
A Guide to Reductions

Jason D. Hartline

First version: February 22, 2017;
This version: April 30, 2017.

A reduction is an algorithm for solving one problem using an algorithm for
another problem. These notes describe how to construct reductions and prove
them correct.

A reduction is an algorithm for problem Y that makes use of a black box (the
existence of an algorithm) for problem X. Reductions can be used positively: if
algorithms exist for X, then a reduction from Y to X shows that algorithms exist
for Y . This approach solves a new problem Y by “reduction to X.” Reductions
can be used negatively: if problem Y is believed to be hard, then a reduction
from Y to X shows that problem X is at least as hard as Y . This approach
shows that a new problem X is hard by “reduction from Y .” The former is a
proof of tractability, the latter is a proof of intractability.

While, in general, an algorithm that gives a reduction from Y to X can
make many calls to the black box that solves X, many reductions have a much
simpler and more direct form. We will call these one-call reductions.1 A one-call
reduction is a polynomial time algorithm that constructs an instance xy of X
from an instance y of Y so that their optimal values are equal, i.e., OPT(xy) =
OPT(y). The main challenge of obtaining such a construction is figuring out
how to use the constraints of problem Y to simulate the constraints of problem
X so that the solutions have the same value.

To prove a reduction is correct, it must be shown that for the constructed
xy from y that OPT(xy) = OPT(y). Such a proof, intuitively, must show that
the optimal value of y is high if and only if the optimal value of x is high.
Usually such a proof will be proved in two parts. The first part will show that
OPT(y) ≥ OPT(xy) and the second part will show that OPT(xy) ≥ OPT(y).
A straightforward way to prove that OPT(y) ≥ OPT(xy) is to construct, from
the solution to OPT(xy), a solution to y that has value at least OPT(xy), and
vice versa for OPT(xy) ≥ OPT(y).

From the above discussion we can view a reduction and its proof of correct-
ness as giving three algorithms:

1One-call reductions are also called Karp reductions (after Richard Karp, one of the pio-
neers of the theory of NP-completeness) and strong reductions. The more general reduction
where the algorithm for Y may make many calls to the algorithm that solves X are known as
Turing reductions after Alan Turing, one of the pioneers of the theory of computation.

1

• The forward instance construction is an algorithm that takes an instance
y of problem Y and produces an instance xy of problem X such that the
optimal solutions of both instances to have the same objective value. This
construction must have polynomial runtime.

• The backward solution construction is an algorithm takes an optimal so-
lution OPT(xy) for instance xy of problem X and produces a solution for
instance y of problem Y with value at least OPT(xy). This construction
must have polynomial runtime if the solution to the original problem Y is
desired.

• The forward solution construction is an algorithm that takes an optimal
solution OPT(y) for instance y of problem Y and produces a solution for
instance xy of problem X with value at least OPT(y). The runtime of
this construction is not important.

The following theorem formally proves that the existence of the backward
and forward solution construction are sufficient to imply the correctness of the
reduction given by forward instance construction.

Theorem 1. The reduction from problem Y to problem X given by a forward
instance construction (and then running a black box for X on the instance pro-
duced) is correct if there there exists reverse and forward solution constructions
that are correct.

Proof. By the correctness of the forward instance construction, the value of the
solution to xy that is constructed from a solution to y is at least OPT(y). Thus,
OPT(xy) ≥ OPT(y). By the correctness of the backward solution construction,
the value of the solution to y that is constructed from a solution to xy is at
least OPT(xy). Thus, OPT(y) ≥ OPT(xy). Combining these observations,
OPT(xy) = OPT(y).

Notice that the discussion above has assumed that just the value of the
optimal solution to instance y of problem Y is to be computed. If the black
box for problem X computes its optimal solution (and not only the solution’s
value), then the optimal solution to y can be computed as well. Simply run the
backwards solution construction on the optimal solution computed by the black
box for X. Its result is the optimal solution to y.

Notice that every instance y of problem Y has a corresponding instance xy

of problem X per the construction. The opposite is not generally true. There
will generally be instances x of X that do not have corresponding instances of
problem Y . Consequently, while the forward solution construction must be able
to be applied to any solution to instance y of Y , the backward certificate con-
struction does not need to have any prespecified behavior on solutions to general
instances x of X that are not generated by the forward instance construction
on an instance y of Y .

Rubrics are given with the reduction in Section 2.

2

1 Reductions for Optimization Problems

Reductions can be used to show that a family of problems Y is tractable by
reducing to a family of problems X which is known to be tractable. A canonical
example of such a reduction is the reduction from bipartite matching to integral
network flow.

• The network flow problem (V,E, c, s, t) has as input a directed graph
(V,E), edge capacities c : E → R, source vertex s, sink vertex t. A flow
f : E → R is feasible if it satisfies (a) capacity constraints, i.e., 0 ≤ f(e) ≤
c(e), and (b) conservation constraints, i.e., for all v 6= s, t, the flow into v
equals the flow out of v, i.e.,

∑
{u:(u,v)∈E} f(u, v) =

∑
{u:(v,u)∈E} f(v, u).

The value of a flow is the total flow from s to t, denoted |f |, which is
equal to the flow out of s, i.e.,

∑
{u:(s,u)∈E} f(s, u). The desired output is

a feasible flow with the maximum value.

The integral network flow problem additionally assumes that the capacities
on each edge be an integer and requires that the flow on each edge be an
integer.

• The bipartite matching problem (A,B, E) has as input a bipartite graph
(A,B, E). The vertices in a bipartite graph are A ∪ B and the edges are
between vertices u ∈ A and v ∈ B. A matching M ⊂ E is a set of edges
such that each vertex A ∪ B has at most one incident edge. The desired
output is a matching with the maximum cardinality.

We will solve the bipartite matching problem by reduction to network flow.
This reduction is motivated by the following theorem which shows that network
flow is tractable.

Theorem 2. There is an algorithm that computes the maximum flow f in
a network flow instance (V,E, c, s, t) in polynomial time. If capacities c are
integral, then the computed flow f is integral.

Part I: Forward Instance Construction

To show that the bipartite matching problem is tractable, we will reduce to
the integral network flow problem. Specifically, we will exhibit an algorithm to
solve the bipartite matching problem using a black box that solves the integral
network flow problem. A one-call reduction, as outlined above, converts any
instance x = (A,B, E) of the bipartite perfect matching to an instance yx =
(V x, Ex, cx, sx, tx) of network flow problem such that optimal flows in the flow
problem yx can be related to optimal matchings in the matching problem x.

The main task in coming up with such a construction is mapping the con-
straints of one problem onto constraints of the other problem. The constraints
on matchings M ⊂ E in a bipartite matching instance (A,B, E) are:

• Each vertex v in A and B has at most one incident edge in M .

3

The constraints on the flow fx of a flow in the network flow problem (V x, Ex, cx, sx, tx)
are:

• capacity constraints at each vertex v 6= sx, tx, and

• conservation constraints on each edge e ∈ Ex.

The basic idea of this reduction is to create a new vertex sx as the source for
the network flow, connect this vertex to each vertex u in A with an edge with
capacity 1, and put capacity 1 on all outgoing edges from u in A to v in B. The
edge from sx to u ∈ A allows at most one unit of flow via u. Conservation of flow,
then, requires that at most one unit of flow leaves each u in A for B, integrality
of the flow requires that all of this flow leaves v on a single edge. The edges
between A and B that have flow on them can be selected in a matching. To
be formally proved below, the maximum flow will correspond to the maximum
matching.

Forward instance construction: from bipartite matching (A,B, E) to net-
work flow problem (V x, Ex, cx, sx, tx).

1. Set graph (V x, Ex) with

• vertices V x = A ∪B ∪ {sx, tx},
• edges Ex = E ∪ {(sx, u) : u ∈ A} ∪ {(v, tx) : v ∈ B}

2. Set capacities cx(e) = 1 for all e ∈ Ex.

Runtime Analysis: O(n + m) where n = |A ∪B| and m = |E|.

Correctness of this construction is proven via the two algorithms given in
the subsequent parts.

Part II: Backward Solution Construction

The backward solution construction, for the reduction from bipartite matching
to the integral network flow problem, constructs from any flow fx a matching
M with cardinality equal to the value of the flow.

Backward certificate construction: from network flow fx for integral net-
work flow instance yx = (V x, Ex, cx, sx, tx) to matching M for bipartite
matching instance x = (A,B, E).

1. Set M = {(u, v) : u ∈ A, v ∈ B, fx(u, v) = 1}.

Runtime analysis: O(m) where m = |E|.

4

Proof of correctness:

Claim 1. If fx is a flow in (V x, Ex, cx, sx, tx) then M from the backward
solution construction is matching in (A,B, E) with cardinality |M | equal to
the value of the flow fx.

Proof. The flow fx is integral and the capacities on edges out of sx are unit,
thus each v ∈ A receives either 0 or 1 unit of flow from sx. Let A′ be the
set of vertices in A that receive 1 unit of flow. The cardinality of A′ is the
total flow out of sx which, by definition, is the value |fx| of the flow fx.
Conservation and integrality of flow implies that the unit of flow received
at any vertex u ∈ A′ leaves for a single vertex v ∈ B. Since the capacity of
the (v, tx) edge is 1, conservation and capacity of flow implies that the only
flow into this vertex v is from u. By definition, this edge (u, v) is selected
in M . As u sends and v receives only a single unit of flow each has only
one edge in M and, thus, M is a matching. The cardinality of M is equal
to the cardinality of A′ and the value of the flow fx.

Part III: Forward Solution Construction

The forward solution construction, for the reduction from bipartite matching
to integral network flow constructs, from any matching M an integral flow fx

with value |M |.

Forward solution construction: from matching M for bipartite matching in-
stance (A,B, E) to flow fx in integral network flow problem (Gx, cx, sx, tx).

1. For e = (u, v) with u ∈ A and v ∈ B, set fx(e) =

{
1 if e ∈ M ,
0 otherwise.

2. For e = (sx, u) with u ∈ A, set fx(e) to the flow out of u from Step 1.

3. For e = (v, t) with v ∈ B, set fx(e) to the flow in to v from Step 1.

To prove this construction correct, we must show that the construction ap-
plied to any solution to bipartite matching gives a solution to the corresponding
network flow problem with at least the value of the matching.

Proof of correctness:

Claim 2. If M is a matching in x = (A,B, E) then fx from the for-
ward solution construction is a flow with value at least |M | in yx =
(V x, Ex, cx, sx, tx).

5

Proof. We begin by arguing that fx is a feasible flow, i.e., it satisfies ca-
pacity and conservation of flow:

1. The capacity constraints on edges (u, v) for u ∈ A and v ∈ B are
satisfied by the flow from Step 1.

2. Since M is a matching, each vertex u ∈ A has outgoing flow at most
1. Thus, from Step 2, the incoming flow to u from from sx on edge
(sx, u) is at most 1 and satisfies the capacity constraint of edge (sx, u).

3. Analogously the capacity constraints on edges from v ∈ B to tx are
satisfied.

4. Steps 2 and 3 guarantee conservation of flow at each vertex u ∈ A
and v ∈ B, respectively.

We now argue that the value of fx, i.e., the total flow out of sx, is |M |.
The total flow from sx into vertices in A, by conservation of flow, is equal
to the total flow from vertices in A to vertices in B which, by Step 1, is
equal to |M |.

2 Reductions for Decision Problems

A decision problem is one where the desired answer is either yes or no. For
example, determining whether or not there is a perfect matching in a bipartite
graph is a decision problem. (Recall, a perfect matching is one where every
vertex is matched.) Optimization problems can also be recast as decision prob-
lems. For example, determining whether there is a flow in a network flow graph
with at least a given target value θ is a decision problem. A yes instance is one
where the there is a flow with value at least the target, a no instance is one
where there is no such flow. For many decision problems, yes instances have
corresponding solutions that certify that they are yes instances. For example, a
perfect matching M in a bipartite graph certifies that the graph is a yes instance
for the perfect matching problem; a flow with value greater than target θ cer-
tifies that the flow graph admits such a flow. Notice that there is not typically
such a solution that certifies a no instance.

• The network flow decision problem (V,E, c, s, t, k) is the network flow prob-
lem with an additional parameter θ; it asks whether there exists a flow
with value at least θ.

• The bipartite perfect matching problem (A,B, E) asks whether there exists
a matching in bipartite graph (A,B, E) in which all vertices are matched.

The exposition of the previous section referred to the value of a solution.
For example, in bipartite matching the value of a solution (i.e., a matching) is

6

the cardinality of the matching, in network flow the value of a solution (i.e., a
flow) is the value of the flow. For decision problems the value of a solution is
1 if it satisfies the criteria of yes instances and 0 if it does not. For decision
problems the forward instance construction must satisfy the property that y is
a yes instance of Y if and only if the constructed instance xy is a yes instance
of X.

The “solution” to a yes instance of a decision problem can be viewed as a
certificate that proves that it is a yes instance. For example, if you want to
prove that a bipartite graph has a perfect matching, an straightforward way to
do that is to exhibit the matching; if you want to prove that a flow graph admits
a flow with value at least target θ, simply give the flow. On the other hand, for
no instances there is no solution to give. Thus, there is a natural asymmetry
between yes and no instances of decision problems. When considering decision
problems, we will refer to any object by which we can easily verify that an
instance is a yes instance as a certificate. When we are considering decision
problems we will refer more generally to the “solution constructions” discussed
previously as certificate constructions.

For forward and backward certificate constructions, recall that we are looking
for a transformation of the optimal solution of an instance of one problem to
a solution to an instance of the other problem that has at least the value of
the optimal solution to the original problem instance. If the original problem
instance is a no instance then no constraint is imposed by this requirement.
Thus, for decision problems, it is sufficient to check that certificates to yes
instances of one problem are transformed to certificates that prove that the
corresponding instance of the other problem is also a yes instance.

If the goal of the problem Y is simply to determine whether it is a yes or
no instance (and the solution or certificate that proves that the instance is a
yes instance is not needed) then only the forward instance construction need
be polynomial time. Moreover, neither the forward nor backward certificate
constructions need be polynomial time algorithms.

Part I: Forward Instance Construction

To show that the the bipartite perfect matching problem is tractable, we will
reduce to the integral network flow decision problem. Specifically, we will
exhibit an algorithm to solve the bipartite matching problem using a black
box that solves the integral network flow problem. A one-call reduction, as
outlined above, converts any instance x = (A,B, E) of the bipartite perfect
matching problem to an instance yx = (V x, Ex, cx, sx, tx, θx) of integral net-
work flow decision problem such that (A,B, E) is a yes instance if and only if
(V x, Ex, cx, sx, tx, θx) is a yes instance.

As in the reduction from the bipartite matching (optimization) problem to
the integral flow (optimization) problem, the main task in coming up with such
a construction is mapping the constraints of yes instances of one problem onto
constraints of yes instances of the other problem. Relative to that reduction, we
have the added constraint that the matching should be perfect (i.e., all vertices

7

are matched), and the added constraint that the flow is at least the target value.
We will employ the same reduction and additionally transform the constraint
that the matching is perfect to the constraint that the flow has value at least
|A| = |B|.

Forward instance construction: from bipartite perfect matching x =
(A,B, E) to network flow decision problem yx = (V x, Ex, cx, sx, tx, θx).

1. Set target flow value to θx = |A| = |B|

2. Set graph (V x, Ex) with

• vertices V x = A ∪B ∪ {sx, tx},
• edges Ex = E ∪ {(sx, u) : u ∈ A} ∪ {(v, tx) : v ∈ B}

3. Set capacities cx(e) = 1 for all e ∈ Ex.

Runtime Analysis: O(n + m) where n = |A| = |B| and m = |E|.

To prove this construction correct, we must show that a bipartite perfect
matching instance is a yes instance if and only if the constructed network flow
decision problem instance is a yes instance. The proof of this if and only if is
given by the subsequent parts.

Rubric I. a. The direction of the reduction is correct. To show Y is tractable,
reduce from Y to tractable problem X. To show X is intractable, reduce from
intractable problem Y to X.

Rubric I. b. The forward instance construction gives an instance xy of problem
X from any instance y of problem Y .

Rubric I. c. The runtime of the forward instance construction is correctly
analyzed.

Part II: Backward Certificate Construction

The backward certificate construction, for the reduction from perfect bipartite
matching to the network flow decision problem, constructs, from any integral
flow fx with value θx, which certifies that the network flow instance is a yes
instance, a perfect matching M which certifies that the bipartite matching in-
stance is a yes instance.

Backward certificate construction: from network flow fx for network flow
instance (V x, Ex, cx, sx, tx, θx) to matching M for bipartite matching in-
stance (A,B, E).

1. Set M = {(u, v) : u ∈ A, v ∈ B, fx(u, v) = 1}.

8

To prove this construction correct, we must show that for any bipartite per-
fect matching instance the construction applied to the solution that certifies a
yes instance of the corresponding network flow decision problem gives a solu-
tion that certifies that the original bipartite perfect matching instance is a yes
instance.

Proof of correctness:

Claim 3. If fx is a flow with value at least θx in (V x, Ex, cx, sx, tx, θx)
then M from the backward certificate construction is a perfect matching in
(A,B, E).

Proof. We begin by arguing that M is a matching, i.e., each vertex u ∈ A
and v ∈ B has at most one incident edge in M .

1. The capacity constraint on edge (sx, u) implies at most one unit of
flow enters u. The conservation constraint at vertex u then implies
that at most one unit of flow leaves u. Vertex u has an incident edge
in M by the reverse instance construction if the edge has one unit of
flow on it. Thus, u has at most one incident edge in M .

2. Analogously v ∈ B has at most one incident edge in M .

We now argue that M is a perfect matching. Since fx has value θx = |A| =
|B|, each edge out of sx has exactly one unit of flow, conservation implies
that each vertex u ∈ A has exactly one unit of flow out, the integrality of
the flow implies that one edge out of u has one unit of flow, and this edge is
included in the matching. Consequently every vertex in u ∈ A is matched,
likewise for v ∈ B, and M is a perfect matching.

Rubric II. a. The backward certificate construction is well defined and gives a
certificate for y from any yes-instance certificate for xy.

Rubric II. b. The proof of correctness of the backward certificate construction
shows how the constraints of instance xy imply the satisfaction of constraints of
instance y.

Rubric II. c. The proof of correctness of the backward certificate construction
is correct.

Part III: Forward Certificate Construction

A perfect matching M in bipartite graph (A,B, E) certifies that a bipartite
matching instance (A,B, E) is a yes instance. A integral flow fx with value
at least θx certifies that the integral network flow decision problem instance
(Gx, cx, sx, tx, θx) is a yes instance. For the reduction from the perfect bipartite

9

matching problem to the network flow decision problem, the forward certificate
construction constructs such a flow fx from such a perfect matching M .

Forward certificate construction: from matching M for bipartite match-
ing instance (A,B, E) to flow fx in network flow decision problem
(Gx, cx, sx, tx, θx).

1. For e = (u, v) with u ∈ A and v ∈ B, set fx(e) =

{
1 if e ∈ M ,
0 otherwise.

2. For e = (sx, u) with u ∈ A, set fx(e) to the flow out of u from Step 1.

3. For e = (v, tx) with v ∈ B, set fx(e) to the flow in to v from Step 1.

To prove this construction correct, we must show that the construction ap-
plied to the solution that certifies a yes instance of bipartite perfect matching
gives a solution that certifies that the corresponding network flow decision prob-
lem is also a yes instance.

Proof of correctness:

Claim 4. If M is a perfect matching in (A,B, E) then fx from the
forward certificate construction is a flow with value at least θx in
(V x, Ex, cx, sx, tx, θx).

Proof. We begin by arguing that fx is a feasible flow, i.e., it satisfies ca-
pacity and conservation of flow:

1. The capacity constraints on edges (u, v) for u ∈ A and v ∈ B are
satisfied by the flow from Step 1.

2. Since M is a matching, each vertex u ∈ A has outgoing flow at most
1. Thus, from Step 2, the incoming flow to u from from sx on edge
(sx, u) is at most 1 and satisfies the capacity constraint of edge (sx, u).

3. Analogously the capacity constraints on edges from v ∈ B to tx are
satisfied.

4. Steps 2 and 3 guarantee conservation of flow at each vertex u ∈ A
and v ∈ B, respectively.

We now argue that the value of fx is at least θx (in fact, that it is exactly
θx). Since M is a perfect matching, |M | = |A| = |B| = θx. The total flow
from sx into vertices in A, by conservation of flow, is equal to the total flow
from vertices in A to vertices in B which is equal to |M | by Step 1. Thus,
the flow from sx, which is the value of the flow, is θx as desired.

10

Rubric III. a. The forward certificate construction is well defined and gives a
certificate for y from any yes-instance certificate for xy.

Rubric III. b. The proof of correctness of the forward certificate construction
shows how the constraints of instance y imply the satisfaction of constraints of
instance xy.

Rubric III. c. The proof of correctness of the forward certificate construction
is correct.

3 Reductions to Show Intractability

NP hardness is the main approach for demonstrating computational intractabil-
ity. If a problem is NP hard then the existence of a polynomial time algorithm
for the problem would imply the existence of polynomial time algorithms that
solve all other NP problems. It is widely believed that these algorithms do
not exist, thus NP hardness implies the wide belief that there does not exist a
polynomial time algorithm for the given problem.

Demonstrating intractability directly, i.e., proving that there do not exist
polynomial time algorithms that solve a given problem, is difficult. Showing such
a non-existence is difficult because it requires quantifying over all algorithms
and the space of algorithms is complex. In contrast showing that a problem
is tractable requires just demonstrating the existence of an algorithm. While
the field of computational complexity has had little success in showing that
polynomial time algorithms do not exist, the field of algorithms has had great
success identifying polynomial time algorithms. An NP-hardness reduction is
an algorithm; thus the approach of NP-hardness reductions replaces the hard
task of showing non-existence of algorithms with the easier task of showing the
existence of an algorithm.

Suppose we wish to show that a given problem X is hard. The approach
of NP-hardness reductions is to identify an NP-hard problem Y and show that
the existence of a polynomial time algorithm for X implies the existence of a
polynomial time algorithm for Y . This existence is shown by reduction. Specif-
ically, an NP-hardness reduction is an algorithm for problem Y that employs
an algorithm for problem X as a black box. This method for showing that a
problem is hard is essentially a proof by contradiction. Assume for contradiction
that there is a polynomial time algorithm for problem X, then the reduction, an
algorithm for solving Y in polynomial time that uses the algorithm that solves
X in polynomial time, would imply a polynomial time algorithm for Y . Since
Y is NP hard, we do not believe there is a polynomial time algorithm for it,
thus, we must also not believe the assumption that there is a polynomial time
algorithm for X.

NP is the class of decision problems for which yes instances have short cer-
tificates. Here are several classic NP problems:

• The traveling salesperson problem (V,E, c, k) has as input a complete
graph (V,E), edge weights c : E → R, and target tour length θ. A

11

yes instance is one where there exists a tour of the vertices, i.e., a path
that visits each vertex exactly once and finishes at the vertex it starts
with, such that the total cost of the edges in the tour is at most θ. A no
instance has no such tour.

• The independent set problem (V,E) has as input a graph (V,E) and target
independent set size θ. A yes instance is one where there exists a subset
of vertices S such that no pair of vertices in the subset is connected by an
edge, i.e., ∀u, v ∈ S, (u, v) 6∈ E, and the cardinality of the subset S is at
least the target θ. A no instance has no such subset.

• The satisfiability problem has as input a n variable boolean formula f . This
formula is assumed to be in conjunctive normal form: it is the conjunction
(i.e., and) of m clauses, each clause is the disjunction (i.e., or) of three
literals, and each literal is a variable or its negation. Denoting the jth
literal of the ith clause by `ij the formula is then

f(x) =
m∧

i=1

(`i1 ∨ `i2 ∨ `i3)

where each literal `ij is either xk or ¬xk (i.e., the boolean negation of
xk). A yes instance of the satisfiability problem has an assignment of
boolean values true and false to the variables x = (x1, . . . , xn) such that
the formula f(x) evaluates true. A formula in conjunctive normal form
evaluates to true on an assignment of variables if and only if there is at
least one true literal per clause.

In many NP problems the short certificate from which yes instances can be easily
verified is explicit in the definition of the problem. In the traveling salesperson
problem the certificate is the tour. Given the tour it is easy to check that (a) it
is a tour and (b) the total cost of the edges in the tour is at most the target C.
Similarly, in the independent set problem the certificate is the set S, and in the
satisfiability problem the certificate is the satisfying assignment x of boolean
values to the variables.

The independent set problem will be a running example. Assume for the
purpose of the discussion that it is unknown whether the independent set prob-
lem is NP hard, but known that the satisfiability problem is NP hard. We
will prove that independent set is NP hard by reduction from the satisfiability
problem.

Part I: Forward Instance Construction

To show that the independent set problem is NP hard, we will reduce from
the satisfiability problem. Specifically, we will exhibit an algorithm to solve
the satisfiability problem using a black box that solves the independent set
problem. The direct approach, as outlined above, is to convert any instance
f of the satisfiability problem to an instance (V,E, k) of the independent set
problem such that f is a yes instance if any only if (V,E, k) is a yes instance.

12

The main task in coming up with such a construction is mapping the con-
straints of yes instances of one problem onto constraints of yes instances of
the other problem. The constraints on a certificate x of yes a instance of the
satisfiability problem are:

• Each of the m clauses has at least one true literal.

• All positive occurrences of any variable as a literal have the same boolean
value and all negative occurrences of the variable have the opposite boolean
value (to the positive occurrences).

The constraints on a certificate S of a yes instance of the independent set prob-
lem are:

• There are at least θ vertices in S.

• For any pair of vertices connected by an edge, at most one is in S.

At a high-level the construction of an independent set instance from a satisfi-
ability instance will equate the true literal in each clause with the vertices in the
independent set. In the construction, there will be a satisfying assignment of f if
and only if there is an independent set of size at least m, the number of clauses.
Consider the independent set instance given by target set size θf = m and the
graph (V f , Ef) with vertices V f and edges Ef defined as follows. There are 3 m
vertices V f that correspond to the literals in the satisfiability formula f , i.e.,
for each literal `ij there is a vertex vij . The edges are Ef = Ef

clause ∪ Ef
variable

as follows:

• Clause edges, Ef
clause, connect all vertices that correspond to literals in

the same clause have edges between them. As there are three literals per
clause, these edges alone give a graph that is a collection of m triangles.

Notice that at most one vertex from each triangle can be in any indepen-
dent set. Thus, an independent set of size at least k = m in the graph
(V f , Ef

clause) selects exactly one vertex in each of the m triangles that
correspond to clauses, as the edges in each triangle prevent selecting mul-
tiple vertices in the same triangle. The size of any such independent set
is exactly k = m.

• Variable edges, Ef
variable, connect vertices that correspond to literals that

cannot both by true, specifically, that correspond to a variable and its
negation. Let Vxk

and V¬xk
correspond to the subset of vertices that cor-

respond to xk and ¬xk literals, respectively. Thus, variable edges connect
each u ∈ Vxk

to each u ∈ V¬xk
for each variable xk.

Forward instance construction: from satisfiability instance f to independent
set instance (V f , Ef , θf).

1. Set target independent set size θf = m.

13

2. Set graph (V f , Ef) with

• vertices V f = {vij : i ∈ {1, . . . ,m} ∨ j ∈ {1, 2, 3}},

• clause edges Ef
clause =

⋃
i{(vi1, vi2), (vi2, vi3), (vi3, vi1)},

• variable edges Ef
variable = {(u, v) : k ∈ {1, . . . , n} ∧ u ∈ Vxk

∧ v ∈
V¬xk

} (with Vxk
and V¬xk

defined above), and

• edges Ef = Ef
clause ∪ Ef

variable.

Runtime Analysis: O(n + m) where n is number of variables and m is
number of clauses in formula f .

To prove this construction correct, we must show that a satisfiability in-
stance f is a yes instance if and only if the constructed independent set instance
(V f , Ef , θf) is a yes instance. The proof of this if and only if is given by the
existence of the two algorithms given below.

Part II: Backward Certificate Construction

The backward certificate construction, for the independent set reduction from
satisfiability, constructs, from any yes instance certificate S for the indepen-
dent set instance (V f , Ef , θf), a yes instance certificate x for the satisfiability
instance f .

Backward certificate construction: from independent set Sf for independent
set instance (V f , Ef , θf) to assignment x for satisfiability instance f .
For each variable xk (k ∈ {1, . . . , n}):

1. Set xk to true if literal `ij is xk (not negated) and the corresponding
vertex vij is in Sf for some ij.

2. Set xk to false otherwise.

In the proof of correctness, recall that vertices in the graph (V f , Ef) corre-
spond to literals in the formula f .

14

Proof of correctness:

Claim 5. If Sf is a yes instance certificate for (V f , Ef , θf) then the con-
structed x is a yes instance certificate for satisfiability problem f .

Proof. The assignment x is a valid assignment as each variable xk is con-
sidered once and set to either true or false. Assume that Sf certifies that
(V f , Ef , θf) is a yes instance.

1. Because of the clause edges, Sf can contain at most one vertex per
clause. Because there are m clauses and Sf has cardinality at least
θk = m, there must be exactly one vertex per clause in Sf .

2. Consider any clause j for which the selected vertex vij ∈ Sf corre-
sponds to a literal that is not negated, i.e., `ij is xk for some k; by
construction this clause is true because this literal is set to true in x.

3. Consider any clause j for which the selected vertex vij ∈ Sf corre-
sponds to a literal that is negated i.e., `ij is ¬xk for some k. By
the construction of the variable edges of the independent set graph
(V f , Ef) there are edges between vij and all vertices Vxk

that corre-
spond to literals where xk appears positively. Since vij ∈ Sf and Sf

is an independent set, there can be no vertex in Vxk
that is also in

Sf , thus, the construction sets xk to false and the literal ¬xk and the
clause itself is true.

In conclusion, under the assignment x all clauses are true and, thus, x is a
certificate that demonstrates that f is a yes instance.

Part III: Forward Certificate Construction

The forward certificate construction, for the independent set reduction from
satisfiability, constructs, from any yes instance certificate x = (x1, . . . , xn) for
the satisfiability instance f , a yes instance certificate S for the constructed
instance of independent set (V f , Ef , θf).

Forward certificate construction: from assignment x for satisfiability in-
stance f to independent set S for independent set instance (V f , Ef , θf).

1. Initialize S = ∅.

2. For each clause i, add the vertex vij to S that corresponds to the first
(smallest j) true literal `ij (according to x) in the clause.

15

Proof of correctness:

Claim 6. If x is a yes instance certificate for satisfiability problem f then
the constructed Sf is a yes instance certificate for independent set problem
(V f , Ef , θf).

Proof. We argue that Sf has the correct cardinality, and that neither clause
edges nor variable edges are violated.

1. Since there is one true literal in each clause, the selected set Sf has
cardinality m = θf .

2. Since only one vertex is selected corresponding to each clause, the
clause edges are satisfied. I.e., for any pair of vertices u, v ∈ Sf , edge
(u, v) is not in Ef

clause.

3. Since we have chosen vertices corresponding to a satisfying assign-
ment, the variable edges are satisfied. Specifically, any pair of ver-
tices u, v ∈ Sf correspond to literals that are not a variable xi and its
negation ¬xi and the edge (u, v) is not in Ef

variable.

In conclusion, the constructed set Sf is independent and has cardinality
θf , i.e., Sf is a certificate that demonstrates that (V f , Ef , θf) is a yes
instance.

16

4 Reductions: Summary of Rubric

Rubric I. a. The direction of the reduction is correct. To show Y is tractable,
reduce from Y to tractable problem X. To show X is intractable, reduce from
intractable problem Y to X.

Rubric I. b. The forward instance construction gives an instance xy of problem
X from any instance y of problem Y .

Rubric I. c. The runtime of the forward instance construction is correctly
analyzed.

Rubric II. a. The backward certificate construction is well defined and gives a
certificate for y from any yes-instance certificate for xy.

Rubric II. b. The proof of correctness of the backward certificate construction
shows how the constraints of instance xy imply the satisfaction of constraints of
instance y.

Rubric II. c. The proof of correctness of the backward certificate construction
is correct.

Rubric III. a. The forward certificate construction is well defined and gives a
certificate for y from any yes-instance certificate for xy.

Rubric III. b. The proof of correctness of the forward certificate construction
shows how the constraints of instance y imply the satisfaction of constraints of
instance xy.

Rubric III. c. The proof of correctness of the forward certificate construction
is correct.

17

	Reductions for Optimization Problems
	Forward Instance Construction
	Backward Solution Construction
	Forward Solution Construction

	Reductions for Decision Problems
	Forward Instance Construction
	Backward Certificate Construction
	Forward Certificate Construction

	Reductions to Show Intractability
	Forward Instance Construction
	Backward Certificate Construction
	Forward Certificate Construction

	Reductions: Summary of Rubric

