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Abstract

This paper studies protocols for eliciting and evaluating statistical forecasts.

Nature draws a state at random from a finite state space, according to some

distribution p. Prior to Nature’s move, a forecaster, who knows p, provides

a prediction for a given statistic of p (i.e., answers a question about p). The

protocol defines the forecaster’s payoff as a function of the prediction and the

subsequently realized state. When the statistic takes values in a finite set, the

payoffs that provide strict incentives to the forecaster exist if and only if the

statistic partitions the set of distributions into a power diagram. When the

statistic is continuous with a continuum of values, the these payoffs exist if and

only if the partition forms convex subsets. In both cases, the payoffs can be

fully characterized essentially as weighted averages of base functions.
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1 Introduction

A decision maker often has less information relevant for her decision than does some

other agent (a forecaster). This paper examines protocols for eliciting and evaluating

information when such information consists of statistical forecasts. Given a finite

state space Ω, Nature draws a state ω∗ at random according to some probability

distribution p. Before Nature chooses a state, a forecaster, who knows p, announces a

prediction for a “statistic” of interest to the decision maker. In this paper a “statistic”

has a fairly general meaning. It encompasses most uses of the term and captures all

features a distribution can possess. In particular, a “statistic” can be a real-valued

statistic such as the mean, median or variance of a random variable defined on Ω.

It can also be multidimensional: For instance, it could be a confidence interval, or

a variance-covariance matrix. Finally, it can be an arbitrary discrete statistic that

takes value in a more general set; for example, a ranking of events by likelihood, or a

pair of most correlated components of a random vector.

The protocols or mechanisms we consider in this paper are scoring rules. A scoring

rule assigns to the forecaster a payoff as a function of his prediction and the one

realization of the state of nature, ω∗, that is observed ex-post. We focus on strictly

proper scoring rules, scoring rules that give the forecaster (who seeks to maximize his

expected payoff) a strict incentive to report truthfully: The forecaster maximizes his

expected payoff if, and only if, he makes a truthful prediction.

We address two central questions. First, for which statistics does a strictly proper

scoring rule exist? Second, for a given statistic, how can we construct such a strictly

proper scoring rule? We show that for some statistics, a strictly proper scoring rule

does not exist. There are many cases for which the declared predictions do not procure

enough information to grant existence of strict incentives.1 But there are also many

cases for which it is enough.

We distinguish between two classes of statistics: The statistics that are continuous

and take a continuum of values (for example, the mean or variance of a random

variable), and the statistics that are discrete and take a finite number of values (for

example, a ranking of events in order of likelihood, or the most correlated pair of

components in a random vector). For continuous statistics, strict properness can be

1Note that, in this setting, the forecaster reports only a value for the statistic of interest, he does
not report the full probability distribution.
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achieved if and only if the statistic partitions the space of probability distributions into

convex sets. That is, each level set of the statistic—those sets of distributions assigned

to the same statistic value—must be convex. So, for example, a strictly proper scoring

rule exists for the mean, but not for the variance. For discrete statistics, strictly proper

scoring rules exist if and only if they partition the distributions into a power diagram,

a geometric object more constraining than convex partitions. We will show that this

implies, for example, that a strictly proper scoring rule can be constructed for the

ranking of events, but not for the most correlated components. In both cases, the

proper and strictly proper scoring rules are generated by the (continuous or finite)

mixtures of some given functions that are entirely—and often uniquely—determined

by the statistic itself. The paper provides a several examples of such constructions.

For statistics that take values in a set endowed with a natural ordering of its

elements (for example, the mode and the median of a random variable, that take real

values), we introduce an alternative class of scoring rules, the (strictly) order-sensitive

scoring rules. Order sensitivity means that the closer the prediction is to the true value

of the statistic, in terms of its rank, the larger the expected payoff. For continuous

statistics, strict order sensitivity is a property that all strictly proper scoring rules

possess. The result carries over to discrete statistics, albeit in a limited sense: When

they exist, the strictly order-sensitive scoring rules are exactly those that are strictly

proper. However, the discrete statistics that admit a strictly order-sensitive scoring

rule form only a small subset of all those that admit a strictly proper scoring rule.

These statistics partition the distributions into “slices” separated by hyperplanes, a

much stronger constraint. For example, a strictly order-sensitive scoring rule can be

constructed for the median, but not for the mode.

The literature on forecast evaluation and elicitation goes back to Brier (1950).

Brier envisioned a scheme to measure the accuracy of probability assessments for a

set of events, in the context of weather forecasting. This scheme, the Brier score,

was later recognized as part of a much larger family of functions that possess similar

properties, the proper and strictly proper probability scoring rules. These scoring

rules and their properties have been extensively studied (see for example McCarthy,

1956; De Finetti, 1962; Winkler and Murphy, 1968; Winkler, 1969; Hendrickson and

Buehler, 1971; Savage, 1971; Schervish, 1989; Good, 1997; Selten, 1998; Dawid, 2007;

Gneiting and Raftery, 2007). A vast majority of the literature has concentrated on
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eliciting the full information about p. 2 In contrast, this paper deals with predictions

regarding partial information in a general sense.

As probability scoring rules elicit the full distribution, any statistic can be the-

oretically elicited in some indirect fashion. As a practical matter though, eliciting

the entire distribution becomes rapidly infeasible as the underlying state space grows

large. This can be observed on two grounds. First, describing densities in full entails

an amount of communication that, if benign for spaces that include only few states, is

prohibitive in terms of effort or technological cost for spaces whose states vary along

several dimensions. Second, if, to gain sufficient knowledge, the forecaster must spend

a substantial number of hours in study and investigation, it is conceivable that the

capability to estimate accurately the entire distribution comes at a much greater cost

than learning some of its specific features. A model of these phenomena is outside

the scope of the paper, but they provide justification for studying ways to elicit the

partial information of interest rather than the whole distribution.

This paper embraces the setting of Savage’s seminal work (Savage, 1971). Like

Savage, we concentrate on the basic model and abstract away from common prob-

lems, such as unknown risk-attitudes (Karni, 2009; Offerman et al., 2009), costly

access to information (Osband, 1989), or forecasters endowed with different levels of

information or skills (Olszewski and Sandroni, 2007, 2011). Although the current

paper focuses on a simple setting, the results are also relevant to these more complex

settings as we explain in Section 5.

Another branch of the literature is concerned with the testing of forecasts. The

standard setting assumes an elicitor who repeatedly interacts with a self-proclaimed

informed forecaster (Foster and Vohra, 1998). At each time period, the forecaster

provides a probability assessment over outcomes that materialize at the following pe-

riod. For instance, a weather forecaster is asked, every day, to predict the probability

of rain for the following day. The main question of interest is whether, by looking at

the sequence of predictions along the sequence of realizations, the elicitor can make

the distinction between a truly knowledgeable forecaster and an impostor. Naturally,

if the elicitor were able to assess the exactitude of the forecasts, she would be able to

2The exceptions we are aware of concern Fan (1975), Bonin (1976), and Thomson (1979) who
design compensation schemes to elicit, from local branch managers, the production output that can
be attained with some given probability. Also, in the context of government contracting, Reichelstein
and Osband (1984) and Osband and Reichelstein (1985) establish incentive contracts that induce a
contracting firm to reveal truthfully moments of its prior on the costs associated to the project.
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enforce appropriate incentives to tell the truth, at least, in a repeated setting. How-

ever such tests do not exist: A major and surprising result of the literature essentially

asserts that for every test that the informed forecaster passes, there exists a scheme

that, when employed by a completely uninformed forecaster, makes him successfully

pass with arbitrarily high probability (Olszewski and Sandroni, 2008; Shmaya, 2008).

More positive results exist under variants of the basic setting, notably with multi-

ple competing forecasters (see Feinberg and Stewart, 2008; Al-Najjar and Weinstein,

2008), when the forecaster’s computational abilities are sufficiently limited (Fortnow

and Vohra, 2009), by imposing strong enough restrictions on the class of distributions

Nature can choose amongst (Olszewski and Sandroni, 2009b; Al-Najjar et al., 2010;

Feinberg and Lambert, 2013; Stewart, 2011), or when the forecaster supplies all of

his probability assessments upfront and the elicitor is allowed to make use of coun-

terfactual predictions (Dekel and Feinberg, 2006; Olszewski and Sandroni, 2009a).

In this paper there is a single forecaster, who is known to be informed, and known

to maximize his expected payoff. On the other hand, we impose no restriction on

computational abilities nor on the distributions of Nature, there is a single data point

(the one realization ω∗ of the state) and we require strict incentives for truth-telling.

The paper proceeds as follows. Section 2 details the model. Sections 3 and 4

present the results concerning, respectively, the statistics that take a finite number of

values, and the statistics that take values in a continuum. Section 5 concludes. Full

proofs are relegated to the Appendix.

2 Model

Denote by Ω a finite set of states of Nature, and by ∆Ω be a set of probability

distributions over Ω. To reduce notation distributions are identified with their density

functions and the terms are used interchangeably.

Statistics. This paper is concerned with the elicitation and evaluation of statistical

predictions. We give to statistics a broad meaning: They can describe any feature

that a distribution may possess. Formally, a distribution statistic, or simply statistic,

is defined as a pair (Θ, F ). Θ is the value set of the statistic. It is the set in

which the statistic takes values. F is the level-set function, it is a multi-valued map3

3As usual, we assume without loss of generality that for every θ ∈ Θ, F (θ) is not empty.
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F : Θ ⇒ ∆Ω. It assigns, to every θ, the collection F (θ) of all the distributions for

which θ is a correct statistic value. For instance, the mean of a random variable X

could be written as a pair (R, F ). Here a distribution p belongs to F (m) if, and only

if, the mean of X under p,
∫
Xdp, equals m.

Many statistics assign a unique value to a distribution. If so, the level sets

F (θ), θ ∈ Θ, are pairwise disjoint. These statistics are said to exhibit no redun-

dancy. The mean, variance, or entropy share this property. Other statistics may

associate several values to the same distribution. If so, the level sets overlap, and

the statistic contains some amount of redundancy. For instance, the median exhibits

some redundancy: In some cases, several median values may be associated with the

same distribution. A statistic function is defined as a function Γ that associates a

true statistic value Γ(p) to every distribution p (formally, Γ−1(θ) ⊆ F (θ) for each θ).

When the statistic has no redundancy, it is associated with only one statistic function.

This function then suffices to conveniently represent the statistic. In general however,

we need at least two statistic functions to fully describe a statistic.

We restrict the analysis to the statistics (Θ, F ) that satisfy two conditions: (a)

F satisfies
⋃
θ F (θ) = ∆Ω (the statistic is well defined for every distribution of ∆Ω);

and (b) for all θ1 6= θ2, F (θ1) 6⊆ F (θ2) (no statistic value is fully redundant). These

assumptions are without loss of generality. All statistics can be redefined on the

entire set ∆Ω by assigning a dummy value to the distributions for which it is not

originally properly defined. Moreover, as the scoring rules we seek to construct offer

the same expected score for all correct predictions, removing statistic values that are

fully redundant does not impact the analysis.

Scoring rules. The payoffs to the forecaster are specified by scoring rules, whose

original definition is expanded to account for general statistical predictions. Given a

statistic with value set Θ, a scoring rule is a function S : Θ × Ω 7→ R that assigns

to every prediction θ and every state ω a real-valued score S(θ, ω). Payoffs given by

scoring rules may be interpreted and used in various ways, as long as the forecaster

complies with the general principle that higher expected payoffs are systematically

preferred (Winkler et al., 1996). To make the discussion concrete, in this paper a

scoring rule specifies the payment the forecaster receives in exchange for his prediction.
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The mechanisms considered throughout this paper are entirely specified by the

statistic (F,Θ) we want to learn and the scoring rule S that assigns payoff values.

They operate in three stages.

t=1 Nature selects a distribution p ∈ ∆Ω.

The forecaster learns p.

t=2 The forecaster reports a prediction θ ∈ Θ.

t=3 Nature draws a state ω∗ at random according to p.

The forecaster receives an amount S(θ, ω∗).

Properness. If the forecaster is risk-neutral, his optimal response maximizes the

expected payment. To induce the forecaster to answer honestly, we must construct

scoring rules that are proper or strictly proper, in the terminology of De Finetti

(1962) and Savage (1971). Proper scoring rules ensure that all true predictions get

the maximum expected payment. With strictly proper scoring rules, the maximum

is attained if and only if the prediction is correct. The definition is easily adapted to

the general case of statistical predictions:

Definition 1. A scoring rule S for statistic (Θ, F ) is proper if, for every prediction

θ and every distribution p, whenever θ is true under p, i.e., whenever p ∈ F (θ),

θ ∈ arg max
θ̂∈Θ

E
ω∼p

[S(θ̂, ω)] .

S is strictly proper if it is proper and if, for every prediction θ and every distribution

p, whenever θ is false under p, i.e., whenever p /∈ F (θ),

θ /∈ arg max
θ̂∈Θ

E
ω∼p

[S(θ̂, ω)] .

Because the mechanism controls precisely how much utility the forecaster gets

for each draw of Nature, risk neutrality is not a binding assumption. 4 In the same

4Given any forecaster with strictly increasing utility for money u, any (strictly) proper scoring
rule S can be transformed into another one, u−1 ◦ S, that (strictly) induces honest reports from
such forecasters, and conversely. Variations in risk attitude do not affect our ability to elicit a given
statistical information. It merely implies a transformation of the compensation structure. Even if
we were to ignore the forecaster’s utilities, enforcing strict incentives remains possible. For example,
we can use a two-stage mechanism that starts by estimating the agent’s preferences, as in Offerman
et al. (2009), or reward forecasters with lottery tickets to neutralize risk aversion, as in Karni (2009).
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fashion, forecasters need not be endowed with complete knowledge—but for simplicity

of exposition it is convenient to think they are. As long as the forecaster knows the

true value of the statistic, (strictly) proper scoring rules guarantee a (strictly) maximal

expected payment, regardless of Nature’s distribution. Had the forecaster the chance

to learn the full distribution, he would find himself unable to take advantage of that

extra piece of information.

Order sensitivity. Properness is concerned with how the expected scores of cor-

rect predictions compare with those of incorrect predictions. However, properness

does not look at how the expected scores of incorrect predictions compare with one

another. Yet, a number of situations arise in which such comparisons are desirable.

A prominent example is that of eliciting the mean of a random variable. Say, the true

mean is 100. Proper scoring rules dictate that forecasting 100 will maximize expected

payments. But what about forecasting 99 versus 10? Properness a priori does not

preclude that the latter prediction yields a higher expected payment than the former.

More generally, suppose the statistic takes value in a set that is naturally ordered.

Given a true prediction θ and two incorrect predictions θ1, θ2, it seems pretty uncon-

troversial that whenever θ1 is “in-between” θ and θ2, it constitutes a “more accurate”

prediction than θ2 does. In such situations, it makes sense to offer a contract that,

on average, rewards prediction θ1 with a higher amount than it does for θ2. This

requirement is captured via the notion of order sensitivity. 5

Definition 2. A scoring rule S for a statistic (Θ, F ) is order sensitive with respect to

total order ≺ on the value set Θ if, for all distributions p, all predictions θ true under

p, i.e., such that p ∈ F (θ), and all predictions θ1, θ2 such that either θ � θ1 ≺ θ2 or

θ2 ≺ θ1 � θ,

E
ω∼p

[S(θ1, ω)] ≥ E
ω∼p

[S(θ2, ω)] .

S is strictly order sensitive when the inequality is strict whenever p /∈ F (θ2).

To reduce notation S(θ, p) denotes the expected score under p, Eω∼p[S(θ, ω)].

5Order sensitivity relates to the notion of scoring rule efficiency (Friedman, 1983; Nau, 1985).
Scoring rule efficiency compares probabilistic predictions according to their distance to the true dis-
tribution, with respect to some metric. In contrast, order sensitivity compares statistical predictions
according to their rank relative to the true statistic value.
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3 Statistics with a Finite Number of Values

In this section statistics take values in a finite set. Estimating such statistics would

be equivalent to answering questions about Nature’s distribution that have a finite

number of possible responses. We call such statistics finite statistics.

Denote by RΩ the space of functions that map states of Nature to real values, that

is, RΩ is the space of random variables. Note that every distribution over states, p,

is an element of RΩ. The set RΩ is naturally endowed with the scalar product

〈X, Y 〉 =
∑
ω

X(ω)Y (ω) .

This enables to write the expected payoff to the forecaster who announces θ,

E
ω∼p

[S(θ, ω)] ,

as the scalar product between the random payment S(θ, ·) and the density function

p,

〈S(θ, ·), p〉 .

The results of this section have a natural geometric interpretation, and viewing

the set of distributions ∆Ω as a simplex in the Euclidian space RΩ plays a key role

in the arguments that follow. Besides, every finite statistic has a simple graphical

representation as a finite covering of the simplex, covering that in most cases of

interest is a partition except at boundary points. Several examples are included

below.

3.1 Strictly Proper Scoring Rules

We begin with a description of the statistics that accept strictly proper scoring rules.

We first observe that strictly proper scoring rules may exist, but do not always exist.

For example, consider the problem of predicting which one of a finite number of events

E1, . . . , Em ⊂ Ω is most likely. Such a statistic can be elicited via the scoring rule

defined by S(Ei, ω) = 1{ω ∈ Ei} which, obviously, is strictly proper. Now consider a

simple example in a three-state world, with a random variable X taking values 1, 2 or

3. Let us look at the statistic that indicates whether X has “high” or “low” variance,

where the levels of variance are determined with respect to some arbitrary threshold.
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p(X = 3) = 1

p(X = 2) = 1

p(X = 1) = 1

θ = “low variance”

θ = “high variance”

(a)

p(snow) = 1

p(sun) = 1

p(rain) = 1

sun with at least 50% chance

otherwise more likely to rain

otherwise more likely to snow

(b)

Figure 1: Statistics for the variance and for weather predictions.

This statistic is depicted in Figure 1(a). In this case a strictly proper scoring rule

does not exist. If a scoring rule S strictly incites the forecaster to make a truthful

report when p has low variance, then S(“low variance”, x) > S(“high variance”, x),

as a distribution with an almost-sure state X = x has a zero variance. But ex-

pected payments S(θ, p) are linear in the true distribution p. So for such a scoring

rule, S(“low variance”, p) > S(“high variance”, p) for every distributions p: The fore-

caster incited to make truthful predictions when the variance is low is always best off

reporting low variance levels even when the true variance is high.

A necessary condition for existence of strictly proper scoring rules is that the level

sets of the statistic be convex; that is, the distributions that share the same statistic

value must form a convex shape. Consider two distributions over states, p and q. The

argument relies on the simple observation that the expected payment to the forecaster

when predicting θ under any mixture of p and q,

E
ω∼λp+(1−λ)q

[S(θ, ω)] ,

equals the mixture of the expected payments when predicting θ separately on p and

q,

λ E
ω∼p

[S(θ, ω)] + (1− λ) E
ω∼q

[S(θ, ω)] .

Suppose S is a strictly proper scoring rule and θ is a prediction that is correct for

both p and q. By reporting θ, the forecaster maximizes the expected payment under

both distributions. Per the above equality, the payment remains optimal under any
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mixture of p and q. Since S is strictly proper, it must be the case that θ is a correct

prediction for all mixtures of p and q. Hence all level sets must have a convex shape.

Clearly, in the case of the variance depicted in Figure 1(a), the statistic does not

partition the distributions into convex subsets.

However, in the case of finite statistics, convexity is not sufficient. 6 The exact

characterization makes use of a well-known geometric structure called a Voronoi dia-

gram. Voronoi diagrams specify, for a set of points called sites, the regions of the space

that comprise the points closest to each site. Specifically, consider a metric space E
with distance d, together with vectors x1, . . . , xn ∈ E that are the sites. The Voronoi

cell for site xi includes all the vectors whose distance to xi is less than or equal to

the distance to any other site xj. The collection of all the Voronoi cells is called the

Voronoi diagram for the sites x1, . . . , xn. Observe that the set of distributions, when

viewed as a simplex in RΩ inherits its Euclidian metric. In this context it makes

sense to talk about Voronoi diagrams of distributions, as well as Voronoi diagrams of

random variables, since random variables are the elements of RΩ. Voronoi diagrams

are used in variety of fields, including mathematics, computer science, econometrics,

and economics. See Aurenhammer (1991) or De Berg et al. (2008) for a literature

review.

To understand the role Voronoi diagrams play in the characterization, it is helpful

to start off with a simple sufficient condition: If the level sets of a finite statistic form

a Voronoi diagram of distributions, then there exists a strictly proper scoring rule for

the statistic. The argument is as follows. Let (Θ, F ) be a finite statistic. Let each

level set F (θ) be the Voronoi cell of some distribution qθ ∈ ∆Ω. Suppose that the

forecaster is allowed to announce a full distribution q, and is rewarded according to

the Brier score S(q, ω) = 2q(ω) − ‖q‖2. Aside from being strictly proper, the Brier

6This can be seen with the statistic pictured in Figure 1(b). Consider three possible states of the
weather tomorrow: sunny, rainy, or snowy. We want to know if there will be sun with at least 50%
chance (θA), or, if not, whether it is more likely to rain (θB) or to snow (θC). The statistic partitions
the distributions in convex subsets. Yet there does not exist a strictly proper scoring rule. To see
this, let us use the notation p = (p(sunny),p(rain),p(snow)). Let p0 = (1, 0, 0), p1 =

(
1
2 ,

1
2 , 0
)
, p2 =(

1
2 , 0,

1
2

)
, p3 =

(
1
4 ,

1
4 ,

1
4

)
. Consider a proper scoring rule S. Both predictions θA and θB are true under

p1, so S(θA, p1) = S(θB , p1). Similarly, S(θA, p2) = S(θC , p2), S(θA, p3) = S(θB , p3) = S(θC , p3),
S(θB , p0) = S(θB , p0). By linearity of the expected score, 2S(θA, p3) = S(θA, p1) + S(θA, p2),
so 2S(θC , p3) = S(θB , p1) + S(θC , p2) implying S(θB , p1) = S(θC , p1). Also, since the vectors
p0, p1, p2 are independent, S(θB , ·) is entirely specified by S(θB , p0), S(θB , p1), S(θB , p3), and S(θC , ·)
is entirely specified by S(θC , p0), S(θC , p1), S(θC , p3). However, S(θB , p0) = S(θC , p0), S(θB , p3) =
S(θB , p3), and S(θB , p1) = S(θC , p1). Hence S(θA, ·) = S(θB , ·) and S cannot be strictly proper.
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score has the property that the closer the announced distribution is to that of Nature

(in the Euclidian distance), the larger the expected payments (Friedman, 1983). In

consequence if we were to force the forecaster to choose his report among the set

of Voronoi sites {qθ, θ ∈ Θ}, his best response would be to produce the qθ that is

the closest to Nature’s distribution. By forcing the forecaster to report one of these

distributions, the forecaster reports the Voronoi cell that contains the distribution of

Nature, thereby revealing a true value for the statistic. Because there is a one-to-one

mapping between statistic values θ and sites qθ, the reward scheme corresponds to

asking a value θ for the statistic and paying the forecaster according to the strictly

proper scoring rule S(θ, ω) = 2qθ(ω)− ‖qθ‖2.

That the statistic partition ∆Ω into a Voronoi diagram of distributions is not

necessary, because the logic of the above argument applies to other probability scoring

rules and other distances. But it leads the way to the exact characterization, which

turns out to be a generalization of this result. Instead of focusing on a Voronoi

diagram in the space of distributions, we look at a Voronoi diagram in the entire space

RΩ. Specifically, the statistics that admit strictly proper scoring rules are precisely

those whose level sets are included in a Voronoi diagram of random variables.

Theorem 1. Let (Θ, F ) be a finite statistic. There exists a strictly proper scoring

rule if and only if there exists a Voronoi diagram {Cθ}θ∈Θ in the space of random

variables such that for every θ ∈ Θ, F (θ) = Cθ ∩∆Ω.

Intersections of Voronoi diagrams with linear subsets are otherwise known as power

diagrams in these subsets (Imai et al., 1985; Aurenhammer, 1987). Power diagrams

are often interpreted as extensions of Voronoi diagrams in which a weight factor on the

sites shifts the distances between vectors and sites. With that identification in mind,

the theorem can be reformulated as follows: There exists a strictly proper scoring rule

if and only if the level sets of the statistic form a power diagram of distributions.

Proof of Theorem 1. Let (Θ, F ) be a finite statistic and let {Xθ}θ∈Θ be a family of

random variables indexed by statistic values. Consider the Voronoi diagram of this

family in the space RΩ. Denote by Cθ the Voronoi cell for Xθ, that is, the set of all

the functions X : Θ → R that are at least as close to Xθ as to any other site Xθ′ ,

with respect to the Euclidian distance. Suppose F (θ) is the part of Cθ that is located

on the simplex.

Consider the scoring rule S(θ, ω) = 2Xθ(ω) − ‖Xθ‖2. The expected payment for
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prediction θ, under distribution p, is

E
ω∼p

[S(θ, ω)] = 2〈Xθ, p〉 − ‖Xθ‖2 = ‖p‖2 − ‖p−Xθ‖2 .

This means that the expected payment of prediction θ under p is maximized across

all possible predictions if and only if

‖p−Xθ‖ ≤ ‖p−Xθ̂‖ ∀θ̂ ∈ Θ ,

which is to say that p belongs to the Voronoi cell Cθ of Xθ. Since F (θ) = Cθ ∩ ∆Ω,

the expected payment of prediction θ under p is maximized if and only if p ∈ F (θ),

thereby establishing the strict properness of S.

To get the converse, assume there exists a strictly proper scoring rule S for a

finite statistic (Θ, F ). We need to construct random variables {Xθ}θ∈Θ such that the

associated Voronoi diagram in RΩ partitions the simplex ∆Ω into the level sets of the

statistics. To do so, we will use Xθ(ω) = S(θ, ω) + kθ, where kθ is a constant to be

specified later.

Saying that distribution p is in the Voronoi cell of Xθ is saying that

‖p−Xθ‖2 ≤ ‖p−Xθ̂‖
2 ∀θ̂ ∈ Θ ,

or equivalently, after expanding the terms,

−‖S(θ, ·) + kθ‖2 + 2kθ + 2〈S(θ, ·), p〉 ≥ −‖S(θ̂, ·) + kθ̂‖
2 + 2kθ̂ + 2〈S(θ̂, ·), p〉 ∀θ̂ ∈ Θ .

If the choice in kθ is such that ‖S(θ, ·) + kθ‖2 − 2kθ equals a constant C independent

of θ, we can cancel these terms and the last inequality becomes

E
ω∼p

[S(θ, ω)] ≥ E
ω∼p

[S(θ̂, ω)] ∀θ̂ ∈ Θ .

Note that, for every θ, ‖S(θ, ·) + kθ‖2− 2kθ is a parabola as a function of kθ. As long

as C is chosen to be greater that ‖S(θ, ·)‖2 uniformly across statistic values—so that

it intersects all the parabolas—it is always possible to select constants kθ that satisfy

this requirement. For such a choice of kθ and Xθ, we have that for every distribution

of Nature p, announcing prediction θ maximizes the expected payment if and only if p
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is located in the Voronoi cell of Xθ. As S is strictly proper, a prediction θ maximizes

the expected payment if and only if it is true, that is, if p ∈ F (θ). Combining the

two statements, we find that every level set F (θ) is the part of the Voronoi cell of Xθ

located on the the simplex ∆Ω.

The theorem essentially asserts that, as scoring rules vary, their associated value

functions project onto power diagrams – or equivalently onto linear cross sections of

Voronoi diagrams. Indeed, given a scoring rule S, the forecaster gets as expected

payment maxθ S(θ, p). The expected payment, as a function of the true distribution

of Nature p, is the value function. Saying that S is strictly proper is equivalent to

saying that the projection of associated value function on the domain of distributions

partitions ∆Ω exactly as the level sets of the statistic F (θ) do. The statistics we

can elicit via strictly proper scoring rules therefore correspond to the projections of

all the value functions. In the case of a finite statistic, the value function describes

the upper envelope of a finite number of non-vertical hyperplanes. Moreover, by an

appropriate choice of S, any such envelope can be obtained. Therefore the level sets

of statistics we can elicit via strictly proper scoring rules correspond exactly to the

projections of hyperplane envelopes, which turn out to be the power diagrams.

The geometric characterization of the Voronoi test is appealing. As long as the

dimension of the simplex of distributions is small, a quick visual check gives a good

sense of whether the statistic satisfies the condition of Theorem 1. Figures 2 to 5

depict the simplex of distributions partitioned into level sets for, respectively, the

rounded mean, the median, the most likely state and the ranking of states according

to their probabilities, all of which are classic exemplars of finite statistics. The right

side of each figure maps a Voronoi diagram (along with the sites, all located on the

simplex) that matches exactly the partition of level sets. We conclude that all these

statistics admit a strictly proper scoring rule. Naturally the number of states must

be kept artificially low to enable a 2-dimensional rendering of the simplex. However

the Voronoi construction typically extends directly to higher dimensional simplices.

And in most cases, the 2-dimensional visual test is sufficient to get convinced of its

existence.

It is not difficult to exhibit statistics that fail the Voronoi test. We already saw the

variance fails the convexity test in Figure 1(a), a condition weaker than the Voronoi

test. In Figure 6, we are interested in a 80% confidence interval for a random variable.7

7For a discrete random variable X, [a, b] is a 80% confidence interval if the probability that
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p(X = 3) = 1

p(X = 2) = 1

p(X = 1) = 1

θ = “mean of X is in [1.0, 1.5]”

θ = “mean of X is in [1.5, 2.0]”

θ = “mean of X is in [2.0, 2.5]”

θ = “mean of X is in [2.5, 3.0]”

(a) (b)

Figure 2: The mean.

p(X = 3) = 1

p(X = 2) = 1

p(X = 1) = 1

θ = “1 is a median”

θ = “2 is a median”

θ = “3 is a median”

(a) (b)

Figure 3: The median.

p(snow) = 1

p(rain) = 1

p(sun) = 1

θ = “snow is most likely”

θ = “rain is most likely”

θ = “sun is most likely”

(a) (b)

Figure 4: The most likely state of Nature.
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p(snow) = 1

p(rain) = 1

p(sun) = 1

θ = “p(snow) ≥ p(sun) ≥ p(rain)”

θ = “p(snow) ≥ p(rain) ≥ p(sun)”

θ = “p(rain) ≥ p(snow) ≥ p(sun)”

θ = “p(rain) ≥ p(sun) ≥ p(snow)”

θ = “p(sun) ≥ p(rain) ≥ p(snow)”

θ = “p(sun) ≥ p(snow) ≥ p(rain)”

(a) (b)

Figure 5: The ranking of states from most to least likely.

p(X = 3) = 1

p(X = 2) = 1

p(X = 1) = 1

θ = “[1, 3] is a 80% confidence interval”

θ = “[1, 2] is a 80% confidence interval”

θ = “[2, 3] is a 80% confidence interval”

θ = “[1, 1] is a 80% confidence interval”

θ = “[2, 2] is a 80% confidence interval”

θ = “[3, 3] is a 80% confidence interval”

Figure 6: Confidence intervals.

p(X = 3) = 1

p(X = 2) = 1

p(X = 1) = 1

θ = “[1, 3] is an interval for the 10th to 90th percentile”

θ = “[1, 2] is an interval for the 10th to 90th percentile”

θ = “[2, 3] is an interval for the 10th to 90th percentile”

θ = “[1, 1] is an interval for the 10th to 90th percentile”

θ = “[2, 2] is an interval for the 10th to 90th percentile”

θ = “[3, 3] is an interval for the 10th to 90th percentile”

Figure 7: Intervals for the 10th and 90th percentiles.
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The statistic fails the Voronoi test because of the large overlap for two of its level

sets, corresponding to intervals [1, 2] and [2, 3]. In this region, the densities cannot be

equidistant to two distinct random variables. Whatever the scoring rule being used,

there will be cases where a forecaster who reports one of the two intervals will not

maximize his expected payoff, even when both intervals are correct. In general, to

be able to elicit the predictions of a discrete statistic, there must exist situations for

which two or more predictions are simultaneously correct. But those situations should

almost never happen, in the sense that the level sets should be a proper partition of

the space of distributions except for a measure zero set of points which belong to two

or more level sets. To properly elicit confidence intervals, we must reduce the overlap.

For example we can require that predictions take the form of symmetric intervals as

in Figure 7, that are the ranges between the 10th and the 90th percentiles. It is easily

seen that the Voronoi test is then satisfied, and so a strictly proper scoring rule exists.

Although Voronoi diagrams and convex partitions look alike, a Voronoi test can

be much stronger than a convexity test. This is especially true in high dimensions.

Nonetheless, most statistics that exhibit a high level of symmetry are naturally shaped

as Voronoi diagrams. Non-symmetric cases can arise as well. For example, the statis-

tic that gives the most likely of a list of (possibly overlapping) events. In such cases,

the Voronoi sites are typically off the density simplex, precisely to shape the asym-

metric structures. These cases are somewhat harder to visualize.

Now let us focus on a statistic that passes the Voronoi test of Theorem 1. How can

we construct strictly proper scoring rules? The next result asserts that the (strictly)

proper scoring rules are essentially the mixtures of a finite number of carefully chosen

proper scoring rules. These proper scoring rules form a base. Fixed once and for all,

the base is entirely determined by the statistic being elicited.

Theorem 2. Let (Θ, F ) be a finite statistic that satisfies the Voronoi test in Theo-

rem 1. There exist ` ≥ 1 proper scoring rules S1, . . . , S`, called a base, such that a

scoring rule S is proper (resp. strictly proper) if, and only if,

S(θ, ω) = κ(ω) +
∑̀
i=1

λiSi(θ, ω) , ∀θ ∈ Θ, ω ∈ Ω ,

X ∈ [a, b] is at least 80% and if there is no interval [c, d] ( [a, b] for which X ∈ [c, d] with at least
80% probability.
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for some function κ : Ω 7→ R, and nonnegative (resp. strictly positive) reals λi,

i = 1, . . . , `.

Proof intuition for Theorem 2. The proof is based on the following idea. Let S be a

proper scoring rule. The properness property is captured by the following constraints:

S(θ, p) ≥ S(θ̂, p) ∀θ, θ̂ ∈ Θ,∀p ∈ F (θ) .

There are uncountably many inequalities. However, whenever the statistic satisfies

the criterion of Theorem 1 the sets F (θ) are polyhedra. Observing that the inequal-

ities are linear in p, they need only be satisfied at the extreme vertices of these

polyhedra. Thus the properness condition boils down to a finite system of homo-

geneous inequalities. By standard arguments (see, for example, Eremin, 2002), the

solutions form a polytope that consists of a cone in the space of scoring rules, which

is being copied and translated infinitely many times along some linear subspace. The

directrices of the cone generate the “base” scoring rules. The kernel of the system,

which gives rise to the translations, produces the complementary state-contingent

payments. Adding strict properness substitutes some weak inequalities for strict ones

in the above system, which complicates matters. Nonetheless the outcome remains

intuitive: The strict inequalities only slightly perturb the solution space by excluding

the boundary of the translated cone. In effect, this exclusion is responsible for the

strictly positive weights to all the scoring rules of the base.

We list a few examples below:

• For the statistic that gives the most likely of n arbitrary events E1, . . . , En ⊂ Ω,

there is only one base scoring rule, and the family of all the (strictly) proper

scoring rules are written

S(Ek, ω) = κ(ω) + λ1{ω ∈ Ek} .

for arbitrary functions κ and nonnegative (strictly positive) constants λ.

• For the median of a random variable X, the (strictly) proper scoring rules take
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the form

S(m,ω) = κ(ω) +
n∑
i=1

λi ·


−1 if m < xi, X(ω) ≤ xi

0 if m ≥ xi

+1 if m < xi, X(ω) > xi

 .

in which x1, . . . , xn are the values taken by X. After simplification, it can be

seen that the scoring rules that are (strictly) proper for the median take the

form

S(m,ω) = κ(ω)− |g(m)− g(X(ω))| ,

for arbitrary functions κ and g, where g is (strictly) increasing.

• Divide the range [0, 1] into n intervals of equal size,
[
k−1
n
, k
n

]
, k = 1, . . . , n. For

the statistic that gives an interval that contains the probability for some given

event E ⊂ Ω, the (strictly) proper scoring rules are

S
([

k−1
n
, k
n

]
, ω
)

= κ(ω) +
n−1∑
i=1

λi ·


n− i if i < k, ω ∈ E
0 if i ≥ k

−i if i < k, ω /∈ E

 .

After simplification, we find that the (strictly) proper scoring rules for proba-

bility intervals take the form

S
([

k−1
n
, k
n

]
, ω
)

= κ(ω) + 1{ω ∈ E}(g(k)− g(1)) +
1

n

k−1∑
i=1

(g(k)− g(i)) ,

for arbitrary functions κ and g, where g is (strictly) increasing.

Some of these examples are detailed below.

3.2 Strictly Order-Sensitive Scoring Rules

The remainder of this section discusses order sensitivity and its interplay with proper-

ness. Consider a scoring rule that takes value in a set attached with a natural ordering

of its elements.

The result below is a test for the existence of strictly order-sensitive scoring rules.

As expected, the test is stronger than the Voronoi test of Theorem 1. But it is
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p(ω1) = 1

p(ω2) = 1

p(ω3) = 1

θ1

θ2

θ3

θ4

θ5

θ6

(a)

p(ω1) = 1

p(ω2) = 1

p(ω3) = 1

θ1

θ2

θ3

θ4

(b)

Figure 8: Strict order sensitivity can be enforced on the left statistic only.

also easier to carry out. A statistic passes the test if and only if it partitions the

distributions into “slices”, as in Figure 8(a), and as opposed to Figure 8(b).

Theorem 3. Let (Θ = {θ1, . . . , θn}, F ) be a finite statistic, with θ1 ≺ · · · ≺ θn. There

exists a scoring rule that is strictly order sensitive with respect to the order relation

≺ if, and only if, for all i = 1, . . . , n− 1, F (θi) ∩ F (θi+1) is a hyperplane of ∆Ω.8

Proof intuition for Theorem 3. The proof idea is best conveyed through an example.

Consider a strictly order-sensitive scoring rule for a statistic whose value set Θ con-

tains three elements, θ1, θ2 and θ3. If both θ1 and θ3 are correct predictions under

some distribution p, but θ2 is not, then the expected payment, under p, is maximized

only when responding θ1 or θ3. Adding a small perturbation to p, we can pull out

a distribution p̃ for which the only true prediction is θ1, while announcing θ3 yields

an expected payment that is nearly maximized and larger than that derived from an-

nouncing θ2. This contradicts strict order sensitivity. This means that, whenever we

choose some p ∈ F (θ1) and q ∈ F (θ3), the segment of distributions must go through

F (θ2). More generally, suppose the statistic takes more than three values. For any

two distributions p ∈ F (θi) and q ∈ F (θj), i < j, the segment of distributions starting

from p and ending at q must pass by, in order, through F (θi), F (θi+1), . . . , F (θj), by

which the hyperplane separation holds. The converse can be made clear through an

explicit construction of the strictly order-sensitive scoring rules, which is the object

of Theorem 4.

8Hyperplanes of distributions can be viewed as hyperplanes in the Euclidian space RΩ that
intersect the simplex of density functions.
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For example, we can apply Theorem 3 to the case of the median and the mode of

a random variable X. For the median, Figure 3 suggests that the statistic passes the

slice test of Theorem 3.9 In contrast, consider the mode of X. This statistic gives

the most likely value of X. Figure 4, for which the mode is a special case, clearly

indicates that the statistic fails the test of Theorem 3.10

Strictly order-sensitive scoring rules are also strictly proper, and the form of the

strictly proper contracts follows the rule given in Theorem 2. One benefit of statistics

that admit strictly order-sensitive scoring rules is that the base scoring rules are easily

derived; they are 0 − 1 factors of the normals to the boundaries of consecutive level

sets. Together Theorem 2 and Theorem 4 can be used to obtain the strictly proper

scoring rules for any statistic that satisfies the condition of Theorem 3.

Theorem 4. Let (Θ = {θ1, . . . , θn}, F ) be a finite statistic with θ1 ≺ · · · ≺ θn.

Assume there exists a strictly order-sensitive scoring rule S with respect to the order

relation ≺. The scoring rules S1, . . . , Sn−1, defined by

Si(θj, ω) =

0 if j ≤ i ,

ni(ω) if j > i ,

form a base, with ni being a positively oriented normal (i.e., oriented towards F (θi+1))

to the hyperplane of random variables in RΩ generated by F (θi) ∩ F (θi+1).

The proof is immediate and relegated to the Appendix.

It remains to characterize the (strictly) order-sensitive scoring rules. As it turns

out, as long as a strictly order-sensitive scoring rule exists, all the (strictly) proper

scoring rules are also (strictly) order sensitive, so that the characterization of Theo-

rem 4 still applies. The result implies that when a statistic admits a strictly order-

sensitive scoring rule, it does so for exactly two order relations, one being the reverse

9Indeed, choosing two consecutive values for X, x and y, we easily verify that F (x) ∩ F (y) is
a hyperplane. If both are possible median values under a distribution p, then p(X ≤ x) ≥ 1

2 ,
p(X ≥ x) ≥ 1

2 , and p(X ≤ y) ≥ 1
2 , p(X ≥ y) ≥ 1

2 . Hence p(X > x) = p(X ≥ y) ≥ 1
2 , and, as

p(X ≤ x) + p(X > x) = 1, p(X ≤ x) = 1
2 . The converse is immediate. This means that the set

F (x) ∩ F (y) is the hyperplane defined by
∑

z≤x p(X = z) = 1
2 . Hence the criterion of Theorem 3 is

satisfied.
10To be convinced of this assertion, choose two consecutive values of X, x and y. The set F (x) ∩

F (y) contains all distributions p such that p(X = x) = p(X = y), equality that indeed defines a
hyperplane. However it is only part of a hyperplane, because there are distributions that assign
the same probability to both x and y, and yet whose most likely values are attained elsewhere. As
F (x) ∩ F (y) does not cover an entire hyperplane of distributions, it fails the above criterion.
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of the other. As demonstrated in the sketch proof of Theorem 3, the result breaks

down without the existence requirement. It breaks down even when restricted to

weak order sensitivity, which, obviously, exists for all statistics.

Proposition 1. Let (Θ = {θ1, . . . , θn}, F ) be a finite statistic with θ1 ≺ · · · ≺ θn.

Assume there exists a strictly order-sensitive scoring rule with respect to the order

relation ≺. A scoring rule is (strictly) proper if and only if it is (strictly) order

sensitive, with respect to ≺.

The proof is direct and relegated to the Appendix. Take, for example, the median

statistic of random variable X. Let xi be the i-th smallest value taken by X. The

hyperplane that separates two consecutive level sets of the median, for respective

values xk and xk+1, is, as established previously, specified by equation
∑

i≤k p(X =

xi) = 1
2
. And so, the following

nk(ω) =

−1 if X(ω) ≤ xk ,

+1 if X(ω) > xk ,

defines a positively oriented normal for each k. The normals generate the n− 1 base

scoring rules used at the end of the preceding subsection

Sk(m,ω) =


−1 if m < xi, X(ω) ≤ xi ,

0 if m ≥ xi ,

+1 if m < xi, X(ω) > xi .

Now let us return to the statistic that gives a probability interval Ik =
[
k−1
n
, k
n

]
for

an event E. These intervals are naturally ordered by I1 ≺ · · · ≺ In. The hyperplane

that separates two consecutive level sets is specified by the set of distributions p such

that both p(E) ∈ Ik and p(E) ∈ Ik+1, that is, p(E) =
∑

ω∈E p(ω) = k/n. Hence the

following

nk(ω) =

1− k/n if ω ∈ E ,

−k/n if ω 6∈ E ,

defines a positively oriented normal for every k, from which we derive the base scoring

rules presented at the end of the preceding subsection.
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4 Statistics with a Continuum of Values

This section focuses on statistics that take values in a one-dimensional continuum.

We will focus on the distributions that assign positive probability to every state, and

slightly abusing notation we will denote by ∆Ω the set of these distributions. For

technical tractability, in the remainder of this section we restrict attention to statistics

(Θ, F ) that satisfy three conditions:

Real Valued Θ is a subset of the real line.

No Redundancy The sets F (θ) are pairwise disjoint.

Continuity Their (unique) statistic function is continuous and nowhere locally con-

stant11.

These statistics are called regular real-valued continuous statistics. As long as we are

interested in statistics that vary along a single dimension, these assumptions are not

very restrictive. Common statistics such as the mean and moments, variance and

covariance, entropy, skewness, kurtosis, all satisfy the three conditions.

Finally, we focus the discussion on the (strict) properness property. Indeed, for the

statistics that satisfy the three conditions, any scoring rule that is (strictly) proper

is also (strictly) order sensitive, for the usual ordering on the real line.

Proposition 2. Consider a statistic that satisfies conditions (Real Valued) and (No

Redundancy), and whose statistic function is continuous. A scoring rule is (strictly)

proper if and only if it is (strictly) order sensitive.

Convexity of the level sets remains a necessary condition as for finite statistics.

However, unlike the case of finite statistics, the continuity condition imposed on the

statistics examined in this section makes this condition sufficient.

Theorem 5. Let (Θ, F ) be a regular real-valued continuous statistic. The following

statements are equivalent:

1. There exists a strictly proper scoring rule for (Θ, F ).

2. For all θ ∈ Θ, F (θ) is convex.

11The statistic function is not constant on any open set of distributions.
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For instance, the mean and moments of a random variable pass the convexity test

(part (2) of the theorem)—and so can be elicited via a strictly proper scoring rule.

However the variance, skewness and kurtosis fail the convexity test. The covariance

of two random variables also fails the convexity test. Finally the entropy, which

measures the level of uncertainty contained in a probability distribution, fails the

convexity test as well. We therefore cannot properly incentivize forecasters to report

values for these statistics.

Proof intuition for Theorem 5.

We have already seen how part (1) of the theorem implies part (2). Now assume

part (2) is true. By continuity, Θ is an interval. Let θ be any statistic value in the

interior of Θ. The distributions over states can be partitioned into three subsets,

D<θ, D=θ, and D>θ, that are respectively the sets of distributions whose statistic

value is less than θ, equal to θ, and greater than θ. If we require that every level set

of the statistic be convex, a continuity argument shows that all three sets are convex.

The separating hyperplane theorem gives existence of a hyperplane Hθ that separates

D<θ from D>θ. The statistic being nowhere locally constant, the hyperplane ends up

being the linear span of the set D=θ. This yields existence of a linear functional on

RΩ defined as Lθ(f) = 〈gθ, f〉 where gθ ∈ RΩ.

Assume without loss of generality that Lθ(p) is strictly positive when p’s statistic

value is greater than θ, and strictly negative when p’s statistic value is less than θ.

It can be shown that the continuity of the statistic implies that θ 7→ gθ is continuous

on Θ. Thus we can define

S(θ, ω) =

∫ θ

θ0

gt(ω)dt ,

for an arbitrary θ0. We get, for all distributions p,

E
ω∼p

[S(θ, ω)] =

〈∫ θ

θ0

gtdt, p

〉
,

=

∫ θ

θ0

〈gt, p〉dt .

Let θ∗ be the unique value of the statistic under p. The condition imposed on gθ

ensures that, for all t ∈ (θ, θ∗), 〈gt, p〉 = Lt(p) > 0 (with a symmetric inequality for

t ∈ (θ∗, θ)), thereby making S strictly proper. Hence (2) implies (1).
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Once it is established that the statistic of interest passes the convexity test of

Theorem 5, it remains to design the strictly proper scoring rules. In the characteriza-

tion below, we impose a smoothness condition on the scoring rules. Since the statistic

varies continuously with the underlying distribution, it is reasonable to require that

payments vary smoothly with the forecaster’s prediction. To formalize the idea, we

say that a scoring rule S is regular if it is uniformly Lipschitz continuous in its first

variable: It means there must exist K > 0 such that for all θ1, θ2 ∈ Θ and all ω ∈ Ω,

|S(θ1, ω)− S(θ2, ω)| ≤ K|θ1 − θ2| .

Looking at the regular scoring rules as the only acceptable scoring rules does not limit

the range of statistics to which the characterization applies. Regular strictly proper

scoring rules are guaranteed to exist whenever the criteria of Theorem 5 are satisfied.

On the other hand this restriction is useful in that it permits a simpler description of

the scoring rules.

Assume the statistic passes the convexity test of Theorem 5. The next result

asserts that there exists a particular base scoring rule, such that the family of strictly

proper scoring rules is fully characterized (up to arbitrary state-contingent payoffs)

by integrating the base scoring rule scaled by any nonnegative, nowhere locally zero

weight. For proper scoring rules, the weight need only be nonnegative. In addition,

the base scoring rule is unique up to a weight factor.

Theorem 6. Let (Θ, F ) be a regular real-valued continuous statistic such that, for

every θ, the level set F (θ) is convex. There exists a bounded scoring rule S0 such that

a regular scoring rule for the statistic is proper (resp. strictly proper) if, and only if,

for all θ and ω,

S(θ, ω) = κ(ω) +

∫ θ

θ0

ξ(t)S0(t, ω)dt , (1)

for some θ0 ∈ Θ, κ : Ω 7→ R, and ξ : Θ 7→ R+ a bounded Lebesgue measurable

function (resp. and such that, for all θ2 > θ1,
∫ θ2
θ1
ξ > 0).

Proof intuition for Theorem 6. In the proof of Theorem 5, we have built functions

gθ ∈ RΩ that are such that, for all θ and all p ∈ ∆Ω, the value 〈gθ, p〉 is respectively

strictly positive when p’s statistic value is greater than θ, strictly negative when it is

less than θ, and zero when it equals θ. Now substitute S0(t, ω) for gt(ω) in (1). For
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all p ∈ ∆Ω, and all statistic values θ, θ∗ where θ∗ is a correct statistic value under p,

S(θ∗, p)− S(θ, p) =

∫ θ∗

θ

ξ(t)〈gt, p〉dt , (2)

which makes S proper, and even strictly proper with the additional condition of

positive integral on ξ.

We now get the converse. First, as S(·, ω) is assumed to be Lipschitz continuous, it

is in particular absolutely continuous. Hence it has an integral representation: There

exists a function G : Θ×Ω 7→ R, where θ → G(θ, ω) is Lebesgue measurable for every

ω such that, for all θ, ω,

S(θ, ω) =

∫ θ

θ0

G(t, ω)dt ,

where it is assumed without loss of generality that S(θ0, ·) = 0. Moreover, for all

ω, θ 7→ S(θ, ω) is differentiable for almost every θ and its derivative is given by G.

Define the linear functional Ψθ on RΩ by

Ψθ(f) = 〈G(θ, ·), f〉 .

Hence, outside a set of measure zero, θ 7→ S(θ, p) is differentiable for all distributions

p, its derivative at θ being given by Ψθ(p). The second step makes use of the fact

that when the expected payment is maximized, its derivative, when it exists, must

be zero. Then, defining the functional

Φθ(f) = 〈gθ, f〉 ,

an equality Ψθ = ξ(θ)Φθ must hold for some ξ(θ). This is a direct consequence of the

fact that the kernel of Φθ is the linear span of the distributions having statistic value

θ. And so, in particular, the kernel of Φθ must be included in the kernel of Ψθ. ξ must

remain nonnegative not to violate the order sensitivity property, which is implied by

properness (Proposition 2). If, in addition, S is strictly proper, then the integral of ξ

must be strictly positive on every segment, a direct consequence of (2).

For example, take Ω ⊂ R. The distribution mean is (trivially) continuous, and

satisfies the convexity condition of Theorem 5. It therefore admits a strictly proper

scoring rule. In fact, we can easily find one: Observing that the mean squared error

Eω∼p[(θ − ω)2] is minimized precisely when θ equals the mean, paying the forecaster
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some positive amount minus the squared error yields a strictly proper scoring rule.

Differentiating the quadratic term leads to a possible definition of S0, S0(θ, ω) = ω−θ.
Altogether, Theorem 6 gives all the regular (strictly) proper scoring rules for the mean,

S(θ, ω) = κ(ω) +

∫ θ

a

(ω − t)ξ(t)dt .

Another simple example is the dichotomous state space Ω = {0, 1}. The proba-

bility of occurrence of ω = 1 is, obviously, a continuous statistic. Following the above

example of the mean and according to Theorem 6, the form of its (strictly) proper

scoring rules is given by

S(θ, ω) = κ(ω) +

∫ θ

0

(ω − t)ξ(t)dt ,

which is the Schervish representation of probability scoring rules (Schervish, 1989).

Behind the integral representation of scoring rules lies a simple economic inter-

pretation. From the perspective of the risk-neutral forecaster, being remunerated

according to a (strictly) proper scoring rule is essentially the same as participating

to an auction that sells off some carefully designed securities. Assume statistic val-

ues are bounded. Consider the auction that sells securities from a parametric family

{Rθ}θ∈Θ; here Rθ(ω) specifies the net payoff of the security Rθ when the realized state

of Nature is ω. Net payoff is gross payoff minus initial price, which can be normalized

to zero. In this auction, buyers bid on the security parameter. They are asked to

bid the maximum value of θ for which they are willing to receive security Rθ. The

winner is the bidder with the highest bid (ties are broken arbitrarily). Let us look

at the special case in which the forecaster competes against a dummy bidder, whose

bid y is distributed according to some density f . When the state ω∗ materializes, the

forecaster who bids x makes expected profit

P (y ≤ x)E[Ry(ω
∗) | y ≤ x] =

∫
y≤x

Ry(ω
∗)f(y)dy . (3)
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Take any strictly proper scoring rule S of the form (1). Choosing density f(y) =

ξ(y)/
∫

Θ
ξ and security Ry(ω) =

(∫
Θ
ξ
)
S0(y, ω), (3) can be re-written∫

t≤x
ξ(t)S0(t, ω∗)dt ,

which is precisely the amount the forecaster would get through scoring rule S, up to a

state-contingent payment. Conversely, take any bounded density function f nowhere

locally zero. The forecaster’s expected profit derived from participation in the auction

equals the remuneration he would get with some strictly proper scoring rule. The

auction interpretation is especially relevant when used on multiple forecasters, in

which case dummy bidders are not needed. However, with multiple forecasters, these

auctions no longer constitute the only valid incentive devices.

The family of securities that the must be auctioned off depends on the statistic of

interest. When eliciting an event’s probability, the goods for sale are securities that

pay off the same positive amount if the event occurs and zero otherwise, minus the

parameter. When eliciting a distribution’s mean, they are securities that pay off a

positive factor of the realized value of the underlying variable, minus the parameter.

Note that in this special case, the auctions are essentially second-price auctions: For

these families of securities, the gross payoff is fixed and buyers, in effect, end up

bidding on the price.

When we want forecasters to choose among a few alternative predictions, we

can employ the finite statistics examined in the preceding section as approximations

of continuous statistics. We can combine the results of the current and preceding

sections to derive the (strictly) proper and (strictly) order-sensitive scoring rules. Let

(Θ, F ) be a regular real-valued continuous statistic. Let α0, αn ∈ R ∪ {+∞,−∞}
be respective lower and upper bounds of the possible values for the statistic, and

α1 < · · · < αn−1 be arbitrarily chosen in the interior of Θ (which is an interval).

Consider a finite, approximate version (Θ̃, F̃ ) of the continuous statistic. Instead

of the exact value, it rounds up nearby statistical estimates: It gives an interval of

the form [αi, αi+1] that includes the exact value of the continuous statistic (Θ, F ).

F̃ ([αi, αi+1]) is therefore the set of distributions whose values, for the statistic (Θ, F ),

lie within [αi, αi+1].

The collection of intervals, Θ̃, is naturally equipped with the ordering [α0, α1] ≺
· · · ≺ [αn−1, αn]. Suppose there exists a strictly proper scoring rule for the continuous
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statistic. Theorem 5 says that each F (θ) is a hyperplane of ∆Ω. As F̃ ([αi−1, αi]) ∩
F̃ ([αi, αi+1]) = F (αi), a direct application of Theorems 3 and 4 yields the following

corollary:

Corollary 1. If there exists a strictly proper scoring rule for statistic (Θ, F ), then

there exist strictly proper (and strictly order-sensitive) scoring rules for the approxi-

mate statistic (Θ̃, F̃ ). A scoring rule S is strictly proper (or strictly order sensitive)

for the approximate statistic if, and only if,

S([αk, αk+1], ω) = κ(ω) +
∑
i<k

λini(ω) ,

for any function κ : Ω 7→ R and strictly positive real numbers λ1, . . . , λn−1, ni being

a positively oriented normal to the hyperplane generated by F (αi).

For example, consider again the statistic that gives, for an even E, some interval[
k−1
n
, k
n

]
that includes the probability of E. Event E’s probability is a regular con-

tinuous statistic. The hyperplane of distributions that give probability θ to the event

has equation
∑

ω∈E p(ω) = θ, and ω 7→ 1{ω ∈ E}− θ is a positively oriented normal.

This gives the strictly proper scoring rules

S
([

k−1
n
, k
n

]
, ω
)

= κ(ω) +
n−1∑
i=1

λi ·


n− i if i < k, ω ∈ E
0 if i ≥ k

−i if i < k, ω /∈ E

 .

5 Concluding Remarks

This paper studies the problem of eliciting or evaluating statistical predictions. The

forecaster’s payoff is controlled via a generalized scoring rule, whose inputs are the

announced statistical prediction and the state drawn by Nature. The focus is on two

classes of statistics: The statistics that take values in a finite set, and the statistics

that are continuous and take values in a one-dimensional continuum. In both cases,

the paper provides a geometric characterization of the statistics that can be elicited

via strictly proper scoring rules. For those statistics, it also describes the collection of

proper and strictly proper scoring rules. For statistics that take values in an ordered

set, additional characterizations are obtained.
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The paper embraces the canonical setting of Savage (1971). Since then the lit-

erature has extended and expanded Savage’s model in a number of different ways.

Standard settings involve one or several forecasters who announce full probability

assessments. In contrast, the current paper looks at the solicitation of partial beliefs.

This complementarity makes it possible to combine the results of this paper and those

of the past literature, so as to obtain generalizations of known results to situations of

partial information elicitation. Because many known results hold under constraints

similar to strict properness, the results of the current paper apply almost directly.

For example, a large literature is devoted to the evaluation of forecasters. It is

well known that comparing the quality of predictions by averaging scores or payoffs

over time, as in Winkler et al. (1996), necessitate exactly strict properness – no

more, and no less. Standard results consider probability scoring rules, but they

apply more broadly to any generalized scoring rule. In recent research, Olszewski

and Sandroni (2008) and Shmaya (2008) established several important impossibility

results regarding the problem of distinguishing between an informed forecaster and an

uninformed one. Their results, which concern probabilistic predictions, apply more

broadly to statistical predictions when the statistic admits a strictly proper scoring

rule, because the proofs of these papers continue to hold as long as the underlying

statistic has convex level sets. The same observation applies to the cross-calibration

method of Feinberg and Stewart (2008), which tests multiple competing forecasters

simultaneously.

Another literature is concerned with issues of incentives. For example, Olszewski

and Sandroni (2007, 2011) considered the problem of designing screening contracts.

These contracts pay a potential expert for producing a theory, which takes the form

of a series of probabilistic predictions. The problem is to design the contract so as

to attract the informed forecasters and deter the uninformed ones. Olszewski and

Sandroni show that, in most cases, such a contract does not exist. Their results

extend directly to the statistical predictions modeled in this paper. Other research,

such as Karni (2009) and Offerman et al. (2009), looked at the problem of eliciting

probabilities from arbitrary (non-)expected utility maximizers. Their method requires

no more than the constraint of strict properness and is independent of the statistic

that is being elicited. Methods for costly information acquisition, as in Osband (1989)

and Clemen (2002), also require a strictly proper scoring rule, and work essentially

with every strictly proper scoring rule: They only need that the scoring rule be scaled
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by a sufficiently large multiplier to incite the forecaster to exert the necessary effort.

A strand of the literature uses scoring rules in a market context. Ostrovsky (2012)

studies the information aggregation properties of financial markets operated either

by a batch auction or by a dealer. The dealer setting uses a fixed demand/supply

schedule. It is well known that a fixed schedule can be modeled via a strictly proper

scoring rule (Savage, 1971; Hanson, 2003). With minor modifications, one can derive

analogous results with the scoring rules of the current paper and extend the results of

Ostrovsky (2012) to a broader class of securities. Solutions to betting market designs,

as proposed in Johnstone (2007) and Lambert et al. (2013), also transpose directly

to statistical predictions.

To finish, this paper studies strictly proper scoring rules. There are statistics for

which these scoring rules do not exist. Yet, eventually, all statistics can be elicited

in some indirect fashion: We can use standard methods to elicit the full probability

distribution, then subsequently compute the value of any statistic of interest. Asking

for the full distribution may be impractical or unnecessarily cumbersom, but it is

not always required. For example, it was shown in this paper that predictions of

the variance on its own cannot be elicited. But predictions of the mean and the

variance together can be elicited. This is a mere consequence of the fact that the

mean and the variance are isomorphic to the first and second moments, which both

admit strictly proper scoring rules. More generally, when statistic does not convey

enough information to induce truthful reports, we can rely on a finer statistic. A

fascinating question for future research is what is the smallest amount of information

we must ask to obtain truthful answers to what we really want to know.

Appendix

A Proofs of Section 3

Through the proofs of this section, to reduce notation we often write, for a scoring rule

S : Θ × Ω 7→ R, S(θ) to denote the random variable S(θ, ·). For a subset of S of a vector

space, denote by dimV the dimension of its linear span. A convex polyhedra in a convex

subset C of a vector space is nondegenerate when it has the same dimension as C.
The proofs make use of the following lemma.
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Lemma 1. If there exists a strictly proper scoring rule for (Θ, F ), then, for all θ, F (θ) is

a nondegenerate closed convex polyhedra of ∆Ω, and, when the intersection of two elements

F (θ1) and F (θ2) is not empty, it is a degenerate closed convex polyhedron.

Proof. The lemma is a direct consequence of Theorem 1, which asserts that when a strictly

proper scoring rule exists, the F (θ)’s form a power diagram of distributions.

A.1 Proof of Theorem 2

The proof uses the following lemma.

Lemma 2. Let E be an n-dimensional Hilbert space with an inner product 〈·, ·〉. Let

y1, . . . , ym be m vectors that generate E. Consider the two systems of inequalities

〈yi, x〉 ≥ 0 , i ∈ {1, . . . ,m} (4)

and

〈yi, x〉 > 0 , i ∈ {1, . . . ,m} . (5)

If both systems admit a nonempty set of solutions, then there exist vectors s1, . . . , s` of E
such that the set of solutions of (4) is {λ1s1 + · · · + λ`s`, λ1, . . . , λ` ≥ 0} while the set of

solutions of (5) is {λ1s1 + · · ·+ λ`s`, λ1, . . . , λ` > 0}.

Proof. As (4) is a homogeneous system of weak inequalities, its set of solutions is a cone.

Let {s1, . . . , s`} be a set of directrices of the edges of this cone. As by assumption there

exists a nonzero solution, this set is not empty. The parametric form of the solutions of

(4) is given by the set {
∑

i λisi, λ1, . . . , λ` ≥ 0} (Eremin, 2002). We shall see that the cone

C = {
∑

i λisi, λ1, . . . , λ` > 0} is the set of solutions of (5).

Part 1. This part shows that any element of C is solution of (5).

Each vector sk of {s1, . . . , s`} is solution of a (n− 1)-boundary system of the form 〈yi, sk〉 = 0 , i 6∈ Ik ,

〈yi, sk〉 > 0 , i ∈ Ik ,
(6)

for Ik a subset of {1, . . . ,m}. Let x0 be a solution of (5). Then x0 is also solution of (4)

and so x0 =
∑

i λisi, with λi ≥ 0 for all i. There cannot exist j with 〈yj , sk〉 = 0 for all k,

otherwise 〈yj , x0〉 = 0 and x0 would not be solution of (5). Therefore ∪kIk = {1, . . . ,m}.
Let x̂ ∈ C, with x̂ =

∑
i µisi, with µi > 0 for all i. Since ∪kIk = {1, . . . ,m}, for all j

there exists k such that µk〈yj , sk〉 > 0 and µk〈yi, sk〉 ≥ 0 for all i 6= j. By summation, for

all i, 〈yi, x̂〉 > 0, and so x̂ is solution of (5).
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Part 2. This part shows the converse, that any solution of (5) is in C.
Let x̂ be a solution of (5). Let B0 be the open ball of diameter δ centered on x̂, and B1

the open ball of diameter 3
4δ with the same center. If δ is chosen small enough, any vector

of B0 is solution of (5) since its inequalities define an open set of E .

For ε > 0, let t = ε
∑

i si, and let B′1 = B1 + t be the translated ball by t. If ε is

chosen small enough, the open ball B′1 remains contained in B0. In such a case, x̂, which

also belongs to B′1, is the image of some x0 ∈ B1. As x0 is solution of (4), we can write

x0 =
∑

i λisi, with λi ≥ 0 for all i, hence x̂ =
∑
µisi, with µi = λi + ε > 0 for all i.

Therefore x̂ ∈ C. This concludes the proof of the lemma.

Let us now return to the proof of the main theorem. Denote by S the space of scoring

rules, i.e., the linear space of functions S : Θ×Ω 7→ R, considered as a Hilbert space whose

inner product is defined as 〈S1, S2〉 =
∑

θ,ω S1(θ, ω)S2(θ, ω).

Part 1. Suppose that there exists a strictly proper scoring rule for the statistic (Θ, F ).

S ∈ S is proper if, and only if, for all θ, θ̂ ∈ Θ,

〈S(θ), p〉 = 〈S(θ̂), p〉 ∀p ∈ F (θ) ∩ F (θ̂) , (7)

〈S(θ), p〉 ≥ 〈S(θ̂), p〉 ∀p ∈ F (θ)\F (θ̂) , (8)

with the last inequality being strict if and only if S is strictly proper.

By Lemma 1, for all θ ∈ Θ, the level set F (θ) is a bounded convex polyhedron, and so

is the convex hull of a set of vertices Vθ. We can supplement the set of vertices Vθ of each

polyhedron F (θ) by vertices of the other polyhedra that belong to its boundary, in such a

way that, for all θ, θ̂ ∈ Θ, and all p belonging to both F (θ) and Vθ̂, p also belong to Vθ. Let

us write Vθ as {pθ1, . . . , pθ`θ}.
Let S ∈ S be proper (resp. strictly proper). Let θ, θ̂ ∈ Θ. If p ∈ Vθ ∩ Vθ̂, then

p ∈ F (θ) ∩ F (θ̂) and so by (7), 〈S(θ), p〉 = 〈S(θ̂), p〉. If p ∈ Vθ\Vθ̂, then p ∈ F (θ) and

p 6∈ F (θ̂), since by construction of Vθ, p ∈ F (θ̂) and p ∈ Vθ implies p ∈ Vθ̂. So by (8),

〈S(θ), p〉 ≥ 〈S(θ̂), p〉 (resp. 〈S(θ), p〉 > 〈S(θ̂), p〉).
We shall show the sufficiency of these two conditions. Assume that if p ∈ Vθ ∩ Vθ̂,

then 〈S(θ), p〉 = 〈S(θ̂), p〉, and if p ∈ Vθ\Vθ̂, then 〈S(θ), p〉 ≥ 〈S(θ̂), p〉 (resp. 〈S(θ), p〉 >
〈S(θ̂), p〉). Let p ∈ F (θ) ∩ F (θ̂). Then p is a linear combination of vectors in Vθ and Vθ̂,
and since the equality 〈S(θ), q〉 = 〈S(θ̂), q〉 holds for all vectors q that belong to these two

sets, by linearity 〈S(θ), p〉 = 〈S(θ̂), p〉. Now let p ∈ F (θ)\F (θ̂). Then p =
∑

i λip
θ
i for some

nonnegative scalars λi that sum to one. Since p 6∈ F (θ̂), there exists k such that λk > 0 and

pθk 6∈ F (θ̂). Hence pθk ∈ Vθ\Vθ̂, and 〈S(θ), pθk〉 ≥ 〈S(θ̂), pθk〉 (resp. 〈S(θ), pθk〉 > 〈S(θ̂), pθk〉).
For i 6= k, we either have pθi ∈ Vθ ∩ Vθ̂ or pθi ∈ Vθ\Vθ̂, and so in both cases 〈S(θ), p〉 ≥
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〈S(θ̂), p〉. Hence

〈S(θ), p〉 =
∑
i

λi〈S(θ), pθi 〉 ≥
∑
i

λi〈S(θ̂), pθi 〉 = 〈S(θ̂), p〉

with a strict inequality when S is strictly proper. Therefore, we have shown that a scoring

rule S is proper if, and only if, S is solution of the following finite linear system in the space

S,  〈S(θ)− S(θ̂), p〉 = 0 , θ, θ̂ ∈ Θ, p ∈ Vθ ∩ Vθ̂ ,

〈S(θ)− S(θ̂), p〉 ≥ 0 , θ, θ̂ ∈ Θ, p ∈ Vθ\Vθ̂ ,
(9)

and S is strictly proper if, and only if, S is solution of the system 〈S(θ)− S(θ̂), p〉 = 0 , θ, θ̂ ∈ Θ, p ∈ Vθ ∩ Vθ̂ ,

〈S(θ)− S(θ̂), p〉 > 0 , θ, θ̂ ∈ Θ, p ∈ Vθ\Vθ̂ .
(10)

Part 2. Let S0 be the space of solutions of the finite system of equalities (in S)

〈S(θ)− S(θ̂), p〉 = 0 , θ, θ̂ ∈ Θ, p ∈ Vθ ∩ Vθ̂

corresponding to the first part of (9) and (10).

Step 1. Let S⊥0 be the orthogonal complement of S0 in S. Let S ∈ S0. Then, for any vector

X of S, 〈X,S〉 = 〈X⊥⊥, S〉, with X⊥⊥ ∈ S0 and where X⊥⊥ +X⊥ is the decomposition of

X according to the direct sum S = S0 ⊕ S⊥0 . Therefore, there exists vectors Y1, . . . , Ym in

S0 such that the solutions of (9) in S are exactly the solutions of the finite system of weak

linear inequalities in S0

〈Yi, S〉 ≥ 0, i = 1, . . . ,m (11)

and the solutions of (10) are the solutions of the finite system of strict linear inequalities in

S0

〈Yi, S〉 > 0, i = 1, . . . ,m . (12)

Step 2. Let K be the kernel of (11) in S0, and K⊥ be its orthogonal complement in S0.

For each Yi, write Y ⊥⊥i + Y ⊥i its decomposition according to the direct sum S0 = K ⊕K⊥.

We can easily describe K: S ∈ K if and only if S ∈ S0, and if, for all θ, θ̂ ∈ Θ and all

p ∈ Vθ\Vθ̂, 〈S(θ)−S(θ̂), p〉 = 0. Since (Vθ ∩Vθ̂)∪ (Vθ\Vθ̂) = Vθ, K is simply the solution of

〈S(θ)− S(θ̂), p〉 = 0 , θ, θ̂ ∈ Θ, p ∈ Vθ . (13)

Any S such that S(θ) = S(θ̂) for all θ, θ̂ ∈ S is solution. By Lemma 1, F (θ) has dimension
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|Ω| for all θ, and so the linear span of Vθ is RΩ. Consequently, if S is solution of (13),

then 〈S(θ) − S(θ̂), p〉 = 0 for all θ, θ̂ and all p ∈ RΩ, implying S(θ) = S(θ̂). Hence

K = {S ∈ S | S(θ, ω) = S(θ̂, ω) ∀θ 6= θ̂}.
Step 3. Let’s consider the following two systems of inequalities in K⊥:

〈Y ⊥i , S〉 ≥ 0 , i = 1, . . . ,m (14)

and

〈Y ⊥i , S〉 > 0 , i = 1, . . . ,m . (15)

If S ∈ K⊥, 〈Yi, S〉 = 〈Y ⊥i , S〉, and the solutions of (11) (resp. (12)) are the elements of K
added to the solutions of (14) (resp. (15)). The systems (14) and (15) have full rank in K⊥,

and since by assumption there exists a strictly proper scoring rule, both admit at least one

solution. By Lemma 2, there exist vectors S1, . . . , S` ∈ K⊥ such that S is solution of (14)

(resp. of (15)) if and only if S is a nonnegative (resp. strictly positive) linear combination

of S1, . . . , S`.

Therefore, S is solution of (9) (resp. of (10)) if, and only if, S = κ+
∑

i λiSi, for κ ∈ K
and λ1, . . . , λ` ≥ 0 (resp. λ1, . . . , λ` > 0).

A.2 Proof of Theorem 3

If part. The construction of strictly order-sensitive scoring rules shall be done in Theorem 4

and Proposition 1.

Only if part. Let S be a strictly order-sensitive scoring rule.

Step 1. This first step shows that for all i and j > i + 1, if p ∈ F (θi) and p ∈ F (θj) then

p ∈ F (θi+1). Suppose by contradiction that there exist i and p with p ∈ F (θi), p 6∈ F (θi+1),

and p ∈ F (θj) for some j > i+ 1. By Lemma 1, F (θi) is a convex polyhedron of nonempty

relative interior. Since p ∈ F (θi), there exists a sequence of vectors {pk}k≥1 of the relative

interior of F (θi) that converges to p. By continuity limk→+∞ S(θi, pk) → S(θi, p). Let

δk = S(θi, pk) − S(θi+1, pk). Since pk and p both belong to F (θi), but not to F (θi+1),

δk > 0, and δk converges to δ = S(θi, p) − S(θi+1, p) > 0. Therefore inf{δk}k≥1 > 0. Let

ε = inf{δk/2}k≥1. By continuity, there exists K such that

|S(θi, p)− S(θi, pK)| ≤ ε/2 ,

and

|S(θj , p)− S(θj , pK)| ≤ ε/2 ,
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so that, since θi and θj both contain p, S(θi, p) = S(θj , p) and

|S(θi, pK)− S(θj , pK)| ≤ ε .

Hence, S(θj , pK) > S(θi, pK) − ε = S(θi+1, pK) + δK − ε > S(θi+1, pK). However, pK is in

the relative interior of F (θi), which means according to Lemma 1 that θi is the only true

value of the statistic for pK . But, since i < i + 1 < j, and S is strictly order sensitive, we

should have S(θi+1, pK) > S(θj , pK). Contradiction.

Step 2. Now let 1 ≤ j ≤ n−1. Let Bj = F (θ1)∪· · ·∪F (θj), and Cj = F (θj+1)∪· · ·∪F (θn).

By Lemma 1, Bj and Cj are polyhedra of dimension |Ω| and nonempty relative interior,

with Bj ∪ Cj = ∆Ω. Let i ≤ j < j + 1 ≤ k. If p ∈ F (θi) and p ∈ F (θk), an iterative

application of the claim of step 1 above yields p ∈ F (θi), F (θi+1), . . . , F (θk). In particular,

p ∈ F (θj) ∩ F (θj+1). Therefore Bj ∩ Cj = F (θj) ∩ F (θj+1). By Lemma 1, the dimension

of F (θj) ∩ F (θj+1) is at most |Ω| − 1, so that there is a hyperplane of distributions H that

contains Bj ∩ Cj . Suppose that there exists a distribution p of H that does not belong to

Bj ∩ Cj . Since Bj ∪ Cj = ∆Ω, p ∈ Bj or p ∈ Cj . Suppose for example that p ∈ Bj . Then

there exists a distribution q in the relative interior of Cj with q 6∈ H. Note that the segment

]p, q] contains only elements of Bj or Cj . Since both sets are closed, the segment intersects

Bj ∩ Cj , which is impossible since ]p, q] does not intersect H. So Bj ∩ Cj must be the full

hyperplane of distributions H: H = Bj ∩ Cj = F (θj) ∩ F (θj+1). This concludes the proof.

A.3 Proof of Theorem 4

Part 1. Define

S(θk, ω) = κ(ω) +
∑

1≤i<k
λini(ω) ,

with λ1, . . . , λn−1 ≥ 0, and κ ∈ RΩ.

As nk is oriented positively, 〈nk, p〉 ≥ 0 for all p ∈ F (θk+1), . . . , F (θn), and 〈nk, p〉 ≤ 0

for all p ∈ F (θ1), . . . , F (θk). The inequalities are strict if p /∈ F (θk) ∩ F (θk+1).

Let p ∈ F (θk). If j < k,

E
ω∼p

[S(θk, ω)]− E
ω∼p

[S(θj , ω)] =
∑
j≤i<k

λi〈ni, p〉 ≥ 0 ,

and, if j > k,

E
ω∼p

[S(θk, ω)]− E
ω∼p

[S(θj , ω)] = −
∑
k≤i<j

λi〈ni, p〉 ≥ 0 .

Therefore S is a proper scoring rule. If, in addition, λ1, . . . , λn−1 > 0, the inequalities
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become strict when p 6∈ F (θj), making S strictly proper.

Part 2. Now assume S is a proper scoring rule. Then, for all p ∈ F (θk) ∩ F (θk+1), 1 ≤
k < n, 〈S(θk), p〉 = 〈S(θk+1), p〉, and so 〈S(θk+1) − S(θk), p〉 = 0. Theorem 3 says that

F (θk) ∩ F (θk+1) is a hyperplane of ∆Ω. Its linear span is a hyperplane Hk of RΩ, thus

S(θk+1)− S(θk) = λknk, where nk is a normal to Hk oriented positively.

Let p ∈ F (θk+1), p 6∈ F (θk). As S is proper, 〈S(θk+1), p〉 ≥ 〈S(θk), p〉, so λk〈nk, p〉 ≥ 0.

Since p 6∈ Hk and nk is positively oriented, 〈nk, p〉 > 0, implying λk ≥ 0 (λk > 0 if S is

strictly proper).

Therefore

S(θk) = S(θ1) +
∑

1≤i<k
(S(θi+1)− S(θi)) = κ+

∑
1≤i<k

λini ,

with κ = S(θ1).

A.4 Proof of Proposition 1

Assume the statistic accepts a strictly order-sensitive scoring rule with respect to the order

relation ≺, and let θ1 ≺ · · · ≺ θn be the elements of the value set of the statistic. Let S be

a proper scoring rule. Theorem 4 shows that S takes the form

S(θk, ω) = κ(ω) +
∑

1≤i<k
λini(ω) ,

with λ1, . . . , λn−1 ≥ 0. Let p ∈ ∆Ω. Since the normals are positively oriented, 〈nk, p〉 ≥ 0 if

p ∈ F (θk+1), . . . , F (θn) and 〈nk, p〉 ≤ 0 if p ∈ F (θ1), . . . , F (θk), the inequalities being strict

if p /∈ F (θk) ∩ F (θk+1). So, for all θ, θk, θj , if θj ≺ θk ≺ θ and p ∈ F (θ), then

E
ω∼p

[S(θk, ω)]− E
ω∼p

[S(θj , ω)] =
∑
j≤i<k

λi〈ni, p〉 ≥ 0 .

Similarly, if θ ≺ θk ≺ θj ,

E
ω∼p

[S(θk, ω)]− E
ω∼p

[S(θj , ω)] = −
∑
k≤i<j

λi〈ni, p〉 ≥ 0 .

Hence S is order sensitive. If S is strictly proper, the λi’s are strictly positive, making the

above inequalities strict, and S becomes strictly order sensitive.
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B Proofs of Section 4

For an arbitrary function f , {f = α} denotes the set {x | f(x) = α}.Given a subset S of a

linear space, S◦ denotes the interior of S, 〈S〉 its linear span, and 〈S〉a its affine span. For

a scoring rule S, we use the short notation

S̄p(t) = E
ω∼p

[S(t, ω)] .

The proofs use the following elementary lemmas.

Lemma 3. If Φ is a linear functional on RΩ such that ker Φ ∩∆Ω 6= ∅, then ker Φ is the

linear span of its intersection with ∆Ω.

Proof. Let f0 ∈ ∆Ω with Φ(f0) = 0. Take any f ∈ ker Φ. As f0 > 0, if α is chosen large

enough, f + αf0 > 0. So, defining β = ‖f + αf0‖∞ and f1 = (f + αf0)/β, we have that

Φ(f1) = 0 and f1 ∈ ∆Ω. Hence f = βf1 − αf0 ∈ 〈ker Φ ∩∆Ω〉.

Lemma 4. If h : [a, b] 7→ R+ is a Lebesgue measurable function with
∫
h > 0, then there

exists ε > 0 such that {h ≥ ε} has strictly positive measure.

Proof. As {h > 0} is the limit of the monotone increasing sequence of sets {h ≥ 1/k}
and {h > 0} has strictly positive measure, the sets {h ≥ 1/k} must have strictly positive

measure as k grows large enough.

Lemma 5. If h : [a, b] 7→ R+ is a Lebesgue measurable function that is strictly positive

almost everywhere, and A ⊂ [a, b] is a measurable set of strictly positive measure, then∫
A h > 0.

Proof. As A ∩ {h > 0} is the limit of the monotone increasing sequence of sets (A ∩ {h ≥
1/k}), for k large enough, the set A ∩ {h ≥ 1/k} must have strictly positive measure, and∫
A h ≥ λ(A ∩ {h ≥ 1/k})/k > 0.

Proof of Proposition 2

The proof is a simple adaptation of Proposition 3 of Nau (1985). Let Γ be the associated

statistic function. Assume S is proper. Let θp, θq be two statistic values, and let p be a

distribution such that Γ(p) = θp. Consider the case θp < θq and let r be a distribution such

that θq ≤ Γ(r). Consider the function f : λ 7→ Γ(λr + (1− λ)p). Observe that the function

is continuous. Noting that f(0) = θp < θq ≤ Γ(r) = f(1), there exists some λq ∈ (0, 1] such

that f(λq) = θq. Let q = λqr + (1− λq)p.
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As S is proper S(θp, q) ≤ S(θq, q). By linearity of the expectation operator, the inequal-

ity can be re-written as

λqS(θp, r) + (1− λq)S(θp, p) ≤ λqS(θq, r) + (1− λq)S(θq, p)

1− λq
λq

(S(θp, p)− S(θq, p)) ≤ S(θq, r)− S(θp, r) .

The left-hand side of the inequality is nonnegative by properness of S, which makes the

right-hand side of the inequality nonnegative as well. Hence S is order sensitive. The same

procedure can be used to show that, if S is strictly proper, then S is also strictly order

sensitive.

Proof of Theorem 5

Let (Θ, F ) the a regular real-valued continuous statistic and Γ be the associated statistic

function.

Part (1) ⇒ (2) :

Let S be a strictly proper scoring rule. Take p, q ∈ ∆Ω, and 0 < α < 1. Suppose

p, q ∈ F (θ). Then, for all θ̂ 6= θ,

E
ω∼p

[S(θ̂, ω)] ≤ E
ω∼p

[S(θ, ω)] ,

and

E
ω∼q

[S(θ̂, ω)] ≤ E
ω∼q

[S(θ, ω)] ,

and so, by linearity of the expectation operator,

E
ω∼αp+(1−α)q

[S(θ̂, ω)] = α E
ω∼p

[S(θ̂, ω)] + (1− α) E
ω∼q

[S(θ̂, ω)]

≤ α E
ω∼p

[S(θ, ω)] + (1− α) E
ω∼q

[S(θ, ω)]

= E
ω∼αp+(1−α)q

[S(θ, ω)] ,

which, by strict properness, implies αp+ (1− α)q ∈ F (θ). Hence the convexity of the sets

F (θ).

Part (2) ⇒ (1) :

First remark that, as Γ is continuous, the set of values taken by the statistic, Θ, is an

interval of the real line. This can be seen by applying the intermediate value theorem to

the continuous function α 7→ Γ(αp+ (1− α)q), defined on [0, 1] for any p, q ∈ ∆Ω.
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Step 1. Let us start by showing that if, for all θ, {Γ = θ} is convex, then it is also the case

that {Γ ≥ θ}, {Γ > θ}, {Γ ≤ θ} and {Γ < θ} are convex. We prove the first case, the other

three work in a similar fashion.

Let θ ∈ Θ◦, and p, q ∈ ∆Ω, with Γ(p) ≥ Γ(q) ≥ θ. Consider the function f(α) =

Γ(αp + (1 − α)q) defined on [0, 1]. Note that f is continuous. To prove that {Γ ≥ θ} is

convex, it suffices to show that the image of f is the interval [Γ(q),Γ(p)]. We already know

that [Γ(q),Γ(p)] ⊆ f([0, 1]) by continuity of f , observing that f(0) = Γ(q) and f(1) = Γ(p).

So let

a = sup{α ∈ [0, 1] | f(α) = Γ(q)} ,

b = inf{α ∈ [0, 1] | f(α) = Γ(p)} .

By continuity of f , the above two sets are closed and nonempty, so f(a) = f(0) = Γ(q)

and f(b) = f(1) = Γ(p). Also, by convexity of the level sets of Γ, f([0, a]) = {Γ(q)}
and f([b, 1]) = {Γ(p)}. Besides, if, for some α∗ > a, f(α∗) < f(0) then by continuity

f(α) = f(0) for some α > α∗, violating a’s definition. Similarly, there does not exist α∗

with f(α∗) > f(1), and f([0, 1]) = [Γ(q),Γ(p)]. So {Γ ≥ θ} is convex.

Step 2. Let θ ∈ Θ◦. Let’s start by showing the existence of a nonzero linear functional Φ

on RΩ, such that

{Γ < θ} ⊂ {Φ ≤ 0} ,

{Γ ≥ θ} ⊂ {Φ ≥ 0} .

By the previous step both {Γ < θ} and {Γ ≥ θ} are convex, and since they are disjoint

with nonempty relative interior, we can apply the separating hyperplane theorem and find a

nonconstant affine function Φ on the affine span of ∆Ω, Φ({Γ < θ}) ≤ 0 and Φ({Γ ≥ θ}) ≥ 0.

Φ naturally extends to a linear functional on RΩ.

Step 3. Using the same θ as in the preceding step, as {Γ < θ} and {Γ > θ} are open sets

of ∆Ω, we have that {Γ < θ} ⊂ {Φ < 0} and {Γ > θ} ⊂ {Φ > 0}. In summary, we have

shown the existence of a linear functional Φ on RΩ satisfying

{Γ < θ} ⊂ {Φ < 0} ,

{Γ ≥ θ} ⊂ {Φ ≥ 0} ,

{Γ > θ} ⊂ {Φ > 0} .
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By a symmetric argument, there exists a linear functional Ψ that satisfies

{Γ < θ} ⊂ {Ψ < 0} ,

{Γ ≤ θ} ⊂ {Ψ ≤ 0} ,

{Γ > θ} ⊂ {Ψ > 0} .

We show that Φ and Ψ are positively collinear. If they are not collinear, then ker Φ ∩
∆Ω 6= ker Ψ∩∆Ω by Lemma 3. As ker Φ∩∆Ω ⊆ {Γ = θ} and ker Ψ∩∆Ω ⊆ {Γ = θ}, there

exist p, q ∈ {Γ = θ} such that Φ(p) = 0 with Ψ(p) < 0, and Φ(q) > 0 with Ψ(q) = 0. So,

Φ

(
p+ q

2

)
> 0 and Ψ

(
p+ q

2

)
< 0 .

By continuity of Φ and Ψ, there exists an open ball B centered on (p+ q)/2, such that Φ(B)

contains only strictly positive values and Ψ(B) contains only strictly negative values. Since

B ∩∆Ω 6= ∅, these assertions imply that Γ is both greater than or equal to θ and less than

or equal to θ on B ∩ ∆Ω, and so equals θ on this open set of ∆Ω. This contradicts the

regularity assumption on Γ. So Ψ and Φ are collinear, and, by their sign properties above,

are positively collinear, implying {Γ = θ} = ker Φ ∩∆Ω.

Thus, for all θ ∈ Θ◦, there exists a linear functional Φθ on RΩ such that {Γ = θ} =

ker Φθ ∩∆Ω.

Step 4. We can choose Φθ such that ‖Φθ‖ = 1, and orient Φθ such that Φθ(p) > 0 for some

given p ∈ {Γ > θ}. By continuity of Γ and convexity of ∆Ω, Φθ has the following properties:

{Γ < θ} = {Φ < 0} ∩∆Ω ,

{Γ = θ} = {Φ = 0} ∩∆Ω ,

{Γ > θ} = {Φ > 0} ∩∆Ω .

Let us write Φθ(p) as 〈gθ, p〉, for some gθ ∈ RΩ.

Step 5. This steps shows that the function θ 7→ gθ is continuous on Θ◦.

Let us begin by showing that, for all θ0 ∈ Θ◦, limθ→θ0 Φθ(f) = 0 whenever f ∈ ker Φθ0 ∩
∆Ω. To see this, let f ∈ {Γ = θ0}, and, for any ε > 0, consider the open ball Bε of

radius ε that is centered on f . Note that Φθ0 takes both strictly positive and strictly

negative values on Bε, meaning that Γ takes values that are both above and below θ0.

By continuity of Γ, there exists some δ > 0 such that (θ0 − δ, θ0 + δ) ⊂ Γ(B ∩ ∆Ω).

In particular, for all θ ∈ (θ0 − δ, θ0 + δ), there is g ∈ Bε ∩ ∆Ω with Γ(g) = θ, hence

|Φθ(f)| = |Φθ(f−g)+Φθ(g)| ≤ ‖Φθ‖‖f−g‖ ≤ ε. Therefore, we have that limθ→θ0 Φθ(f) = 0.
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Observing that ker Φθ0 = 〈ker Φθ0 ∩ ∆Ω〉 by Lemma 3, the above limit remains valid

whenever f ∈ ker Φθ0 .

Now we can extend the limit to all members of RΩ. Take any sequence {θk} that

converges to θ0. Then, because gθ is finite-dimensional and bounded, Φθk converges, uni-

formly, on a subsequence of k’s. Suppose that Φ∞ is the limit. We have just shown that

ker Φθ0 ⊆ ker Φ∞, which implies that Φ∞ = αΦθ0 for some α. Since ‖Φθk‖ = 1 by assump-

tion, ‖Φ∞‖ = 1, so |α| = 1, and the orientation that was decided of Φθ yields α = 1. If for

any f ∈ RΩ, it was the case that Φθk(f) did not converge to Φθ0(f), then for a subsequence

of k’s, we would have that Φθk converges to a functional different from Φθ0 , which we have

just ruled out.

Step 6. At last we can construct a strictly proper scoring rule. We let H(t, ω) = gt(ω) if

t ∈ Θ◦ and, using that gt is bounded and continuous, we extend H(t, ω) by continuity on

the entire interval Θ.

Choose any θ0 ∈ Θ and let

S(θ, ω) =

∫ θ

θ0

H(t, ω)dt .

We have that

E
ω∼p

[S(θ, ω)] =

〈∫ θ

θ0

H(t, ·)dt, p
〉
,

=

∫ θ

θ0

〈H(t, ·), p〉dt .

Suppose for example that Γ(p) > θ, then

E
ω∼p

[S(Γ(p), ω)]− E
ω∼p

[S(θ, ω)] =

∫ Γ(p)

θ
〈(H(t, ·), p〉dt ,

> 0

since, for all t < Γ(p), 〈H(t, ·), p〉 = Φt(p) > 0. And similarly for t > Γ(p). Hence S is

strictly proper.

Proof of Theorem 6

If part:

In the proof of Theorem 5, we constructed a function H(θ, ω) , that satisfies |H| ≤ 1,
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and such that, for all θ and p ∈ ∆Ω,

〈H(θ, ·), p〉

is strictly positive when Γ(p) > θ, strictly negative when Γ(p) < θ, and zero when Γ(p) = θ.

Choose S0 = H. Assume that for all ω and θ, scoring rule S takes the form

S(θ, ω) = κ(ω) +

∫ θ

θ0

ξ(t)S0(t, ω)dt ,

for some θ0 ∈ Θ, κ : Ω 7→ R, and ξ : I 7→ R+ a Lebesgue measurable bounded function.

For all p ∈ ∆Ω,

S̄p(θ) = 〈κ, p〉+

〈∫ θ

θ0

ξ(t)S0(t, ·), p
〉
.

Take for example θ < Γ(p):

S̄p(Γ(p))− S̄p(θ) =

∫ Γ(p)

θ
ξ(t)〈S0(t, ·), p〉dt .

As, for all t < Γ(p), 〈S0(t, ·), p〉 > 0, we get S̄p(Γ(p))− S̄p(θ) ≥ 0, implying that S is proper.

If, in addition,
∫ Γ(p)
θ ξ > 0, then by Lemma 4, there is ε > 0 such that A = {ξ ≥ ε} is of

strictly positive Lebesgue measure. Hence,

S̄p(Γ(p))− S̄p(θ) ≥ ε
∫
A
〈S0(t, ·), p〉dt

which is strictly positive by Lemma 5, making S strictly proper.

Only if part:

Let S be a regular scoring rule for Γ, and θ0 ∈ Θ. If S is (strictly) proper, (θ, ω) 7→
S(θ, ω)−S(θ0, ω) is also (strictly) proper. Thus we can assume with loss of generality that

S(θ0, ·) = 0.

As S(·, ω) is Lipschitz continuous, it is also absolutely continuous and there is a function

G : Θ× Ω 7→ R such that, for all θ, ω,

S(θ, ω) =

∫ θ

θ0

G(t, ω)dt .

Moreover, for all ω, θ 7→ S(θ, ω) is differentiable except possibly on a measure zero set Z,

and
S(θ, ω)

∂θ
= G(θ, ω) .
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(The measure zero set generally depend on ω, but as ω only takes a finite number of values,

we can always choose Z to be independent of ω.) G can be chosen such that, if S(·, ω) is

not differentiable at θ, G(θ, ω) = 0. Finally, as S is Lipschitz continuous, G is bounded.

For all θ ∈ Θ, define Ψθ on RΩ as Ψθ(f) = 〈G(θ, ·), f〉.
Assume S is proper, and let θ /∈ Z. If p ∈ {Γ = θ}, Γ(p) 6∈ Z and so S̄p(Γ(p))′ = 0,

which yields {Γ = θ} ⊂ ker Ψθ. By Theorem 5, there exists a linear functional Φθ on RΩ

such that {Γ = θ} = ker Φθ ∩ ∆Ω. As {Γ = θ} is nonempty, applying Lemma 3 yields

ker Φθ = 〈{Γ = θ}〉 and, as {Γ = θ} ⊂ ker Ψθ we have that ker Φθ ⊆ ker Ψθ. Consequently

there exists a real number ξ(θ) such that Ψθ = ξ(θ)Φθ. Choose ξ(θ) = 0 if Φθ = 0 or if

θ ∈ Z.

We can choose without loss ‖Φθ‖ = 1. In the proof of Theorem 5, we showed that

Φθ can be chosen such that θ 7→ Φθ(p) be continuous. Writing ξ(θ) = Ψθ/Φθ leads to

Lebesgue measurability of ξ. Besides, noting that ‖G(θ, ·)‖ = ‖Ψθ‖ = |ξ(θ)|‖Φθ‖ = |ξ(θ)|,
boundedness of ξ follows from boundedness of G.

Therefore, for all p ∈ ∆Ω, and all θ,

S̄p(θ) =

∫ θ

θ0

Ψt(p)dt =

∫ θ

θ0

ξ(t)Φt(p)dt .

By Proposition 2, S is order sensitive. This implies ξ ≥ 0. Indeed, suppose ξ(θ) < 0 for

some θ 6∈ Z. Take, for example, p ∈ {Γ > θ}. Then,

S̄′p(θ) = ξ(θ)Φθ(p) < 0 ,

and S̄p is not (weakly) increasing on {t < Γ(p)}, contradicting order sensitivity of S. Hence

ξ ≥ 0. Assume that, in addition, S is strictly proper. Take any θ1 < θ2 and p ∈ {Γ = θ2}.
Then,

0 < |S̄p(θ2)− S̄p(θ1)| =
∣∣∣∣∫ θ2

θ1

ξ(t)Φt(p)dt

∣∣∣∣ ,
≤ ‖p‖

∫ θ2

θ1

ξ ,

implying
∫ θ2
θ1
ξ > 0.
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