
EECS 336: Lecture 1: Introduction to
Algorithms

Algorithms for Fibonacci Numbers: memoiza-
tion, repeated-squaring

Reading: Chapter 2 & 3.

Announcements:

• notes on Canvas

• discussion of syllabus on Thursday.

Algorithms

• algorithms are everywhere, examples:

– digital computers,

– parliamentary procedure,

– scientific method,

– biological processes.

• algorithm design and analysis governs everything.

• good algorithms are closest things to magic.

cf. Arthur Benjamin does mathemagic

• course philosophy: no particular algorithm is
important.

• course goals: how to design, analyze, and think
about algorithms.

• we will not cover anything you could figure out
on your own.

Algorithms for Fibonacci Numbers

“0, 1, 1, 2, 3, 5, 8, 13, 21, . . . ”

Question: recursive alg?

Algorithm: Recursive Fibonacci

fib(k):

1. if k ≤ 1 return k

2. (else) return fib(k − 1) + fib(k − 2)

Example:

fib(5)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

Analysis

“what is runtime?”

Let T (k) = number of calls to fib
T (0) =T (1) = 1
T (k) =T (k − 1) + T (k − 2)

≥2T (k − 2)
≥2× 2T (k − 4)
≥ 2× 2× ...× 2︸ ︷︷ ︸

(k/2 times)

×1

=2 k
2

Conclusion: at least “exponential time”!

1



Remembering Redundant Computation
(memoization)

Idea: remember redundant computation (memoize)

Algorithm: Memoized Recursive Fibonacci

fib-helper(k):

1. if memo[k] ≤ 0

memo[k] = fib-helper(k - 1) + fib-helper(k - 2)

2. return memo[k]

fib(k):

1. memo = new int[k]

2. memo[0] = 0; memo[1] = 1; memo[2,. . . ,k] = -1.

3. return fib-helper(k)

Example:

0 1 1 2 3 5

Analysis:

• cost to fill in each entry: 1 additions.

• number of entries: k

• total cost: T(k) = k additions.

Conclusion: “linear time.”

Note: memoizing redundant computation is an es-
sential part of “dynamic programming.”

Iterative Algorithm

Algorithm: Iterative Memoized Fibonacci

fib(k):

1. memo = new int[k];

2. memo[0] = 0; memo[1] = 1;

3. for i = 2. . . k

memo[i] = memo[i-1] + memo[i-2]

4. return memo[k]

Question: Can we compute fib with less memory
(space)?

Algorithm: Iterative Fibonacci

fib(k):

1. last[0] = 0; last[1] = 1;

2. for i = 2. . . k

• tmp = last[1]

• last[1] = last[0] + last[1]

• last[0] = tmp

3. return last[1]

Question: fast alg?

2



Fast Fibonacci

Note: algorithm operates on last like a matrix multi-
ply

fib(k):

1. z = [0,1]; A =
[
0 1
1 1

]
2. multiply z ×A×A× ...×A︸ ︷︷ ︸

k − 1 times

3. return z[1]

Note: just need to compute z ×Ak−1

Exponentiation

“compute Ak”

Note: If k = k1 + k2 then Ak = Ak1Ak2

• compute Ak1 and Ak2 and multiply.

• if k1 = k2 then redundant computation

Idea: factor Ak = (Ak/2)2 ×Ak%2

Algorithm: Repeated Squaring

1. if k = 1 return A

2. k’ = bk/2c

3. B = repeated-square(A, k’)

4. if k odd

return B ×B ×A

5. else

return B ×B

Analysis

Let T(k) = number of multiplies.

T (1) = 0
T (k) ≥ T (k/2) + 2

= T (k/4) + 2 + 2
= 2 + 2 + 2...2︸ ︷︷ ︸

log k times

= 2 log(k)

Note: finding subproblems is important part of “di-
vide and conquer”

Algorithm: Fibonacci numbers via repeated squar-
ing

fib(k):

1. A =
[
0 1
1 1

]
2. z = [0,1] × repeated-square(A, k − 1)

3. return z[1]

Analysis

2 log k 2× 2 matrix multiplies.

Conclusions

• runtime analysis

• memoization

• divide and conquer

3


	EECS 336: Lecture 1: Introduction to Algorithms
	Algorithms for Fibonacci Numbers: memoization, repeated-squaring

	Algorithms
	Algorithms for Fibonacci Numbers
	Remembering Redundant Computation (memoization)
	Iterative Algorithm

	Fast Fibonacci
	Exponentiation
	Conclusions


