EECS 336: Lecture 2: Introduction to Today:
Algorithms o philosophy

Philosophy, Tractibility, Big-Oh e computational tractability

e runtime analysis & big-oh
Reading: Chapters 2 & 3.

Announcements:
o Lecture notes on Canvas (before class.)
e Practice on “solved problems” in text.
e Prerequisites:
— EECS 212: Discrete math.
— EECS 214: Data Structures.
o Homework:
— work with partner
— must communicate solution well.

— automatically drop 3 lowest hw grades & 3
lowest peer reviews.

— peer review

* can you tell if algorithm and proof are
correct?

* communicate algorithms.

— solutions Wednesday, peer reviews Friday,
grades Monday.

e Peer review logisitics

— reviews assigned Thursday morning, due
Friday evening.

— 3 peer review per problem.
— 1 peer review is graded (random)
— detail rubric provided.
e Exam dates on Canvas.
Last Time:
e motivation

¢ fibonacci numbers

Algorithm Design and Analysis
gives rigorous mathematical framework for thinking
about and solving problems in CS and other fields.
Goals

e quickly compute solutions to problems.

o identify general algorithm design and analysis
approaches.

o understand what makes problems tractable or
intractable.

Three Steps

1. problem modeling: abstract problem to essential
details.

2. algorithm design
3. algorithm analysis
o efficiency
e correctness, and

¢ (sometimes) “quality.”

Computational Tractability

“is a problem solvable by a computer?”

Def: problem is tractable if worst-case run-time to
compute so lution is polynominal in size of input.

Def: T(n) = worst case runtime of instances of size
n.

e size n measured in bits, or
e number of “components.”
Example: Fibonacci Numbers
fib(k) has n = log k bits.
o recursive : T(n) ~ 22"
o dynamic program / iterative alg: T'(n) ~ 2"
« repeated squaring: T'(n) = n.

Question: why worst case?

e every instance?
e typical instances?
e random instances?
Question: Benefits?
o usually doable.
¢ often tight for typical or random instances.
e analyses “compose”
Question: why polynomial?

Answer: polynomial means algorithm scales well,
ie., T(en) < dT(n).

Example:
T(n) =n*
T(cn) =(en)k = & nk = an®
~—~
d

Tractable vs. Brute-force
e brute-force: “try all solutions, output best one”
e often runtime of brute-force > exponential time.

o tractable algorithms require exploiting structure
of problem.

Main goals for algorithm design

1. show problem is tractable: exists algorithm with
polynomial runtime.

2. show problem is intractable for all algorithms,
runtime is super-polynomial.

Question: Which is easier?

Answer: showing tractable.

Runtime Analysis Logarithms and Big-Oh

“bound T'(n) for algorithm” Def: logyn =1+ b =n

Big-Oh Notation o log;on = number of digits to represent n.
Def: T'(n) is O(f(n)) if « log, n = number of bits to represent n.
Ing, ¢ > 0 such that Yn > ng, T(n) < cf(n). Fact 4: Vb, c log, = O(log, n)

Question: why? Fact 5: Vb, z log,n = O(n®).

Answer:

Proof: (of Fact 4)
e exact analysis is too detailed.

e constants vary from machine to machine.

log.n=1 = n=_¢

Example:
logy n = log, (<!)
= llog,(c)
T(n) =an® +bn +d = log.nlog, ¢
——
=0(n)? O(n*)? O(n*)? d
T(n) <an® + bn? + dn? = O(log.n)
=(a+b+d)n?
— QED
§cn2
Common Runtimes
Fact 1: f =0(g9) & g=0(h) = f=0(h)
Fact 2: f=0(h) & g=0(h) = f+g=0(h) ¢ O(logn) - logarithmic
Fact 3: g = O(f) = g+ f=0(f) e O(n) - linear
Proof: (of Fact 2) + O(nlogn)
f = 0(h) = 3dc¢,ng such that Vn > ng, f(n) < e O(n?) - quadratic
chin) e O(n?) - cubic
— / /! !
9 = O(h) = 3d,n{ such that Vn > n(,g(n) < « O(n") - polynomial
c'h(n)
— Vn > max(ng,n}), f(n) + g(n) < (' + c)h(n) e O(2") - exponential
QED
Note: Lower Bounds

e be succinct: do not write O(n? + 2), O(5n), etc. Def: T(n) is Q(f(n)) if

« be tight: if T(n) is n* do not say T(n) is O(n?). Ing, ¢ > 0 such that Vn > ng, T(n) > cf(n).

Exact Bounds Graphs

Def: T'(n) is O(f(n)) if
T(n) is O(f(n)) and Q(f(n)).

“encode pair-wise relationships”

Examples: computer networks, social networks,
travel networks, dependencies.

edges

=

a=(v JE)
~—
vertices

Example:

« V={1,2,3,4}

e B={(1,2),(2.3),(3,4), (2.4)}
Concepts

o degree

e neighbors

e paths, path length

o distance

e connectivity, connected components

o directed graphs

Graph Traversals

“visit all the vertices in a connected component of
graph”
o Breadth First Search (BFS).

Example:

BFS from 1: 1,2, 3,4 0or 1, 3, 2, 4.
o Depth First Search (DFS).
Example: DFS from 1: 1,2, 4,3 or 1, 3, 4, 2.

	EECS 336: Lecture 2: Introduction to Algorithms
	Philosophy, Tractibility, Big-Oh

	Algorithm Design and Analysis
	Computational Tractability
	Runtime Analysis
	Logarithms and Big-Oh
	Common Runtimes
	Lower Bounds
	Exact Bounds

	Graphs
	Graph Traversals

