question: why polynomial?
Answer: polynomial means algorithm scales well, i.e., $T(c n) \leq d T(n)$.

Example:

$$
\begin{aligned}
T(n) & =n^{k} \\
T(c n) & =(c n)^{k}=\underbrace{c^{k}}_{\mathrm{d}} n^{k}=d n^{k}
\end{aligned}
$$

Tractable vs. Brute-force

- brute-force: "try all solutions, output best one"
- often runtime of brute-force \geq exponential time.
- tractable algorithms require exploiting structure of problem.

Main goals for algorithm design

1. show problem is tractable: exists algorithm with polynomial runtime.
2. show problem is intractable for all algorithms, runtime is super-polynomial.

Question: Which is easier?
Answer: showing tractable.

Runtime Analysis

"bound $T(n)$ for algorithm"

Big-Oh Notation

Def: $T(n)$ is $O(f(n))$ if
$\exists n_{0}, c>0$ such that $\forall n>n_{0}, T(n)<c f(n)$.
Question: why?
Answer:

- exact analysis is too detailed.
- constants vary from machine to machine.

Example:

$$
\begin{aligned}
T(n) & =a n^{2}+b n+d \\
& =O(n) ? O\left(n^{2}\right) ? O\left(n^{3}\right) ? \\
T(n) & \leq a n^{2}+b n^{2}+d n^{2} \\
& =\underbrace{(a+b+d)}_{c} n^{2} \\
& \leq c n^{2}
\end{aligned}
$$

Fact 1: $f=O(g) \& g=O(h) \Longrightarrow f=O(h)$
Fact 2: $f=O(h) \& g=O(h) \Longrightarrow f+g=O(h)$
Fact 3: $g=O(f) \Longrightarrow g+f=O(f)$
Proof: (of Fact 2)
$f=O(h) \Longrightarrow \exists c, n_{0}$ such that $\forall n>n_{0}, f(n)<$ $\operatorname{ch}(n)$
$g=O(h) \Longrightarrow \exists c^{\prime}, n_{0}^{\prime}$ such that $\forall n>n_{0}^{\prime}, g(n)<$ $c^{\prime} h(n)$
$\Longrightarrow \forall n \geq \max \left(n_{0}, n_{0}^{\prime}\right), f(n)+g(n) \leq\left(c^{\prime}+c\right) h(n)$
$\Longrightarrow f+g=O(n)$
QED

Note:

- be succinct: do not write $O\left(n^{2}+2\right), O(5 n)$, etc.
- be tight: if $\mathrm{T}(\mathrm{n})$ is n^{2} do not say $\mathrm{T}(\mathrm{n})$ is $O\left(n^{3}\right)$.

Logarithms and Big-Oh

Def: $\log _{b} n=l \leftrightarrow b^{l}=n$

- $\log _{10} n=$ number of digits to represent n .
- $\log _{2} n=$ number of bits to represent n .

Fact 4: $\forall b, c \log _{b}=O\left(\log _{c} n\right)$
Fact 5: $\forall b, x \log _{b} n=O\left(n^{x}\right)$.
Proof: (of Fact 4)

$$
\begin{aligned}
\log _{c} n & =l \Longrightarrow n=c^{l} \\
\log _{b} n & =\log _{b}\left(c^{l}\right) \\
& =l \log _{b}(c) \\
& =\log _{c} n \underbrace{\log _{b} c}_{d} \\
& =O\left(\log _{c} n\right)
\end{aligned}
$$

QED

Common Runtimes

- $O(\log n)$ - logarithmic
- $O(n)$ - linear
- $O(n \log n)$
- $O\left(n^{2}\right)$ - quadratic
- $O\left(n^{3}\right)$ - cubic
- $O\left(n^{k}\right)$ - polynomial
- $O\left(2^{n}\right)$ - exponential
- $O(n!)$ - Uh-Oh

Lower Bounds

Def: $T(n)$ is $\Omega(f(n))$ if
$\exists n_{0}, c>0$ such that $\forall n>n_{0}, T(n)>c f(n)$.

Exact Bounds

Def: $T(n)$ is $\Theta(f(n))$ if
$T(n)$ is $O(f(n))$ and $\Omega(f(n))$.

Graphs

"encode pair-wise relationships"
Examples: computer networks, social networks, travel networks, dependencies.
$G=(\underbrace{V}_{\text {vertices }}, \overbrace{E}^{\text {edges }})$
Example:

- $V=\{1,2,3,4\}$
- $E=\{(1,2),(2,3),(3,4),(2,4)\}$

Concepts

- degree
- neighbors
- paths, path length
- distance
- connectivity, connected components
- directed graphs

Graph Traversals

"visit all the vertices in a connected component of graph"

- Breadth First Search (BFS).

Example:

BFS from 1: 1, 2, 3, 4 or $1,3,2,4$.

- Depth First Search (DFS).

Example: DFS from 1: 1, 2, 4, 3 or 1, 3, 4, 2.

