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1. Introduction
Decision makers frequently draw on the experiences
of multiple other individuals when making decisions.
The process of eliciting others’ information is some-
times informal, as when an executive consults under-
lings about a new business opportunity. In other
contexts, the process is institutionalized, as when jour-
nal editors secure independent reviews of papers, or
an admissions committee has multiple faculty read-
ers for each file. The Internet has greatly enhanced
the role of institutionalized feedback methods, since
it can gather and disseminate information from vast
numbers of individuals at minimal cost. To name just
a few examples, eBay invites buyers and sellers to rate
each other; NetFlix, Amazon, and ePinions invite rat-
ings of movies, books, etc., on a 1–5 scale; and Zagat
Survey solicits restaurant ratings on a 1–30 scale on
food, decor, and service.
Any system that solicits individual opinions must

overcome two challenges. The first is underprovision.
Forming and reporting an opinion requires time and
effort, yet the information only benefits others. The
second challenge is honesty. Raters’ desire to be nice
or fear of retaliation may cause them to withhold

negative feedback.1 On the other hand, conflicts of
interest or a desire to improve others’ perception of
them may lead raters to report distorted versions of
their true opinions.
An explicit reward system for honest rating and

effort may help to overcome these challenges. When
objective information will be publicly revealed at a
future time, individuals’ reports can be compared to
that objective information. For example, evaluations
of stocks can be compared to subsequent price move-
ments, and weather forecasts can be compared to
what actually occurs.
This analysis develops methods to elicit feedback

effectively when independent, objective outcomes are
not available. Examples include situations where no
objective outcome exists (e.g., evaluations of a prod-
uct’s “quality”), and where the relevant information
is objective but not public (e.g., a product’s break-
down frequency, which is only available to others if
the product’s current owners reveal it).

1 Dellarocas (2001) shows that leniency in feedback can offer some
advantages in deterring seller opportunism. The problem we are
concerned with here is not systematic leniency, but the failure to
report negative evaluations, whatever threshold is in use.
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In these situations, one solution is to compare
raters’ reports to their peers’ reports and reward
agreement.2 However, dangers arise, if rewards are
made part of the process. If a particular outcome is
highly likely, such as a positive experience with a
seller at eBay who has a stellar feedback history, then
a rater who has a bad experience will still believe
that the next rater is likely to have a good experience.
If she will be rewarded simply for agreeing with her
peers, she will not report her bad experience. This
phenomenon is akin to the problems of herding or
information cascades.
In this paper, we develop a formal mechanism

to implement the process of comparing with peers.
We label this mechanism the peer-prediction method.
The scheme uses one rater’s report to update a prob-
ability distribution for the report of someone else,
whom we refer to as the reference rater. The first rater
is then scored not on agreement between the ratings,
but on a comparison between the likelihood assigned
to the reference rater’s possible ratings and the ref-
erence rater’s actual rating. Raters need not perform
any complex computations: so long as a rater trusts
that the center will update appropriately, she will pre-
fer to report honestly.
Scores can be converted to monetary incentives,

either as direct payments or as discounts on future
merchandise purchases. In many online systems,
however, raters seem to be quite motivated by pres-
tige or privileges within the system. For example,
at Slashdot.org, users accumulate karma points for
various actions and higher karma entitles users to
rate others’ postings and to have their own postings
begin with higher ratings (Lampe and Resnick 2004);
at ePinions.com, reviewers gain status and have their
reviews highlighted if they accumulate points. Sim-
ilarly, offline point systems that do not provide any
tangible reward seem to motivate chess and bridge
players to compete harder and more frequently.
The key insight—that the correlation in agents’

private information can be used to induce truthful
revelation—has been addressed, albeit in an abstract
way, in the mechanism design literature. Seminal
papers by d’Aspremont and Gérard-Varet (1979, 1982)
and Crémer and McLean (1985, 1988) demonstrate

2 Subjective evaluations of ratings could be elicited directly instead
of relying on correlations between ratings. For example, the news
and commentary site Slashdot.org allows metamoderators to rate
the ratings of comments given by regular moderators. Metaeval-
uation incurs an obvious inefficiency, because the effort to rate
evaluations could presumably be put to better use in rating com-
ments or other products that are a site’s primary product of interest.
Moreover, metaevaluation merely pushes the problem of motivat-
ing effort and honest reporting up one level, to ratings of evalua-
tions. Thus, scoring evaluations in comparsion to other evaluations
is preferable.

that it is generally possible to use budget-balancing
transfer payments to extract agents’ private informa-
tion. Adapting tools from statistical decision theory,
Johnson et al. (1990) show how to construct budget-
balancing transfer payments based on “proper scor-
ing rules.” Johnson et al. (2003) extend those results
to the case of multidimensional, continuous private
information. Kandori and Matsushima (1998, §4.2)
consider how to enforce cooperation in repeated
games through correlated equilibria despite the lack
of public information about stage game outcomes,
and show how to apply a proper scoring rule to elicit
truthful communication of private information about
stage game outcomes.
This paper applies the general insights on the use-

fulness of proper scoring rules for eliciting correlated
information to the particular problem of eliciting hon-
est reviews of products, papers, and proposals. Our
mechanism is well suited to Internet-based implemen-
tations, and it could potentially be applied to ser-
vices such as NetFlix or Amazon.3 Once ratings are
collected and distributed electronically, it is relatively
easy to compute posteriors and scores and keep track
of payments.4
In §2 we construct payments based on proper

scoring rules that allow the center to elicit the
rater’s private information and show how the pay-
ments can be adapted to address costly effort elicita-
tion and budget balance and voluntary participation
requirements. Section 3 extends our approach to
scenarios of sequential reporting and of discrete
reporting based on continuous signals. In §4 we
address practical issues that would arise in imple-
menting proper scoring rules in real systems, includ-
ing conflicts of interest, estimating the information
the mechanism requires from historical reviewing
data, and accommodating differences among raters
in both tastes and in prior beliefs. We also discuss
limitations of the mechanism. Section 5 concludes.
Proofs and supporting materials are contained in the
appendices.

2. A Mechanism for Eliciting
Honest Feedback

A number of raters experience a product and then
rate its quality. The product’s quality does not vary,

3 It could also be extended to eBay or Bizrate, which rate sellers
rather than products. Rating sellers, however, complicates the anal-
ysis. For example, if sellers strategically vary the quality of service
they provide over time, the correlation between one rater’s eval-
uation and future raters’ evaluations might be severed, disrupting
our scoring mechanism.
4 Prelec’s Information Pump (2001) exploits correlated information
and proper scoring rules to elicit honest reports in a different set-
ting, estimating the additional information provided by a sequence
of true-false statements about an object.
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but is observed with some idiosyncratic error. After
experiencing the product, each rater sends a mes-
sage to a common processing facility called the cen-
ter. The center makes transfers to each rater, award-
ing or taking away points based on the raters’ mes-
sages. The center has no independent information, so
its scoring decisions can depend only on the infor-
mation provided by other raters. As noted above,
points may be convertible to money, discounts, or
privileges within the system, or merely to prestige.
We assume that raters’ utilities are linear in points.5
We refer to a product’s quality as its type. We refer
to a rater’s perception of a product’s type as her
signal.
Suppose that the number of product types is finite,

and let the types be indexed by t = 1! " " " !T . Let p#t$
be the commonly held prior probability assigned to
the product’s being type t.6 Assume that p#t$> 0 for
all t, and

∑T
t=1 p#t$= 1.

Let I be the set of raters, where !I ! ≥ 3. We allow for
the possibility that I is (countably) infinite. Each rater
privately observes a signal of the product’s type.7
Conditional on the product’s type, raters’ signals
are independent and identically distributed. Let Si

denote the random signal received by rater i. Let S =
%s1! " " " ! sM & be the set of possible signals, and let
f #sm ! t$ = Pr#Si = sm ! t$, where f #sm ! t$ > 0 for all sm
and t, and

∑M
m=1 f #sm ! t$= 1 for all t. We assume that

f #sm ! t$ is common knowledge, and that the condi-
tional distribution of signals is different for different
values of t. Let si ∈ S denote a generic realization of Si.
We use sim to denote the event Si = sm. We assume that
raters are risk neutral and seek to maximize expected
wealth.
To illustrate throughout this section, we introduce

a simple example. There are only two product types,
H and L, with prior p#H$= 0"5, and two possible sig-
nals, h and l, with f #h !H$= 0"85 and f #h ! L$= 0"45.
Thus, Pr#h$= 0"5 ∗ 0"85+ 0"5 ∗ 0"45= 0"65.

In the mechanism we propose, the center asks each
rater to announce her signal. After all signals are
announced to the center, they are revealed to the other
raters and the center computes transfers. We refer to
this as the simultaneous reporting game. Let ai ∈ S
denote one such announcement, and a = #a1! " " " !aI $
denote a vector of announcements, one by each rater.
Let aim ∈ S denote rater i’s announcement when her
signal is sm, and āi = #ai1! " " " !a

i
M $ ∈ SM denote rater i’s

announcement strategy. Let ā = #ā1! " " " ! āI $ denote a
vector of announcement strategies. As is customary,
let the superscript “−i” denote a vector without rater
i’s component.

5 We consider the impacts of risk aversion in §4.1.
6 We briefly address the issue of noncommon priors in §4.5.
7 We refer to raters as female and to the center as male.

Let 'i#a$ denote the transfer paid to rater i when
the raters make announcements a, and let '#a$ =
#'1#a$! " " " ! 'I #a$$ be the vector of transfers made to
all agents. An announcement strategy āi is a best
response to ā−i for player i if, for each m,

ES−i ('i#ā
i
m! ā

−i$ ! sim) ≥ ES−i ('i#â
i! ā−i$ ! sim)
for all âi ∈ S" (1)

That is, a strategy is a best response if, conditional
on receiving signal sm, the announcement specified
by the strategy maximizes that rater’s expected trans-
fer, where the expectation is taken with respect to
the distribution of all other raters’ signals conditional
on Si = sm. Given transfer scheme '#a$, a vector of
announcement strategies ā is a Nash equilibrium of
the reporting game if (1) holds for i= 1! " " " ! I , and a
strict Nash equilibrium if the inequality in (1) is strict
for all i= 1! " " " ! I .
Truthful revelation is a Nash equilibrium of the

reporting game if (1) holds for all i when aim = sm for
all i and all m, and is a strict Nash equilibrium if
the inequality is strict. That is, if all the other players
announce truthfully, truthful announcement is a strict
best response. Because raters receive no direct return
from their announcement, if there were no transfers
at all, then any strategy vector, including truthful
revelation, would be a Nash equilibrium. However,
because players are indifferent among all strategies
when there are no transfers, this Nash equilibrium is
not strict.

2.1. The Base Case
Our base result defines transfers that make truthful
revelation a strict Nash equilibrium. Because all raters
experience the same product, it is natural to assume
that their signals are dependent. Our results rely on a
form of dependence we call stochastic relevance.8
Definition. Random variable Si is stochastically rel-

evant for random variable Sj if and only if the distri-
bution of Sj conditional on Si is different for different
realizations of Si. That is, Si is stochastically relevant
for Sj if for any distinct realizations of Si, call them si

and ŝi, there exists at least one realization of Sj , call
it sj , such that Pr#sj ! si$ ̸= Pr#sj ! ŝi$.
Stochastic relevance is almost always satisfied when

different types of products generate different signal
distributions, as we assumed above, and so through-
out the paper we assume that stochastic relevance
holds for all Si and Sj .9

8 The term “stochastic relevance” is introduced in Johnson et al.
(2003). It is the same as condition (A4) used in Kandori and
Matsushima (1998).
9 In Miller et al. (2005), we show that stochastic relevance is gener-
ically satisfied in product-rating environments.
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Continuing the two-type, two-signal example, sup-
pose that rater i receives the signal l. Recall that
p#H$= 0"5, f #h !H$= 0"85, and f #h ! L$= 0"45, so that
Pr#sil $ = 0"35. Given i’s signal, the probability that
rater j will receive a signal h is

g#s
j
h ! sil $ = f #h !H$

f #l !H$p#H$

Pr#sil $
+ f #h ! L$f #l ! L$p#L$

Pr#sil $

= 0"85
0"15 ∗ 0"5

0"35
+ 0"45

0"55 ∗ 0"5
0"35

' 0"54"

If i had instead observed h, then

g#s
j
h ! sih$ = f #h !H$

f #h !H$p#H$

Pr#sih$
+ f #h ! L$f #h ! L$p#L$

Pr#sih$

= 0"85
0"85 ∗ 0"5

0"65
+ 0"45

0"45 ∗ 0"5
0"65

' 0"71"

A scoring rule is a function R#sj ! ai$ that for each
possible announcement ai of Si, assigns a score to each
possible realization of Sj . A scoring rule is strictly
proper if rater i uniquely maximizes her expected
score by announcing the true realization of Si.
The literature discusses a number of strictly proper

scoring rules.10 The three best known are as follows.
1. Quadratic scoring rule:

R#sjn ! ai$= 2g#sjn ! ai$−
M∑

h=1

g#s
j
h ! ai$2"

2. Spherical scoring rule:

R#sjn ! ai$=
g#sin ! ai$

#
∑M

h=1 g#s
j
h ! ai$2$1/2

"

3. Logarithmic scoring rule:

R#sjn ! ai$= lng#sjn ! ai$"

Further, if R#· ! ·$ is a strictly proper scoring rule,
then a positive affine transformation of it, i.e., *R#· ! ·$
++, * > 0, is also a strictly proper scoring rule. The
ability of the center to manipulate * and + is use-
ful in inducing the raters to exert effort and satisfy-
ing their participation constraints (see §2.2). We will
use R#s

j
n ! ai$ to denote a generic strictly proper scor-

ing rule. At times we will illustrate our results using
the logarithmic rule because of its intuitive appeal
and notational simplicity. However, unless otherwise
noted, all results hold for any strictly proper scoring
rule.
Transfers based on a strictly proper scoring rule

induce truthful revelation by agent i as long as her

10 See Cooke (1991, p. 139) for a discussion of strictly proper scor-
ing rules. Selten (1998) provides proofs that each of the three
rules is strictly proper and discusses other strictly proper scoring
rules.

private information is stochastically relevant for some
other publicly available signal. However, in our case,
each rater’s signal is private information, and there-
fore we can only check players’ announcements
against other players’ announcements, not their actual
signals. For each rater, we will choose a reference rater
r#i$, whose announcement i will be asked to predict.
Let

'∗
i #a

i!ar#i$$=R#ar#i$ ! ai$" (2)

Proposition 1. For any mapping r that assigns to
each rater i a reference rater r#i$ ̸= i, and for any proper
scoring rule R, truthful reporting is a strict Nash
equilibrium of the simultaneous reporting game with
transfers '∗

i .

Proof of Proposition 1. Assume that rater r#i$
reports honestly: ar#i$#sm$= sm for all m. Si is stochas-
tically relevant for Sr#i$, and r#i$ reports honestly, so
Si is stochastically relevant for r#i$’s report as well.
For any Si = s∗, player i chooses ai ∈ S in order to
maximize

M∑

n=1

R#sr#i$n ! ai$g#sr#i$n ! s∗$" (3)

Because R#· ! ·$ is a strictly proper scoring rule, (3) is
uniquely maximized by announcing ai = s∗. Thus,
given that rater r#i$ is truthful, rater i’s best response
is to be truthful as well. !

We illustrate Proposition 1 using the logarithmic
scoring rule. Because 0<g#s

j
m ! sin$< 1, lng#sjm ! sin$< 0;

we refer to '∗
i as rater i’s penalty because it is always

negative in this case. Consider the simple example
where rater i received the relatively unlikely signal
l (Pr#sil $ = 0"35$. Even contingent on observing l, it
is unlikely that rater j will also receive an l sig-
nal (g#sjl ! sil $ = 1 − 0"54 = 0"46). Thus, if rater i were
rewarded merely for matching her report to that of
rater j , she would prefer to report h. With the log scor-
ing rule, an honest report of l leads to an expected
payoff

lng#sjh ! l$g#s
j
h ! l$+ lng#sjl ! l$g#s

j
l ! l$

= ln#0"54$0"54+ ln#0"46$0"46=−0"69"

If, instead, she reports h, rater i’s expected score is

lng#sjh ! h$g#s
j
h ! l$+ lng#sjl ! h$g#s

j
l ! l$

= ln#0"71$0"54+ ln#0"29$0"46=−0"75"

As claimed, the expected score is maximized by hon-
est reporting.
The key idea is that the scoring function is based

on the updated beliefs about the reference rater’s sig-
nal, given the rater’s report. The updating takes into
account both the priors and the reported signal, and
thus reflects the initial rater’s priors. Thus, she has no
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reason to shade her report toward the signal expected
from the priors. Note also that she need not perform
any complex Bayesian updating. She merely reports
her signal. As long as she trusts the center to cor-
rectly perform the updating and believes other raters
will report honestly, she can be confident that honest
reporting is her best action.11
Note that while Proposition 1 establishes that there

is a truthful equilibrium, it is not unique, and there
may be nontruthful equilibria. To illustrate, in the
example we have been considering, two other equi-
libria are (1) report h all the time, and (2) report l
all the time.12 While such nontruthful equilibria exist,
it is reasonable to think that the truthful equilibrium
will be a focal point, especially when communica-
tion among raters is limited, or when some raters are
known to have a strong ethical preference for honesty.
In addition, the center can punish all the raters if he
detects a completely uninformative equilibrium such
as all h or all l.

2.2. Eliciting Effort and Deterring Bribes
Assuming costless evaluation and reporting allowed
us to focus on the essence of the scoring-rule-based
mechanism. However, raters’ willingness to exert
effort will depend on the direct costs of effort as well
as the opportunity cost of being an early evaluator
rather than free riding off the evaluations of others.
Avery et al. (1999) explore how market mechanisms
can elicit costs and determine appropriate compensa-
tion levels, but the assumption that raters will exert
effort once they accept compensation is problematic.13
Here, we use a scoring rule to induce effort. We begin
by assuming a fixed cost of rating. We then move on
to consider how the center can induce raters to select
an optimal effort level when additional costly effort
leads to more precise signals.
Suppose there is a fixed cost, c > 0, of evaluating

and reporting. To induce effort, the expected value
of incurring effort and reporting honestly must
exceed the expected value of reporting without a
signal. As the proof of Proposition 1 makes clear, the
truth-inducing incentives provided by scoring-rule

11 In an experiment, Nelson and Bessler (1989) show that even when
the center does not perform the updating for them, with train-
ing and feedback subjects learn that truthful revelation is a best
response when rewards are based on a proper scoring rule.
12 To verify the “always play h equilibrium,” note that if the ref-
erence rater always reports high, the rater expects ln#0"54$1 +
ln#0"46$0 = −0"61619 if she reports l, and ln#0"71$1 + ln#0"29$0 =
−0"34249 if she reports h. Similar reasoning verifies the “always
play l equilibrium.”
13 At the news and commentary site Slashdot.org, where users earn
karma points for acting as moderators, staff have noticed that occa-
sionally ratings are entered very quickly in succession, faster than
someone could reasonably read and evaluate the comments. They
call this “vote dumping.”

based payments are unaffected by a positive rescaling
of all transfers: if transfers '∗

i #a
i!ar#i$$ = R#ar#i$ ! ai$

induce truthful reporting, then '∗
i #a

i!ar#i$$ =
*R#ar#i$ ! ai$, where *> 0, does as well. Since the rater
is better informed if she acquires a signal than if she
doesn’t, and better information always increases the
expected value of a decision problem (Savage 1954,
Lavalle 1968), increasing the scaling factor increases
the value of effort without affecting the incentives for
honest reporting once effort is expended.

Proposition 2. Let c > 0 denote the cost of acquir-
ing and reporting a signal. If other raters acquire and
report their signals honestly, there exists a scalar * > 0
such that when rater i is paid according to '∗

i #a
i!ar#i$$=

*R#ar#i$ ! ai$, her best response is to acquire a sig-
nal and report it honestly.14

Scaling can be used to induce raters to work harder
to obtain better information. Without putting addi-
tional structure on the distributions under consider-
ation, the natural notion of “better” information is
to think about the rater’s experience as being a ran-
dom sample, with better information corresponding
to greater sample size. If the cost of acquiring a sam-
ple is increasing and convex in its size, we can ask
when and how the center can induce the raters to
acquire samples of a particular size.
Because of space considerations, we relegate the

technical presentation to Appendix B. However, the
basic idea is straightforward.15 For any sample size,
stochastic relevance continues to hold. Thus, when
the rater is paid according to a strictly proper scor-
ing rule, she maximizes her expected score by truth-
fully announcing her information (if all other raters
do as well). When a rater increases her sample size
from, say, x to x + 1, the additional observation fur-
ther partitions the outcome space. Using well-known
results from decision theory (Savage 1954, Lavalle
1968), this implies that the rater’s optimized expected
score increases in the sample size. Let V ∗#x$ denote
optimized expected score as a function of sample
size. The question of whether the center can induce
the rater to choose a particular sample size, x∗, then
comes down to whether there exists a scaling factor,
*∗, such that

x∗ ∈ argmax
x

*∗V ∗#x$− c#x$"

If V ∗#x$ is concave in x and c#x$ satisfies certain reg-
ularity conditions (i.e., c′#0$ = 0, and limx→* c′#x$ =
*), it is possible to induce the agent to choose any

14 Proofs not included in the main text are in Appendix A.
15 Clemen (2002) undertakes a similar analysis in the context of a
principal-agent problem.
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desired sample size. We return to the question of elic-
iting effort in §3.2.1, where, because it is assumed that
information is normally distributed, we are able to
present the theory more parsimoniously.
Scaling can also be used to overwhelm individu-

als’ outside preferences, including bribes that may be
offered for positive ratings. For example, if a bribe
has been offered for a positive rating, the constant
c can be interpreted to include the potential oppor-
tunity cost of acquiring a negative signal and then
reporting it.

2.3. Voluntary Participation and Budget Balance
In some cases, the expected payment from truthful
reporting (and optimal effort) may be insufficient to
induce the rater to participate in the mechanism in
the first place. This is most apparent when the log-
arithmic rule is employed, because the logarithmic
score is always negative. However, this problem is
easily addressed. Because adding a constant to all
payments (i.e., letting the transfer be *iR#a

r#i$ ! ai$+ki)
does not affect incentives for effort or honest report-
ing, the constant ki can be chosen to satisfy either
ex ante participation constraints (i.e., each agent must
earn a nonnegative expected return), interim partici-
pation constraints (i.e., each agent must earn a non-
negative expected return conditional on any observed
signal), or ex post participation constraints (i.e., the
agent must earn a nonnegative expected return for
each possible #sj! si$ pair). To illustrate using the log-
arithmic case, let '0 = minsm! sn∈S#* lng#sm ! sn$$ and
define '+ = '∗ −'0. Transfers '+ will attract voluntary
(ex post) participation while still inducing effort and
honest reporting.
It is often desirable for the center to balance his

budget. Clearly, this is important if scores are con-
verted into monetary payments. Even if scores are
merely points that the center can generate at will,
uncontrolled inflation would make it hard for users
to interpret point totals. If there are at least three
raters, the center can balance the budget by reduc-
ing each rater’s base transfer '∗ by some other rater’s
base transfer. Though all transactions actually occur
between raters and the center, this creates the effect
of having the raters settle the transfers among them-
selves.16 Let b#i$ be the rater whose base transfer i
settles (paying if '∗ is positive, and collecting if it
is negative), and let b#i$ be a permutation such that
b#i$ ̸= i and r#b#i$$ ̸= i. Rater i’s net transfer is

'i#a$= '∗
i #a

i!ar#i$$− '∗
b#i$#a

b#i$!ar#b#i$$$" (4)

These transfers balance. The only raters whose
reports can influence the second term are b#i$ and

16 Because each player will receive her own base transfer and fund
one other player’s, the addition of '0 to each has no net effect, so
we phrase the discussion in terms of the raw penalties '∗ rather
than the net payments '+.

rater b#i$’s reference rater, r#b#i$$, and by construction
of b#·$, they are both distinct from rater i. Because all
reports are revealed simultaneously, rater i also can-
not influence other players’ reports through strategic
choice of her own report. Thus, the second term in (4)
does not adversely affect rater i’s incentive to report
honestly or put forth effort.
The balanced transfers in (4) do not guarantee

voluntary participation. In some cases, a rater’s net
transfer may be negative. One way to assure ex post
voluntary participation is to collect bonds or entry
fees in advance, and use the collected funds to
ensure that all transfers are positive. For example,
with the logarithmic scoring rule, min ' ≤min '∗ = '0.
If −'0 is collected from each player in advance and
then returned with the transfer ' , each player will
receive positive payments after the evaluations are
reported. Some raters will still incur net losses, but
their bonds prevent them from dropping out after
they learn of their negative outcome. Alternatively, it
may be sufficient to threaten to exclude a rater from
future participation in the system if she is unwilling
to act as a rater or settle her account after a negative
outcome.

3. Extensions
We now consider two extensions to the base model. In
the first, raters report sequentially rather than simul-
taneously. In the second, their types and signals are
continuous rather than discrete.

3.1. Sequential Interaction
Sequential reporting may be desirable because it
allows later raters to make immediate use of the infor-
mation provided by their predecessors. The mecha-
nism adapts readily to sequential situations.17 Rater
i’s transfer can be determined using any subsequent
rater as a reference rater. To balance the budget, the
transfer can be settled by any subsequent rater other
than rater i’s reference rater.
For example, suppose an infinite sequence of raters,

indexed by i= 1!2! " " ", interacts with the product. Let
rater i+ 1 be rater i’s reference rater, i.e., i’s report is
used to predict the distribution of rater i+ 1’s report.
Let p#t$ be the initial, commonly held prior distribu-
tion for the product’s type. Let p1#t ! s1$ denote the
posterior distribution after rater 1 receives signal s1.
This can be computed using Bayes’ rule in the usual
way. Rater 1’s posterior belief about the probability

17 Hanson (2002) applies a scoring-rule-based approach in a model
in which a number of experts are sequentially asked their belief
about the distribution of a random event, whose realization is
revealed after all experts have reported. In our model, the prod-
uct’s type is never revealed, and therefore we must rely on other
agents’ reports to provide incentives.
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that S2 = s2 when S1 = s1 is then given by g#s2 ! s1$=∑T
t=1 f #s

2 ! t$p1#t ! s1$. Using this distribution (and still
assuming stochastic relevance), rater 1 can be induced
to truthfully reveal s1 using the scoring rule specified
in Proposition 1. After rater 1 announces her signal,
this information is made public and is used to update
beliefs about the product’s type.
This process can be iterated. When rater i is asked

to announce her signal, the “prior” distribution over
types takes into account all previous announcements.
Incentives to rater i are constructed using a scoring
rule that incorporates these updated beliefs, i.e., rater
i is scored using a strictly proper scoring rule applied
to the distribution implied by rater i’s announce-
ment and the current beliefs about the product’s type
(which incorporates the announcements of the first
i− 1 raters). To balance the budget, rater i’s transfer
could be paid by rater i+ 2.
When a finite string of raters experience the prod-

uct, the last rater has no incentive to lie, but also
none to tell the truth, because there is no future sig-
nal upon which to base her reward. Thus, there is
a danger of the whole process unravelling. Fortu-
nately, the center can solve this problem by grouping
some raters together and treating group members as
if they report simultaneously. For example, suppose
there are 10 raters. Consider the last three—8, 9, and
10. The center can score rater 8 based on 9’s announce-
ment, 9 based on 10’s, and 10 based on 8’s. As long
as the center can avoid revealing these three raters’
announcements until all three have announced, effec-
tive incentives can be provided using our earlier tech-
niques, and the chain will not unravel. Transfers can
also be made within the ring to balance the budget
for the ring.

3.2. Continuous Signals
Until now, we have considered discrete type and
signal spaces. All of our results translate to the
continuous case in a natural way (e.g., den-
sity functions replace discrete distributions, inte-
grals replace sums, etc.). For example, if rater i
reports signal si, the logarithmic score is com-
puted as ln#g#sj ! si$$, where g#sj ! si$ is now the
posterior density of Sj = sj given Si = si. Most
importantly, the scoring rules we have discussed
continue to be strictly proper in the continuous
case.
In this section, we briefly consider two particu-

larly interesting aspects of the problem with contin-
uous signals and product-type spaces, a comparison
of the three scoring rules when prior and sample
information are normally distributed, and the prob-
lem of eliciting discrete information when signals are
continuous.

3.2.1. Effort Elicitation with Normally Distri-
buted Noise: A Comparison of Scoring Rules. Let q
denote the unknown quality of the good, and suppose
that raters have prior beliefs that q is normally dis-
tributed with mean , and precision -q , where preci-
sion equals 1/variance. Suppose each rater observes a
real-valued signal Si of the object’s quality that is nor-
mally distributed with mean q and precision -i. That
is, each rater receives a noisy but unbiased signal of
the object’s quality. Conditional on observing Si = si,
the rater’s posterior belief about q is that q is dis-
tributed normally with mean ,̂= #,-q + si-i$/#-q + -i$

and precision -̂= -q + -i.18
Suppose that rater j observes signal Sj on the

object’s quality, where Sj is normally distributed with
mean q and precision -j . Conditional on observing
Si = si, rater i’s posterior belief about the distribution
of Sj is that Sj is normally distributed with mean ,̂
and precision -= -̂-j /#-̂+ -j$.19
Because different observation-precision combina-

tions lead to different posterior beliefs about the
distribution of Sj , assuming stochastic relevance con-
tinues to be reasonable in the continuous case. If we
make this assumption, then payments based on a
proper scoring rule can induce effort and honest
reporting. As before, rater i will prefer to be scored
on her posterior for the reference rater j , which is
achieved by honestly reporting her observation and
her precision, allowing the center to correctly com-
pute her posterior.20
We assume that by exerting effort, raters can

increase the precision of their signals. Let c#-i$ repre-
sent the cost of acquiring a signal of precision -i ≥ 0,
where c′#-i$ > 0, c′#0$ = 0! c′#*$ = *, and c′′#-i$ ≥ 0.
To compare the logarithmic, quadratic, and spheri-
cal scoring rules, it is necessary to ensure that the
rater is choosing the same signal precision under each
rule. As suggested by our analysis in §2.2, the cen-
ter can induce the rater to choose more or less effort
by multiplying all transfers by a larger or smaller
constant.
Let f #x$ be the probability density function of a nor-

mal random variable with mean , and precision -.

18 See Pratt et al. (1965).
19 The variance of Sj conditional on Si is the sum of the variance of
the posterior belief about q, 1/-̂, and the variance of Sj conditional
on q, 1/-j , which implies precision -= -̂-j /#-̂+ -j $.
20 Ottaviani and Sørensen (2004) consider a related model, with nor-
mally distributed information of fixed precision for each rater. In
their analysis, however, each rater attempts to convince the world
of their expertise (i.e., that they have precise signals). With
that objective function, there is no equilibrium where signals
are fully revealed. By contrast, we introduce an explicit scor-
ing function that is not based solely on the inferred or reported
precision of raters’ signals, and full information revelation can be
induced.
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Table 1

Rule Variance of transfers Min Max Range

Log 2A2c′!"i #
2 −* A log

(
"

2$

)
c′!"i # *

Quadratic
16!2

√
3− 3#
3

A2c′!"i #
2 −2Ac′!"i # 2!2

√
2− 1#Ac′!"i # 4

√
2Ac′!"i #

Spherical
16!2

√
3− 3#
3

A2c′!"i #
2 0 4

√
2Ac′!"i # 4

√
2Ac′!"i #

where A= !"i + "q #!"i + "j + "q #

"j
.

Under the logarithmic scoring rule, the maximized
expected utility as a function of precision (i.e., when
the rater announces truthfully) is given by

vl#-i$=
∫

log#f #x$$f #x$dx=−1
2
+ 1

2
log

(
-

2.

)
"

It is straightforward to verify that vl#-i$ is increas-
ing and concave in -i. Thus, as in the discrete case,
by varying the multiplicative scaling factor, the center
can induce the rater to choose any particular level of
precision.
The scaling factor * that induces a particular -i is

found by solving

max
-i

*

(
−1
2
+ 1

2
log

(
-

2.

))
− c#-i$"

Setting the derivative of this expression equal to
zero yields that choosing * = 2

-j
#-q + -i$#-q + -i + -j$·

c′#-i$≡ *l induces precision -i under the logarithmic
rule. Analogous calculations for the quadratic and
spherical scoring rules find that to induce preci-
sion -i, * = #4.1/2/-3/2

j $#-q + -i$
1/2#-q + -i + -j$

3/2c′#-i$

and *= ##4
√
2.1/4$/-5/4

j $#-q + -i$
3/4#-q + -i + -j$

5/4c′#-i$
respectively.
Based on these choices for *, the variance and range

of the transfers under each of the rules is shown in
Table 1.21
Two notable features emerge from this analysis.

First, the quadratic and spherical rules have the same
variance and range of payments. This is because both
rules specify scores that are linear in f #x$, and so,
once scaled to induce the same precision, they differ
only by an additive constant. Second, while the log-
arithmic rule has the smallest variance (16/3#2

√
3 −

3$ ≃ 2"4752), its the range of payments is infinite
because limx→0 ln#x$ = −*. We refer to these results
in §4.2, where we discuss how to choose among the
scoring rules in particular application contexts.

21 Supporting computations for Table 1 are available from the
authors upon request.

3.2.2. Eliciting Coarse Reports. Raters’ informa-
tion is often highly nuanced. Yet, systems often emp-
loy coarser measures of quality, such as 1 to 5 stars.
In this section, we consider situations where the cen-
ter offers raters a choice between several “coarse”
reports, and analyze whether it is possible to design
payments that induce people to be as truthful as pos-
sible, i.e., to choose the admissible report closest to
their true signal.
The coarse reporting problem is both subtle and

complex. Proper scoring rules induce people to truth-
fully announce their exact information. One might
hope that in a sufficiently smooth environment, a
rater offered a restricted set of admissible reports
will choose the one that is “closest” to her true
information. However, this intuition relies on two
assumptions: that closeness in signals corresponds to
closeness in posteriors over product types, and that
close beliefs in product-type space correspond to close
beliefs about the distribution of a reference rater’s
announcement. Although it remains an open question
whether these assumptions hold in general, it is pos-
sible to show that they hold when there are only two
types of products.
Suppose raters receive signals drawn from the unit

interval and that there are only two types of objects,
good (type G) and bad (type B). Their signal densities
are f #s !G$ and f #s ! B$. Let p ∈ #0!1$ denote the prior
probability (commonly held) that the object is good.
We assume that densities f #s !G$ and f #s ! B$ satisfy
the Monotone Likelihood Ratio Property (MLRP), i.e.,
f #s !G$/f #s ! B$ is strictly increasing in s.
MLRP implies the distribution for type G first

order stochastically dominates the distribution for B
(see Gollier 2001). If rater i observes signal Si = si,
she assigns posterior probability p#G ! si$= pf #si !G$/
#pf #si !G$+ #1− p$f #si ! B$$ to the object’s being good.
MLRP ensures that p#G ! si$ is strictly increasing in si.
Thus, MLRP embodies the idea that higher signals
provide stronger evidence that the object is good.
We divide the signal space into a finite number of

intervals, which we call bins, and construct a scoring
rule such that rater i’s best response is to announce
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the bin in which her signal lies, if she believes that
all other raters will do the same. The construction of
reporting bins and a scoring rule capitalizes on a spe-
cial property of the quadratic scoring rule. Friedman
(1983) develops the notion of “effective” scoring rules.
A scoring rule is effective with respect to a metric
if the expected score from announcing a distribu-
tion increases as the announced distribution’s dis-
tance from the rater’s true distribution decreases.
When distance between distributions is measured
using the L2 metric, the quadratic scoring rule has
this property. Also, when there are only two types,
the L2 distance between two distributions of reference
raters’ announcements is proportional to the prod-
uct type beliefs that generate them (if such beliefs
exist).

Proposition 3. Suppose there are two types of objects
with signal densities that satisfy MLRP. Then, for any
integer L, there exists a partition of signals into L inter-
vals and a set of transfers that induce Nash equilibrium
truthful reporting when agents can report only in which
interval their signal lies.

The essence of the proof of Proposition 3, which
appears in Appendix A, is as follows. After observ-
ing Si = si, rater i’s belief about the product’s type
(PT belief) is summarized by rater i’s posterior prob-
ability that the product is good, p#G ! si$. We begin
by dividing the space of PT beliefs into L equal-sized
bins. Since p#G ! si$ is monotone, these PT-belief bins
translate to intervals in the rater’s signal space, which
we refer to as signal bins. Signal bins can differ in
size. A rater who announces her signal is in the lth bin
of signals is treated as if she had announced beliefs
about the product type at the midpoint of the lth

PT bin, which implies some distribution for the ref-
erence rater’s announcement (RRA). Each signal bin
announcement thus maps to PT beliefs and then to
an RRA distribution. The RRA distribution is scored
using the quadratic rule.
Because the quadratic scoring rule is effective,

given a choice among this restricted set of admissible
RRA distributions, the rater chooses the RRA distri-
bution nearest (in the L2 metric) to her true one. This
turns out to be the one with PT belief nearest her true
PT belief. If si is in the lth signal bin, the closest avail-
able PT belief is the midpoint of the lth PT bin. Thus,
given coarse bins, the quadratic scoring rule induces
truthful (albeit coarse) bin announcements.
Note that the bins are constructed by dividing the

PT space rather than the signal space into equal-
sized bins. While closeness of PT beliefs corresponds
to closeness of RRA beliefs, close signals do not
translate linearly to close PT beliefs. For example,
suppose a rater observes signal si = 0"5, and that
p#G ! 0"5$= 0"3. It is possible that p#G ! 0"4$= 0"2 while

p#G ! 0"6$= 0"35. Thus, although the distance between
signals 0"5 and 0"6 is the same as the distance between
signals 0"5 and 0"4, the PT beliefs (and therefore the
RRA beliefs) are closer for the first pair than for the
second.
Even in the simple case with only two product

types, it is somewhat complicated to show that raters
will want to honestly reveal their coarse informa-
tion. It remains an open question whether it is pos-
sible to elicit honest coarse reports in more complex
environments.

4. Issues in Practical Application
Sections 2 and 3 provide a theoretical framework for
inducing effort and honest reporting. Designers of
practical systems will face many challenges in apply-
ing it. Many of these challenges can be overcome with
adjustments in the transfer payment scheme, com-
putation of parameters based on historical data, and
careful choice of the dimensions on which raters are
asked to report.

4.1. Risk Aversion
Until now, we have assumed that raters are risk neu-
tral, i.e., that maximizing the expected transfer is
equivalent to maximizing expected utility. If raters are
risk averse, then scoring-rule-based transfers will not
always induce truthful revelation. We present three
ways to address risk aversion.
If the center knows the rater’s utility function,

the transfers can be easily adjusted to induce truth-
ful reporting. If U #$ is the rater’s utility function
and R is a proper scoring rule, then choosing trans-
fers ' = U−1#R$ induces truthful reporting, because
U #U−1#R$$≡R (Winkler 1969).

If the rater’s utility function is not known, risk-
neutral behavior can be induced by paying the rater
in “lottery tickets” for a binary-outcome lottery
instead of in money (Smith 1961, Savage 1971). In
effect, the score assigned to a particular outcome gives
the probability of winning a fixed prize. Because von
Neumann-Morgenstern utility functions are linear in
probabilities, an expected-utility maximizer will seek
to maximize the expected probability of winning the
lottery. Thus the lottery-ticket approach induces indi-
viduals with unknown nonlinear utility functions to
behave as if they are risk neutral. Experimental evi-
dence suggests that, while not perfect, the binary-
lottery procedure can be effective in controlling for
risk aversion, especially when raters have a good
understanding of how the procedure works.22
A third method of dealing with risk-averse raters

capitalizes on the fact that raters’ risk aversion is

22 See Roth (1995, pp. 81–83) and the references therein.
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likely to be less important when the variability in
payments is small. Although we have presented our
results for the case where each rater is scored against
a single reference rater, the idiosyncratic noise in the
rater’s final payment (measured in terms of its vari-
ance) can be reduced by scoring the rater against
multiple raters and paying her the average of those
scores. By averaging the scores from a sufficiently
large number of reference raters, the center can
effectively eliminate the idiosyncratic noise in the
reference raters’ signals. However, the systematic risk
due to the object’s type being unknown cannot be
eliminated.

4.2. Choosing a Scoring Rule
Which of the three scoring rules we have discussed
is best? Each rule has its relative strengths and weak-
nesses and none emerges as clearly superior.
The logarithmic rule is the simplest, giving it a mod-

est advantage in comprehension and computational
ease. It is also “relevant” in the sense that it depends
only on the likelihood of events that actually occur.23
In addition, our results in §3.2.1 show that the pay-
ments needed to induce a particular effort level have
lower variance under the logarithmic rule than under
either of the other two rules, at least when information
is normally distributed. If scores are used to evaluate
the raters (for example, to decide whether to invite
them back as reviewers in the future), this lower vari-
ance enables the logarithmic rule to provide a more
reliable evaluation given the same number of trials.
On the other hand, the fact that log#x$ goes to −*

as x decreases to zero renders the log rule unattrac-
tive when probabilities become small and raters’
limited liability is a concern, or if the support of
the raters’ posterior distributions changes with their
information. On a related note, under the log rule,
small changes in low-probability events can signifi-
cantly affect a rater’s expected score, which may be
undesirable if raters have difficulty properly assess-
ing low-probability events. A final disadvantage to the
logarithmic score is that, in contrast to the quadratic
rule, there is no metric with respect to which the log-
arithmic rule is effective (Nau 1985). That is, a rater’s
expected score from announcing a particular distribu-
tion need not increase as its distance (as measured by
any valid metric) from the true distribution decreases.
As discussed above, the quadratic rule is effective

with respect to the L2 metric, which is what allowed
us to solve the coarse reporting problem in §3.2.2.
The quadratic rule is not relevant, so it can have the
perverse property that, given two distributions, the
quadratic score may be higher for the distribution that

23 Relevance is important in Bayesian models of comparing differ-
ent probability assessors (Winkler 1969, Staël Von Holstein 1970),
although this is not important for our application.

assigns lower probability to the event that actually
occurs (Winkler 1996). The spherical rule shares many
properties with the quadratic rule (although its pay-
ments are always positive). As we saw in the normal-
information case, once the spherical and quadratic
rules are scaled to induce the same rating effort,
they become identical up to an additive constant. The
spherical rule is effective with respect to a renormal-
ized L2 metric (see Friedman 1983).

Jensen and Peterson (1973) compare the three scor-
ing rules in head-to-head experimental trials. They
conclude that there is essentially no difference in the
probabilities elicited from raters. They do note that
subjects seem to have trouble understanding scoring
rules involving both positive and negative payments;
while the quadratic rule has this property, it is easily
addressed by adding a constant to all payments. Thus,
except for situations where some events have low
probability or raters’ information affects the set of
possible events (i.e., moving support), factors that
make the logarithmic score undesirable, there is no
clear reason to prefer one scoring rule over the
others.

4.3. Estimating Types, Priors, and
Signal Distributions

In many situations, there will be sufficient rating his-
tory available for the center to estimate the prior
probabilities of alternative types and signals to start
the scoring process. One technique would define the
product types in terms of the signal distributions they
generate. For example, suppose that there are only
two signals, h and l. Products are of varying quality,
which determines the percentage of users who sub-
mit h ratings for the product. The type space is con-
tinuous in principle, but in practice the site could
approximately capture reality by defining a set of
discrete types that partitions the space. For illustra-
tive purposes, we define a fairly coarse partition of
types, 1! " " " !9, with f #h ! i$ = i/10. That is, products
of type 1 get rated h 10% of the time, and those of
type 7 get rated h 70% of the time. The site would then
estimate the prior distribution function p#i$ based on
how many products in the past accumulated approx-
imately 10i% ratings.24
Table 2 illustrates updating of beliefs about the

probability that a product is of any of the nine types.
Note that the initial distribution is symmetric about
type 5, implying that initial probability of h is 0.5.
After receiving a report h, types that have higher fre-
quencies of h signals become more likely, as shown
in the second row of the table. After receiving two

24 Obviously, the partition could be finer, for example with types
1–99 defined by percentage of raters rating the product h. In addi-
tion, the partition need not be uniform: More types could be
defined in the region that occur most often on a particular site.
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Table 2 Initial and Updated Probabilities of Nine Types Defined by
Their Probability of Yielding Signal h.

After
signal p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) pr (h)

0%05 0%1 0%1 0%1 0%3 0%1 0%1 0%1 0%05 0%5
h 0%01 0%04 0%06 0%08 0%3 0%12 0%14 0%16 0%09 0%59
h& l 0%02 0%08 0%1 0%12 0%36 0%12 0%1 0%08 0%02 0%5

conflicting reports, h and l, the distribution is again
symmetric about type 5, but the extreme types are
now seen as less likely than they were initially.

4.4. Taste Differences Among Raters
Suppose that raters differ systematically in their
tastes. For example, raters of type A might be gener-
ally harsher in their assessments than those of type B,
so that with binary signals, they would be more likely
to perceive goods of any particular type as being low
quality, fA#l ! t$ > fB#l ! t$. The same problems could
arise if the differences among raters’ perceptions
covaried with the product types. For example, an
action movie aficionado might perceive most action
movies to be h and most romantic comedies to be l;
perceptions would be reversed for fans of comedies.
When tastes differ systematically, the center will

need to model rater types explicitly. As in the sim-
pler case in §4.3, given a sufficient history the cen-
ter can estimate the distribution of user types and
for each type the signal distributions. An individ-
ual rater’s history provides additional information
for inferring the distribution from which her type is
drawn.25

4.5. Noncommon Priors and Other
Private Information

The incentives for effort and honest reporting depend
critically on the center’s ability to compute a posterior
distribution for another rater’s signal that the current
rater would agree with, if only she had the informa-
tion and computational ability available to the cen-
ter. Problems may arise if raters have relevant private
information beyond their own signals. Knowing that
the center will not use that other private information,
the rater will no longer be confident that an honest
report of her signal will lead to scoring based on her
true posterior beliefs about the distribution of another
rater’s signals. If she can intuit the correct direction,

25 A variety of recommender systems or collaborative filtering algo-
rithms rely on the past ratings of a set of users to make person-
alized predictions of how well each individual will like products
they have not yet rated. See Breese et al. (1998) and Sarwar et al.
(2000) for reviews. Often these algorithms merely predict a scalar
value for an individual’s rating, but they could be extended to pre-
dict a distribution over signals for each rater for each product not
yet rated. When an additional rating is added from rater i, the pre-
dicted distributions for each other rater for that product would be
updated.

she may distort her reported signal to cause the center
to score her based on posterior beliefs closer to what
she would compute herself.
Fortunately, the mechanisms in this paper easily

adapt if raters can report any private information
they have about the distribution of product types,
rater types, or signals contingent on product and rater
types.26 The center will use the reference rater’s report
to compute two scores. The first comes from the dis-
tribution implied by the reported private priors; the
second is based on the posteriors computed from the
priors and the reported signal. An honest report of
priors maximizes the first score. The second is maxi-
mized when the center calculates accurate posteriors,
and that occurs when both priors and signal are hon-
estly reported. Thus, honest reports maximize either
score.
In most practical situations, it will not be necessary

to elicit all possible private information. Where the
center has a sufficient history of past ratings, most
raters will trust the center’s inferences about the distri-
bution of product types, rater types, and signals condi-
tional on product and rater types. In those cases, raters
need only report what they saw. However, when raters
may have beliefs that diverge from the center’s, it will
be useful to offer raters an opportunity to report those
beliefs, lest the unreported beliefs create incentives for
distorting signal reports.

4.6. Other Potential Limitations
Other potential limitations could interfere with the
smooth functioning of a scoring system based on
the peer-prediction method. We mention three. First,
while we have shown there is a Nash equilibrium
involving effort and honest reporting, raters could
collude to gain higher transfers. Of course, with bal-
anced transfers it would not be possible for all of the
raters to be better off through collusive actions, and
it is unclear whether a subset of the raters could col-
lude to gain at the expense of the remaining raters
who exerted effort and reported honestly. For exam-
ple, one rater can gain by knowing what a colluding
reference rater will report, but it is not clear whether
the gain would outweigh the losses for the colluding
reference rater when she is scored against some other,
honest rater. Even if such collusion were profitable,
the center has two approaches available to deter it.
The selection of who will serve as a reference rater
for each rater can be randomized and delayed until
after ratings are reported, which would make collu-
sion harder to coordinate. In addition, the center may
be able to detect suspicious rating patterns through

26 Note that for peer-prediction scoring to work, we need to com-
pare one rater’s posterior to another rater’s reported signal, so it
is critical to elicit raters’ signals separately from any other infor-
mation that is also elicited from them.
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statistical analysis, and then employ an outside expert
to independently evaluate the product.27
A second potential limitation may arise when raters

perceive multidimensional signals. Our scoring sys-
tem can easily generalize to handle multiple dimen-
sions by eliciting reports on several dimensions, such
as a restaurant’s food, decor, and service. Scores can
then be computed based on implied distributions for
reports on one or all of the dimensions. If, how-
ever, some dimensions are not elicited, two problems
emerge. First, information may not be captured that
could be valuable to consumers. More troubling, in
some situations the information not elicited from a
rater may be useful in predicting the next report, in
which case the rater may be tempted to manipulate
the report that is requested.
Consider, for example, an interdisciplinary review

panel. An economist with some knowledge of com-
puter science may evaluate proposals as other
economists do, but may perceive some additional sig-
nal about how computer scientists will perceive the
proposals. Suppose she is asked to report only her
perception of the proposal’s quality. The center then
computes an updated distribution of signals for the
next rater, accounting for both raters’ types as in §4.4.
But the economist’s secondary signal about how well
computer scientists will like the proposal may allow
her to compute a more accurate distribution than
the center can, and thus she will sometimes want to
report dishonestly to make the center more closely
approximate her true beliefs.28
One solution to this problem would be to find

a set of dimensions on which raters are asked to
report such that any other signals the raters get are
not relevant for predicting the next player’s report.
For example, if restaurant reviewers are asked to
report separately on food, decor, and service, the
transfer payments can induce honest reporting as
long as any other independent signals that review-
ers may receive (such as the number of people in
the restaurant that night) are not useful in predict-
ing how other raters will perceive food, decor, or

27 This would be analogous to a university provost who normally
accepts promotion and tenure recommendations with a minimal
review, but may undertake the costly option of personally evaluat-
ing the portfolios of candidates from units whose recommendation
patterns are suspicious, or employing an outside expert to evaluate
those portfolios.
28 Prendergast’s (1993) model of yes-men is one example of this type
of situation. In that model, the first rater receives one signal about
the expected value of a business action and another signal about
how well the next rater (the boss) will like that action. There is no
scoring function that will elicit reports from which the center can
infer just the rater’s direct signal as opposed to her signal about
the boss’ signal. Thus, she will become, at least partially, a yes-man
who says what she thinks the boss will think.

service. On an interdisciplinary review panel, review-
ers might be asked to separately report quality from
the perspective of each of the disciplines involved.
When scores are computed, they can be based on the
probabilities for another player’s report on any one
dimension, or on all of them. Again, because honest
reporting will cause the center to correctly compute
the rater’s beliefs about the reference rater’s signal,
honest reporting will be an equilibrium. Unfortu-
nately, it may be difficult in practice to find a set
of rating dimensions such that unreported signals
for a rater are irrelevant to computing beliefs about
reported signals for a reference rater.
Given the computational power and the informa-

tion resources available to the center, it may not be
necessary in practice to elicit from raters all of their
weakly stochastically relevant signals. For example,
suppose the center performs a complex collaborative
filtering algorithm to predict the next rater’s dis-
tribution, and the individual rater either lacks the
computational resources or the history of everyone’s
previous ratings, or does not know in advance which
rater she will be scored against. Although an addi-
tional private signal might make rater i think that, say,
signal h is more likely for some raters than the center
would otherwise compute, she will often be unable to
determine which false report on the dimensions that
the center elicits would raise her payoff.
A third potential limitation is trust in the system:

people may not believe that effort and honest report-
ing are optimal strategies. In individual instances,
raters who follow that strategy will have negative
transfers, and they may incorrectly attribute such out-
comes to their strategy rather than to the vagaries of
chance. Few raters will be willing or able to verify the
mathematical properties of the scoring system proven
in this paper, so it will be necessary to rely on outside
attestations to ensure public confidence. Professional
experts could be invited to investigate the working of
the systems, or independent auditors could be hired.

5. Conclusion
Buyers derive immense value from drawing on the
experience of others. However, they have the incen-
tive to shirk from the collective endeavor of pro-
viding accurate information about products, be they
microwave ovens or movies, academic papers or
appliances. Peer-prediction methods, capitalizing on
the stochastic relevance between the reports of differ-
ent raters, in conjunction with appropriate rewards,
can create incentives for effort and honest reporting.
Implementors of such systems will face a number of

design choices, ranging from rating dimensions and
procedures for selecting reviewers, to technology plat-
forms and user interfaces. This paper provides only
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a conceptual road map, not a detailed implementa-
tion plan, and only for those design decisions that
involve incentives for effort and honest reporting. It
is an important road map, however, because the most
obvious approach to peer comparison, simply reward-
ing for agreement in reviews, offers inappropriate
incentives.
The basic insight is to compare implied posteriors

(rather than an actual report) to the report of a refer-
ence rater. A rater need not compute the implications
of her own signal for the distribution of the reference
rater, as long as she trusts the center to do a good
job of computing those implications. There remain
many pitfalls, limitations, and practical implementa-
tion issues, for which this paper provides conceptual
design guidance.
Recommender and reputation systems require that

ratings be widely collected and disseminated. To over-
come incentive problems, raters must be rewarded.
Whether those rewards are monetary or merely grades
or points in some scoring system that the raters care
about, intense computational methods are required to
calibrate appropriate rewards. The upward march of
information technology holds promise.

Acknowledgments
The authors thank Alberto Abadie, Chris Avery, Miriam
Avins, Chris Dellarocas, Jeff Ely, John Pratt, Bill Sandholm,
Lones Smith, Ennio Stachetti, Steve Tadelis, Hal Varian,
two referees, and two editors for helpful comments. They
gratefully acknowledge financial support from the National
Science Foundation under grant numbers IIS-9977999,
IIS-0428868, and IIS-0308006, and Zeckhauser thanks the
Harvard Business School for hospitality.

Appendix A. Proofs
Proof of Proposition 2. Let

Zi#0$= argmax
a

M∑

n=1
R#sr#i$n ! a$f #a$!

so that the maximum expected value of any report made
without acquiring a signal is *Zi#0$. Let

Zi#1$ = Esim

(
E
s
r#i$
n
R#sr#i$n ! sim$

)

=
M∑

m=1
f #sim$

M∑

n=1
g#sr#i$n ! sim$R#sr#i$n ! sim$!

so that the expected value of getting a signal and report-
ing it is *Zi#1$. Savage’s analysis of the partition problem
(1954, Chapter 7) shows that acquiring the signal strictly
increases the buyer’s expected score whenever it changes
the rater’s posterior belief about the other raters’ announce-
ments (see also Lavalle 1968). Thus, Zi#1$ > Zi#0$ when
stochastic relevance holds.

Pick *> c/#Zi#1$−Zi#0$$. Thus *Zi#1$−*Zi#0$> c, so the
best response is to pay the cost c to acquire a signal and
report it. !

Proof of Proposition 3. Divide the space of PT beliefs,
which are just probabilities that the product is of the
good type, into L equal-sized bins, with the lth bin being

Bl = (#l− 1$/L! l/L) and BL = (#L − 1$/L!1). Given these
bins, the rater’s PT belief induces a RRA belief. Let P l

G =∫ l
#l−1$/L f #s !G$ds and P l

B =
∫ l
#l−1$/L f #s ! B$ds, the probabilities

assigned to the reference rater announcing the lth bin if the
object is known to be good or bad, respectively. If the rater
observes si, the likelihood of the reference rater’s announc-
ing the lth bin is

P l
si =

∫ l

#l−1$/L
p#G ! si$f #s !G$+ #1− p#G ! si$$f #s ! B$ds

= p#G ! si$P l
G + #1− p#G ! si$$P l

B"

Let Psi = #P 1
si
! " " " !PL

si
$ denote the RRA distribution of a rater

who has observed si.
Because p#G ! s$ is monotone in s, the inverse function

.#p$ is well defined. Let B̃l = (.##l − 1$/L$!.#l/L$) be the
lth bin of signals and B̃L = (.##L − 1$/L$!.#1$); i.e., raters
observing signals in B̃l have PT beliefs in Bl. A rater who
announces that her signal is in B̃l is paid using the quadratic
scoring rule based on the RRA distribution for a rater who
has PT belief ml = #2l−1$/2L. Thus, if a rater always prefers
to be scored on the PT bin that contains her true beliefs, she
will report the signal bin that contains her true signal. The
remainder of the proof is to show that it is optimal for a
rater to be scored against the midpoint of the PT bin that
contains her true posterior PT belief.

First, we show that closeness of PT beliefs corresponds
to closeness of RRA beliefs. The distance between two PT
beliefs p1 and p2 is simply their absolute difference, !p1−p2!.
For the distance between two RRA distributions, we use
the L2 metric. That is, if P and P̂ denote two RRA distribu-
tions, the L2 distance between them is given by d#P! P̂ $ =
#
∑

l#P
l − P̂ l$2$1/2.

A rater who observes signal si assigns probability P l
si
=

p#G ! si$P l
G + #1− p#G ! si$$P l

B to the reference rater announc-
ing bin l. The distance between the posterior distributions
of a rater observing si and a rater observing ŝi is therefore
given by

d#Psi!Pŝi $ =
(∑

l

#P l
si − P l

ŝi $
2
)1/2

=
∣∣p#G ! si$− p#G ! ŝi$

∣∣
(∑

l

#P l
G − P l

B$
2
)1/2

" (5)

Expression (5) establishes that the L2 distance between two
RRA distributions is proportional to the distance between
the PT beliefs that generate them.

The final step is to show that, given the choice between
being scored based on the RRA distribution for m1! " " " !mL,
a rater observing si maximizes her expected quadratic score
by choosing the ml that is closest to p#G ! si$, i.e., her true
PT beliefs. This follows from a result from Friedman (1983,
Proposition 1), who shows that the expected quadratic score
of a rater with true RRA P is larger from reporting P̂ than
from reporting P̃ if and only if d#P̂!P $ < d#P̃!P $.29 Thus,
Friedman’s result, in conjunction with (5), establishes that if
a rater believes the reference rater will truthfully announce
her bin, then she maximizes her expected quadratic score
by selecting the PT bin that contains her true beliefs. !

29 Friedman (1983) calls metric-scoring-rule pairs that have this
property “effective.”
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Appendix B. Eliciting Effort
To consider the issue of effort elicitation, the rater’s experi-
ence with the product is encoded not as a single outcome,
but as a sequence of outcomes generated by random sam-
pling from distribution f #sm ! t$. Greater effort corresponds
to obtaining a larger sample. Let xi denote the number
of outcomes observed by rater i, i.e., her sample size. We
require the rater to put forth effort to learn about her expe-
rience, letting ci#xi$ be the cost of observing a sample of size
xi, where ci#xi$ is strictly positive, strictly increasing, and
strictly convex, and assumed to be known by the center.

For a rater who already observes a sample of size x,
learning the x + 1st component further partitions the out-
come space, i.e., larger samples correspond to better infor-
mation. We begin by arguing that holding fixed the agents’
sample sizes, scoring-rule-based payments can elicit this
information. We then ask how the mechanism can be used
to induce agents to acquire more information, even though
such acquisition is costly.

For any fixed xi, the information content of two possible
xi component sequences depends only on the frequencies of
the various outcomes and not on the order in which they
occur. Consequently, let Y i#xi$ be the M-dimensional ran-
dom variable whose mth component counts the number of
times outcome sm occurs in the first xi components of the
agent’s information.30 Let yi = #yi

1! " " " !y
i
M $ denote a generic

realization of Y i#xi$, where yi
m is the number of times out

of xi that signal sm is received, and note that
∑M

m=1 y
i
M = xi.

Rater i’s observation of Y i#xi$ determines her posterior
beliefs about the product’s type, which are informative
about the expected distribution of the other players’ signals.
Because different realizations of Y i#xi$ yield different pos-
terior beliefs about the product’s type, it is also natural to
assume that Y i#xi$ is stochastically relevant for Y j#xj$, and
we make this assumption throughout this appendix. In the
remainder of this section, we let g#yj#xj$ ! yi#xi$$ denote the
distribution of Y j#xj$ conditional on Y i#xi$.

Lemma 1. Consider distinct players i and j and suppose xi,
xj ≥ 0 are commonly known. If agent i is asked to announce a
realization of Y i#xi$ and is paid according to the realization of
Y j#xj$ using a strictly proper scoring rule, i.e., R#yj#xj$ ! yi#xi$$,
then the rater’s expected payment is uniquely maximized by
announcing the true realization of Y i#xi$.

Proof. Follows from the definition of a strictly proper
scoring rule.

Proposition 4 restates Proposition 1 in the case where the
sizes of the raters’ samples are fixed and possibly greater
than 1, i.e., xi ≥ 1 for i= 1! " " " ! I . It follows as an immediate
consequence of Lemma 1.

Proposition 4. Suppose rater i collects xi ≥ 1 signals. There
exist transfers under which truthful reporting is a strict Nash
equilibrium of the reporting game.

Proof of Proposition 4. The construction follows that
in Proposition 1, using Y i#xi$ for the information received
by rater i and constructing transfers as in (2) and (4). Under
the equilibrium hypothesis, j = r#i$ announces truthfully.
Let ai denote rater i’s announcement of the realization of

30 Y i#xi$ is a multinomial random variable with xi trials and M pos-
sible outcomes. On any trial, the probability of the mth is f #sm ! t$,
where t is the product’s unknown type.

Y i#xi$, and let transfers be given by

'∗
i #y

j ! ai$=R#yj ! ai$" (6)

Under these transfers, truthful announcement is a strict best
response. !

Proposition 4 establishes that truthful reporting remains
an equilibrium when raters can choose how much informa-
tion to acquire. We next turn to the questions of how and
whether the center can induce a rater to choose a particular
xi. Let j denote the rater whose signal player i is asked to
predict (i.e., let r#i$ = j), and suppose rater j has a sample
of size xj and that she truthfully reports the realization of
Y j#xj$. (For simplicity, we omit argument xj in what follows.)
Further, suppose that rater i is paid according to the scoring-
rule-based scheme described in (6). Because xi affects these
transfers only through rater i’s announcement, it is optimal
for rater i to truthfully announce Y i#xi$ regardless of xi.

Because xi is chosen before observing any information,
rater i’s incentive to choose xi depends on her ex ante
expected payoff before learning her own signal. This expec-
tation is written as Zi#xi$= EY i #EY j R#Y j ! Y i#xi$$$.

Lemma 2 establishes that raters benefit from better infor-
mation, and is a restatement of the well-known result in
decision theory that every decision maker benefits from a
finer partition of the outcome space (Savage 1954).

Lemma 2. Zi#xi$ is strictly increasing in xi.

Proof of Lemma 2. Fix xi and let yi be a generic real-
ization of Y i#xi$. Conditional on observing yi, rater i max-
imizes her expected transfer by announcing distribution
g#Y j ! yi$ for rater j’s information. Suppose rater i observes
the xi + 1st component of her information. By Lemma 1, i’s
expected transfer is now strictly maximized by announc-
ing distribution g#Y j ! #yi! sm$$, and rater i increases her
expected value by observing the additional information.
This is true for every yi, so it is true in expectation, and
Zi#xi + 1$>Zi#xi$. !

Lemma 2 establishes that as xi increases, rater i’s informa-
tion becomes more informative regarding rater j’s signal as
xi increases. Of course, the direct effect of rater i’s gathering
more information is to provide her with better information
about the product, not about rater j . Nevertheless, as long
as rater i’s information is stochastically relevant for that of
rater j , better information about the product translates into
better information about rater j .

When transfers are given by (6), the expected net bene-
fit to rater i from collecting a sample of size xi and truth-
fully reporting her observation is Zi#xi$−c#xi$. Hence, trans-
fers (6) induce rater i to collect a sample of size x∗i ∈
argmax#Zi#xi$− cxi$.

Rater i’s incentives to truthfully report are unaffected by
a uniform scaling of all transfers in (6). Therefore, by a judi-
cious rescaling of the payments to rater i, the center may
be able to induce the agent to acquire more or less informa-
tion. Expression (7) extends the transfers described in (6) to
allow for multiple signals and a rescaling of all payments
by multiplier *i > 0:

'∗
i #a

i!yr#i$$= *iR#y
r#i$ ! ai$" (7)

Under transfers (7), the maximal expected benefit from
a sample of size xi is *iZi#xi$. Hence, the center can
induce rater i to select a particular sample size, x̂i,
if and only if there is some multiplier *̂ > 0 such that
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x̂i ∈ argmax *̂Zi#xi$−c#xi$. The simplest case has Zi#xi$ con-
cave, i.e., where Zi#xi + 1$−Zi#xi$ decreases in xi.

Proposition 5. If Zi#xi+1$−Zi#xi$ decreases in xi, then for
any sample size x̂i ≥ 0 there exists a scalar *̂i ≥ 0 such that when
paid according to (7), rater i chooses sample size x̂i.

Proof of Proposition 5. Zi#x$ is concave, so sample size
x̂i is optimal if there exists *̂i satisfying

*̂iZi#x̂i$− ci#x̂i$ ≥ *̂iZi#x̂i + 1$− ci#x̂i + 1$! and

*̂iZi#x̂i$− ci#x̂i$ ≥ *̂iZi#x̂i − 1$− ci#x̂i − 1$"

Solving each condition for *̂i yields

ci#x̂i$− ci#x̂i − 1$
Zi#x̂i$−Zi#x̂i − 1$

≤ *̂i ≤
ci#x̂i + 1$− ci#x̂i$

Zi#x̂i + 1$−Zi#x̂i$
"

Such an *̂i exists if and only if

Zi#x̂i$−Zi#x̂i − 1$
Zi#x̂i + 1$−Zi#x̂i$

≥ ci#x̂i$− ci#x̂i − 1$
ci#x̂i + 1$− ci#x̂i$

"

By our assumptions, this expression is always true. !

If Zi#xi+1$−Zi#xi$ does not decrease in xi, then there may
be some sample sizes that are never optimal.31 Nevertheless,
increasing the scaling factor never decreases optimal sample
size, and so while the center may not be able to perfectly
control the raters’ effort choices, it can always induce them
to put forth greater effort if it wishes.

In practice, the center will not know each individual’s
cost of procuring additional information. However, the cen-
ter may be able to estimate costs, and then pick a scaling
factor that, in expectation, induces each rater to acquire an
optimal size sample.32
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