Reading: 4.5-4.6, MIT notes on matroids.

Last Time:

- greedy-by-value
- MST

Today:

- greedy by value
- MST correctness.
- matroids

Algorithm: Greedy-by-Value

- 1. $S = \emptyset$
- 2. Sort elts by decreasing value.
- 3. For each elt e (in sorted order):

if $\{e\} \cup S$ is feasible

add e to ${\cal S}$

else discard e.

Example 2: minimum spanning tree

input:

- graph G = (V, E)
- costs c(e) on edges $e \in E$

output: <u>spanning tree</u> with minimum total cost.

Structural Observations about Forests

Def: G' = (V, E') is a **subgraph** of G = (V, E) if $E' \subseteq E$.

Def: An acyclic undirected graph is a **forest** Fact 2:

Fact 1: an MST on n vertices has n-1 edges.

Lemma 1: If G = (V, F) is a forest with m edges then it has n - m connected components.

Proof: Induction (on number of edges)

base case: 0 edges, n CCs.

IH: assume true for m.

IS: show true for m+1

- IH $\Rightarrow n m$ CCs
- add new edge.
- must not create cycle
- \Rightarrow connects two connected components.
- \Rightarrow these 2 CCs become 1 CC.

 $\Rightarrow n - m - 1$ CCs.

QED

Lemma 2: (Augmentation Lemma) If $I, J \subset E$ are forests and |I| < |J| then exists $e \in J \setminus I$ such that $I \cup \{e\}$ is a forest.

Proof:

Lemma 1

$$\Rightarrow \ \# \text{ CCs of } (V, I) > \# \text{ CCs of } (V, J) \ge \# \\ \text{ CCs of } (V, I \cup J)$$

 \Rightarrow add elements $e \in J$ to I until # CCs change.

[PICTURE]

 \Rightarrow $(V, I \cup \{e\})$ is acyclic.

Fact 2: subgraphs of acyclic graphs are acyclic

Correctness

"output is tree and has minimum cost"

Goal: understand why greedy-by-value works.

Lemma 1: Greedy outputs a forest.

Proof: Induction.

Lemma 2: if G is connected, Greedy outputs a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for MSTs

Approach: "greedy stays ahead"

Proof: (by contradiction of first mistake)

- Greedy and OPT have n-1 edges (Fact 1)
- Let I = {i₁,..., i_{n-1}} be elt's of Greedy.
 (in order)
- Let J = {j₁,..., j_{n-1}} be elt's of OPT.
 (in order)
- Assume for contradiction: c(I) > c(J)
- Let r be first index with $c(j_r) < c(i_r)$
- Let $I_{r-1} = \{i_1, \dots, i_{r-1}\}$
- Let $J_r = \{j_1, \dots, j_r\}$
- $|I_{r-1}| < |J_r|$ & Augmentation Lemma
 - \Rightarrow exists $j \in J_r \setminus I_{r-1}$

such that $I_{r-1} \cup \{j\}$ is acyclic.

- Suppose j considered after $i_k \ (k \le r-1)$
- $I_k \subseteq I_{r-1}$ $\Rightarrow I_k \cup \{j\} \subseteq I_{r-1} \cup \{j\}$
- $I_{r-1} \cup \{j\}$ acyclic & Fact 2
 - \Rightarrow all subsets are acyclic
 - $\Rightarrow I_k \cup \{j\}$ acyclic
 - \Rightarrow *j* should have been added.

 $\rightarrow \leftarrow$

Matroids

Def: A set system $M = (E, \mathcal{I})$ where

- E is ground set.
- *I* ⊆ 2^E is set of compatible subsets of *E*.

Question: When does greedy-by-value algorithm work?

Question: What properties of MSTs were necessary for greedy-by-value to work?

Answer:

- MSTs are same size (Fact 1)
- augmentation property (Lemma 2)
- downward closure (Fact 2)

Note: augmentation property implies Fact 1.

Def: A matroid is a set system $M = (E, \mathcal{I})$ satisfying:

- M1 "subset property" if $I \in \mathcal{I}$, all subsets of I are in \mathcal{I} .
- M2 "augmentation property" if $I, J \in \mathcal{I}$ and |I| < |J|, then exists $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$.

(compatible sets also called **independent** sets).

Corollary: acyclic subgraphs are a matroid.

Theorem: greedy algorithm is optimal iff feasible outputs are a **matroid**.

Proof:

- (\Rightarrow) same as for Theorem 1.
- (\Leftarrow) homework.

Conclusion: to see if greedy-by-value works, check matroid properties.