EECS 497: Peer Grading

Instructor: Jason Hartline

Fall 2017

Today:

- Overview of course.
- Overview of peer grading.

This Class _____

- paper reading (roughly three per week)
- student presentations (with practice presentation)
- student projects (theoretical or empirical, with data from Northwestern classes)

This Class

- paper reading (roughly three per week)
- student presentations (with practice presentation)
- student projects (theoretical or empirical, with data from Northwestern classes)
 - proposal (week 4)
 - literature review (week 6)
 - first draft (week 9)
 - in class presentation (week 10)
 - final draft (exam week, a.k.a., 11)

Week 0: Introductory lecture on peer grading (today; no readings)

Week 1: Peer grading systems	(general)
Week 2: Peer prediction	(game theory, human computation)
Week 3: Eliciting peer feedback	(HCI, learning science)
Week 4: Incentivizing effort and acc	uracy (scoring rules, auctions)
Week 5: Assigning reviews	(algorithms, human computation)
Week 6: Cardinal grade aggregation	n (machine learning, algorithms)
Week 7: Accuracy of peer reviews	(HCI, learning science)
Week 8: Ordinal grade aggregation	(game theory, machine learning)
Week 9: Evaluating learning outcom	nes (learning science)

Week 10: Project presentations (no readings)

Data for Projects

Data Set 1: Computer Science for Everyone (EECS 101)

- two assignments (mini-essays) per week.
- 250 students.
- three peer reviews per student per essay.
- detailed specific rubrics.
- TA reviews for 40 submissions per assignment

Data for Projects

Data Set 1: Computer Science for Everyone (EECS 101)

- two assignments (mini-essays) per week.
- 250 students.
- three peer reviews per student per essay.
- detailed specific rubrics.
- TA reviews for 40 submissions per assignment

Data Set 2: Introduction to Algorithms (EECS 336)

- two assignments (problems) per week.
- 90 students (submissions in pairs)
- three peer reviews per student per problem.
- detailed specific rubrics.
- TA reviews for 10 submissions per assignment.

Computer Science on Teaching _____

Philosophy: The next frontier for computer science is understanding and designing computation outside digital computers.

Computer Science on Teaching _____

Philosophy: The next frontier for computer science is understanding and designing computation outside digital computers.

Question: What can computer science say about teaching a course?

Computer Science on Teaching ____

Philosophy: The next frontier for computer science is understanding and designing computation outside digital computers.

Question: What can computer science say about teaching a course?

Computational Model:

- Students: strategic agents
- TAs/Instructor: (noisy) computers
- Syllabus: maps histories of actions to a grade in the class.
- Student Incentives: minimize work, maximize grade.
- Objective: minimize work, maximize learning, fairly assess.

Computer Science on Teaching ____

Philosophy: The next frontier for computer science is understanding and designing computation outside digital computers.

Question: What can computer science say about teaching a course?

Computational Model:

- Students: strategic agents
- TAs/Instructor: (noisy) computers
- Syllabus: maps histories of actions to a grade in the class.
- Student Incentives: minimize work, maximize grade.
- Objective: minimize work, maximize learning, fairly assess.

Interdiciplinarity: must combine

- *computational models* (e.g., algorithms, machine learning, human computer interaction),
- economic models (e.g., game theory, auctions),
- *learning science models* (e.g., scaffolding, learning outcomes, interventions).

Advantages of Peer Grading:

• learning by reviewing.

- reduces teacher grading.
- promptness of feedback.
- enables data mining.

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

- reduces teacher grading.
- promptness of feedback.
- enables data mining.

Advantages of Peer Grading

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree) (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

- reduces teacher grading.
- promptness of feedback.
- enables data mining.

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree) (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

- reduces teacher grading. (TAs graded 1/5 of student work.)
- promptness of feedback.
- enables data mining.

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree) (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

reduces teacher grading.

(TAs graded 1/5 of student work.)

- promptness of feedback.
 (peer review feedback in 3 days, grades in 5 days; versus 2 weeks)
- enables data mining.

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree) (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

• enables data mining.

(50 submissions \times 18 problems \times 6 peer reviews \times 8 rubric elements = 43200 scores)

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree) (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

• enables data mining.

(50 submissions \times 18 problems \times 6 peer reviews \times 8 rubric elements = 43200 scores)

Potential Disadvantages: Inaccurate grades, student unrest, ... (3.7% appeal rate; 1-6% strongly disagree with survey questions)

Peer Grading Systems _____

System Components: [Week 1]

- user interface [Week 3]
- backend data management
- peer grading algorithms

Peer Grading Systems

System Components: [Week 1]

- user interface [Week 3]
- backend data management
- peer grading algorithms

Main Algorithms:

- matching algorithm (who grades what)
- submission grading algorithm (from peer and TA reviews)
- review grading algorithm (from peer and TA reviews)

Peer Grading Systems

System Components: [Week 1]

- user interface [Week 3]
- backend data management
- peer grading algorithms

Main Algorithms:

- matching algorithm (who grades what)
- submission grading algorithm (from peer and TA reviews)
- review grading algorithm (from peer and TA reviews)

Agenda: summarize algorithms; connect to course topics.

Submission Grading Algorithm _____

Submission Grading Algorithms:

compute grades for submissions from peer and TA reviews

Submission Grading Algorithm ____

Submission Grading Algorithms:

compute grades for submissions from peer and TA reviews

- E.g., via the expectation maximization algorithm
- peer accuracy (variance), submission grade (expectation) and clarity (variance).

Submission Grading Algorithm ____

Submission Grading Algorithms:

compute grades for submissions from peer and TA reviews

- E.g., via the expectation maximization algorithm
- peer accuracy (variance), submission grade (expectation) and clarity (variance).

Course Topics:

- Cardinal grade aggregation (machine learning) [Week 6]
- Accuracy of peer reviews (HCI, learning science) [Week 7]
- Ordinal grade aggregation (algorithms, machine learning) [Week 8]

Matching Algorithms _____

Matching Algorithms:

Matching Algorithms _____

Matching Algorithms:

- minimize number of TA reviews
- maximize quality of grades from peer reviews.

Matching Algorithms:

- minimize number of TA reviews
- maximize quality of grades from peer reviews.
- E.g.: n peers, m submissions, k reviews per peer, ℓ TA reviews.

Matching Algorithms:

- minimize number of TA reviews
- maximize quality of grades from peer reviews.
- E.g.: n peers, m submissions, k reviews per peer, ℓ TA reviews.
 - assign TA to ℓ random submissions.
 - uniform random 1-to-many match peers to these submissions.
 - uniform random (k-1)-to-many match peers to remaining.

Matching Algorithms:

- minimize number of TA reviews
- maximize quality of grades from peer reviews.
- E.g.: n peers, m submissions, k reviews per peer, ℓ TA reviews.
 - assign TA to ℓ random submissions.
 - uniform random 1-to-many match peers to these submissions.
 - uniform random (k-1)-to-many match peers to remaining.
 - Intro to Algs: $n \approx 90$; $m \approx 50$; k = 3; $\ell = 10$.

Matching Algorithms:

choose peer and TA matching in advance of reviews.

- minimize number of TA reviews
- maximize quality of grades from peer reviews.
- E.g.: n peers, m submissions, k reviews per peer, ℓ TA reviews.
 - assign TA to ℓ random submissions.
 - uniform random 1-to-many match peers to these submissions.
 - uniform random (k-1)-to-many match peers to remaining.
 - Intro to Algs: $n \approx 90$; $m \approx 50$; k = 3; $\ell = 10$.

Course Topics:

• Assigning reviews (algorithms, human computation) [Week 5]

Review Grading Algorithm:

compute grades for peer reviews from peer and TA reviews

Review Grading Algorithm

Review Grading Algorithm:

compute grades for peer reviews from peer and TA reviews

- incentive issues:
 - accuracy
 - effort

Review Grading Algorithm

Review Grading Algorithm:

compute grades for peer reviews from peer and TA reviews

- incentive issues:
 - accuracy
 - effort

Course Topics:

- Peer prediction (game theory, human computation) [Week 2]
- Eliciting peer feedback (HCI, learning science) [Week 3]
- Incentivizing effort and accuracy (scoring rules, auction design) [Week 4]

Review Grading Algorithm

Review Grading Algorithm:

compute grades for peer reviews from peer and TA reviews

- incentive issues:
 - accuracy
 - effort

Course Topics:

- Peer prediction (game theory, human computation) [Week 2]
- Eliciting peer feedback (HCI, learning science) [Week 3]
- Incentivizing effort and accuracy (scoring rules, auction design)
 [Week 4]

Next: accuracy via proper scoring rules; effort via all-pay auctions

Incentivizing Accurate Reviews

Incentivizing Accurate Reviews

From other peer reviews: [Week 2]

Incentivizing Accurate Reviews

From other peer reviews: [Week 2]

From TA reviews: [Week 4]

• idea: cf. proper scoring rules

From other peer reviews: [Week 2]

From TA reviews: [Week 4]

- idea: cf. proper scoring rules
- e.g., quadratic: review-grade = 1 (ta-score peer-score)²

From other peer reviews: [Week 2]

From TA reviews: [Week 4]

- idea: cf. proper scoring rules
- e.g., quadratic: review-grade = 1 (ta-score peer-score)²
- issue: "good for incentives", inaccurate for assessment of learning. (proper scoring rules are convex)

- linear model:
 - utility = grade effort

- cf. all-pay auctions:
 - utility = value \times alloc payment
 - maximizing revenue = "maximizing accuracy"

- linear model:
 - utility = grade effort
 - accuracy = effort \times skill

- cf. all-pay auctions:
 - utility = value \times alloc payment
 - maximizing revenue = "maximizing accuracy"

- linear model:
 - utility = grade effort
 - accuracy = effort \times skill
 - skill \times utility = skill \times grade accuracy
- cf. all-pay auctions:
 - utility = value \times alloc payment
 - maximizing revenue = "maximizing accuracy"

- linear model:
 - utility = grade effort
 - accuracy = effort \times skill
 - skill \times utility = skill \times grade accuracy
- cf. all-pay auctions:
 - utility = value \times alloc payment
 - maximizing revenue = "maximizing accuracy"

Week 0: Introductory lecture on peer grading (today; no readings)

Week 1: Peer grading systems	(general)
Week 2: Peer prediction	(game theory, human computation)
Week 3: Eliciting peer feedback	(HCI, learning science)
Week 4: Incentivizing effort and acc	uracy (scoring rules, auctions)
Week 5: Assigning reviews	(algorithms, human computation)
Week 6: Cardinal grade aggregation	n (machine learning, algorithms)
Week 7: Accuracy of peer reviews	(HCI, learning science)
Week 8: Ordinal grade aggregation	(game theory, machine learning)
Week 9: Evaluating learning outcom	nes (learning science)

Week 10: Project presentations (no readings)