## EECS 336: Lecture 1: Introduction to Algorithms

## Algorithms for Fibonacci Numbers: memoization, repeated-squaring

Reading: Chapter 2 \& 3.
Announcements:

- notes on Canvas
- discussion of syllabus on Thursday.


## Algorithms

- algorithms are everywhere, examples:
- digital computers,
- parliamentary procedure,
- scientific method,
- biological processes.
- algorithm design and analysis governs everything.
- good algorithms are closest things to magic.
cf. Arthur Benjamin does mathemagic
- course philosophy: no particular algorithm is important.
- course goals: how to design, analyze, and think about algorithms.
- we will not cover anything you could figure out on your own.


## Algorithms for Fibonacci Numbers

 $" 0,1,1,2,3,5,8,13,21, \ldots "$Question: recursive alg?
Algorithm: Recursive Fibonacci
fib(k):

1. if $k \leq 1$ return $k$
2. (else) return $\mathrm{fib}(k-1)+\mathrm{fib}(k-2)$

## Example:


$\mathrm{fib}(1) \mathrm{fib}(0)$

## Analysis

"what is runtime?"

Let $T(k)=$ number of calls to fib

$$
T(0)=T(1)=1
$$

$$
T(k)=T(k-1)+T(k-2)
$$

$$
\geq 2 T(k-2)
$$

$$
\geq 2 \times 2 T(k-4)
$$

$$
\geq \underbrace{2 \times 2 \times \ldots \times 2}_{(\mathrm{k} / 2 \text { times })} \times 1
$$

$$
=2^{\frac{k}{2}}
$$

Conclusion: at least "exponential time"!

## Remembering Redundant Computation Iterative Algorithm

 (memoization)Algorithm: Iterative Memoized Fibonacci
Idea: remember redundant computation (memoize)
Algorithm: Memoized Recursive Fibonacci
fib-helper(k):

1. if memo $[\mathrm{k}] \leq 0$
$\operatorname{memo}[\mathrm{k}]=\operatorname{fib}-\operatorname{helper}(\mathrm{k}-1)+$ fib-helper $(\mathrm{k}-2)$
2. return memo[k]
fib(k):
3. memo $=$ new $\operatorname{int}[\mathrm{k}]$;
4. $\operatorname{memo}[0]=0 ; \operatorname{memo}[1]=1$;
5. for $\mathrm{i}=2 \ldots \mathrm{k}$
$\operatorname{memo}[\mathrm{i}]=\operatorname{memo}[\mathrm{i}-1]+\operatorname{memo}[\mathrm{i}-2]$
6. return memo $[\mathrm{k}]$
fib(k):
7. memo $=$ new $\operatorname{int}[k]$

Question: Can we compute fib with less memory (space)?
2. $\operatorname{memo}[0]=0 ; \operatorname{memo}[1]=1 ; \operatorname{memo}[2, \ldots, \mathrm{k}]=-1$. Algorithm: Iterative Fibonacci
3. return fib-helper(k)

## Example:



## Analysis:

- cost to fill in each entry: 1 additions.
- number of entries: k
fib(k):

1. $\operatorname{last}[0]=0 ; \operatorname{last}[1]=1$;
2. for $\mathrm{i}=2 \ldots \mathrm{k}$

- $\operatorname{tmp}=$ last[1]
- last[1] $=$ last[0] $+\operatorname{last[1]}$
- $\operatorname{last}[0]=\operatorname{tmp}$

3. return last[1]

Question: fast alg?

- total cost: $\mathrm{T}(\mathrm{k})=\mathrm{k}$ additions.

Conclusion: "linear time."
Note: memoizing redundant computation is an essential part of "dynamic programming."

## Fast Fibonacci

Note: algorithm operates on last like a matrix multiply fib(k):

1. $\mathrm{z}=[0,1] ; A=\left[\begin{array}{cc}0 & 1 \\ 1 & 1\end{array}\right]$
2. multiply $z \times \underbrace{A \times A \times \ldots \times A}_{k-1 \text { times }}$
3. return $\mathrm{z}[1]$

Note: just need to compute $z \times A^{k-1}$

## Exponentiation

"compute $A^{k}$ "
Note: If $k=k_{1}+k_{2}$ then $A^{k}=A^{k_{1}} A^{k_{2}}$

- compute $A^{k_{1}}$ and $A^{k_{2}}$ and multiply.
- if $k_{1}=k_{2}$ then redundant computation

Idea: factor $A^{k}=\left(A^{k / 2}\right)^{2} \times A^{k \% 2}$
Algorithm: Repeated Squaring

1. if $k=1$ return A
2. $\mathrm{k}^{\prime}=\lfloor k / 2\rfloor$
3. $\mathrm{B}=$ repeated-square $\left(\mathrm{A}, \mathrm{k}^{\prime}\right)$
4. if k odd
return $B \times B \times A$
5. else
return $B \times B$

## Analysis

Let $\mathrm{T}(\mathrm{k})=$ number of multiplies.

$$
\begin{aligned}
T(1) & =0 \\
T(k) & \geq T(k / 2)+2 \\
& =T(k / 4)+2+2 \\
& =\underbrace{2+2+2 \ldots 2}_{\log k \text { times }} \\
& =2 \log (k)
\end{aligned}
$$

Note: finding subproblems is important part of "divide and conquer"
Algorithm: Fibonacci numbers via repeated squaring
fib(k):

1. $\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
2. $\mathrm{z}=[0,1] \times$ repeated-square $(\mathrm{A}, k-1)$
3. return $\mathrm{z}[1]$

## Analysis

$2 \log k 2 \times 2$ matrix multiplies.

## Conclusions

- runtime analysis
- memoization
- divide and conquer

