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 An agent of unknown expertise is requested to forecast the mean of
 an uncertain outcome. The agent can refine forecasts at a constant

 marginal cost per unit precision, but neither cost nor precision can
 be verified by the planner. The problem is to induce both truthful
 revelation and an appropriate degree of learning so as to minimize
 the expected sum of direct planning losses and agent payments.
 Optimal contracts are derived with and without self-screening of
 expertise and with and without competition between agents. Self-
 screening tends to be much less valuable than competition.

 I. Introduction

 When outcomes are uncertain, planning must be based on forecasts-

 quite often, on forecasts submitted by others. Naturally, the planner

 wishes to ensure that these forecasts are prepared honestly and with

 an appropriate degree of care. But how is this to be done? Even if

 the outcome departs significantly from what was predicted, one can

 rarely conclusively infer that the forecaster was intentionally negli-

 gent or deceptive. To take extreme examples, a space shuttle explo-

 sion or major nuclear reactor accident was deemed very unlikely.

 Now that these events have occurred, forecasts of the likelihood of

 similar accidents will presumably be revised upward. This need not

 mean that previous forecasters were lazy or even that their probability

 forecasts were necessarily "wrong." On the other hand, it is possible

 that forecasting incentives were skewed toward careless or overly opti-
 mistic reports.

 I wish to thank Richard Gilbert, Stefan Reichelstein, Eric Maskin, and especially Jean
 Tirole for criticisms of earlier drafts of this paper.
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 Considering the topic's practical importance, remarkably little has
 been written about forecasting incentives. What has been written fo-
 cuses on incentives for honest reporting, without regard for other
 incentive issues. The agent's utility compensation, often called the
 "score" in statistical decision theory, is tied to the forecast and to the
 future observed outcome. The agent is presumed to choose the fore-

 cast so as to maximize the expected score. Scoring rules are called
 "proper" if they always encourage sincere reporting, regardless of the

 agent's underlying beliefs. Savage (1971), Thomson (1979), Haim
 (1982), and Osband and Reichelstein (1985) characterize the full
 set of' proper scoring rules ("incentive-compatible compensation
 schemes," in the terminology of principal-agent literature) for specific
 forecasting measures such as the mean or median. In Osband (1985),
 this characterization is extended to arbitrary types of forecasts.

 Almost without exception, these articles skirt issues of optimality:
 the choice of rules within a class. Presumably the planner would be
 interested in minimizing expected payoff for truthful reports subject
 to some sort of income or expected income floor for the agent. But

 this consideration does not by itself lead to a very interesting choice.
 Given a forecast Y (which may be a vector) and outcome x, let the net
 utility payoff for a bounded proper scoring rule be denoted by H(Y,
 x), with B as a lower bound. Then for any positive E and any Z, E[H(Y,
 x) - B] + Z is strictly proper with utility payoffs of at least Z. By
 setting Z at the agent's minimum acceptable expected utility and
 choosing e close to zero, strictly proper scoring rules can be squeezed
 arbitrarily close to the minimum-and only weakly proper-flat fee.

 Scoring rules appear superfluous in this instance for two reasons.
 First, the forecaster is assumed to know the outcome distribution
 without incurring any learning costs, or at least without choosing what
 those costs will be. Second, the forecaster is assumed unable to in-
 fluence that distribution by exerting or withholding effort. Relax
 either of these assumptions and a real trade-off arises between infor-
 mation transfer costs and incentives for effort.

 In this article agent learning costs are explicitly incorporated into a
 forecast elicitation model, while the assumption of agent-independent
 outcomes is maintained. The forecaster, who is asked to report the

 mean of an uncertain or random outcome, will begin with a rough
 estimate. By exerting additional effort, the forecaster can refine this
 estimate to any desired degree of precision, at a cost varying with his
 expertise. The planner may not know how expert the forecaster is.
 Contracts for inducing an expected degree of learning are derived,
 and their administrative costs analyzed. At the optimum, the mar-
 ginal expected benefit to the planner from more precise estimates
 must be balanced by the marginal expected administrative cost.

 Section II presents the basic model. The model incorporates ad-
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 verse selection (the unknown expertise of the forecaster), moral

 hazard (the unobserved learning effort), and "white noise" (the inher-

 ent unpredictability of the outcome). Given the multiple layers of

 uncertainty, one might suspect that the optimal payoff contract would

 be very complicated. As it turns out, the best contract, provided

 forecasters are risk-neutral, is quite simple: quadratic in the reported

 mean and linear in the outcome, with easily calculated parameters.

 When expertise is known, the optimal contract induces a first-best

 solution: expected total planning cost is no more than it would be with

 complete and costless monitoring. But when, as is likely, the forecast-

 er's learning expertise is not precisely known, more expert forecasters

 stand to earn an "information rent." To reduce these rents, the plan-

 ner tends to sacrifice forecasting precision. The net efficiency loss can

 be substantial, Section III shows: up to 40 percent of total planning

 cost, given a uniform prior on expertise.

 Section IV investigates the cost-reducing potential of "self-screen-

 ing" contracts, which induce forecasters to reveal their expertise be-

 forehand. Efficiency gains turn out to be remarkably meager, less

 than one part in 500 for any uniform expertise distribution. Indeed,
 for many prior distributions of expertise, self-screening offers no

 advantages at all.

 Section V puts the preceding results into a more general principal-
 agent perspective. Forecaster self-screening is reinterpreted, some-

 what surprisingly, as a special case of the Laffont-Tirole (1986) model
 of a regulated firm with ex post observable costs. The reinterpretation

 helps to account for the stiff second-order conditions.

 Section VI explores the potential for using competition among

 forecasters to reduce planning costs. Not only does competition offer

 significant savings over monopolistic self-screening, but it also consid-
 erably simplifies contract implementation. In some cases, contracting
 is as simple as selecting a single parameter in a quadratic reward

 schedule and then auctioning off the right to be paid according to this
 schedule.

 II. The Model

 Suppose that a planner must rely on some estimate Y of an uncertain
 outcome (an exchange rate, say) in order to formulate a plan. Should

 the actual value x deviate from the estimate, an opportunity loss L is
 incurred proportional to the square of the discrepancy. Thus L(Y, x)

 c(Y - x)2 for some positive c. If the true distribution of x has mean
 ,u and variance u 2, expected planning loss is c(Y - 11)2 + co-2. It is
 minimized at Y = pu, leaving only cu 2, the planning loss anticipated
 from inherent outcome riskiness.

 Suppose that the planner does not know p. exactly. Instead she
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 possesses some initial estimate YO of R, believed to be an unbiased
 predictor of p. with precision (the inverse of the variance) r. Overall

 expected planning loss using Yo is cu 2 + (c/r). To reduce this, the
 planner hires a forecaster. The forecaster, who is presumed to be

 risk-neutral, begins with the same prior as the manager but can avail

 himself of a forecasting technology. This technology increases fore-

 cast precision at cost b per unit precision. (For example, suppose that

 the forecaster takes independent unbiased "measurements" of [. at
 cost b apiece, with each measurement having variance one, and forms

 the best linear unbiased estimator [BLUE] on the basis of the results.

 After n - r measurements, the BLUE will have precision n.) The

 forecaster knows b, which will be called his "expertise" (so that more

 expert forecasters have lower b). He is risk-neutral and willing to

 enter any contract offering an expected profit of at least zero.

 Let n denote final estimate precision. If the planner could costlessly

 verify n and b, she would choose n to minimize b(n - r) + (c/n) + cu2,
 where the first term represents direct forecasting costs. This is

 achieved at n* = (c/b) 1/2, for total expected planning cost C(n*) of-br
 + cU 2 + 2(bc)"12. This is the "first-best" solution.

 Of the three components of C(n*), the first reflects the costlessness

 of the first r units of precision, while the second stems from the

 inherent randomness of x. The remaining component, which will be

 called the expected administrative cost (EAG), includes both "full"
 measurement costs (inclusive of r) and the expected loss from having

 an imperfect estimate of [., with each contributing half. The EAC
 rises with measurement cost and the cost of forecast error, but pro-

 portionately only half as fast as either.

 If only b could be directly verified, the first-best solution could still

 be obtained as follows. For report Y, consider the payment schedule
 ("contract")

 H(Y, x) = -c(Y - x) br + cu2 + 2(bc)"2. (1)

 Here the forecaster bears the planner's entire loss and receives

 enough side compensation to achieve the reservation expected utility

 zero. Writing this contract requires knowledge of u 2, however. Should
 U2 not be known, the same effect can be achieved with the contract

 H(Y, x) = c(2xY- Y2) - br - c(Y +- + 2(bc)"2. (1')

 Despite the differences of form, contracts (1) and (1') are essentially
 the same. Both consist of a multiple c of (2xY - Y2) for incentive
 purposes and an entrance fee (possibly random but always indepen-
 dent of report) to tax away expected rent. The two entrance fees

 differ by C[y2 + U2 + (1/r) - x2], for which the expectation condi-

 tional on YO is zero.
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 More realistically, suppose that the planner cannot directly verify b,

 n, or Y. Let the planner offer the forecaster a contract

 H(Y, x) = Q(2xY - Y2) - R + S(Yo - x), (2)

 for some Q, R, and S. In Appendix A, this is shown to be the only
 contract type possessing all three of the following features: (a) It

 always induces truthful reporting of Y; that is, for any distribution of
 x, expected reward is maximized by reporting the perceived mean. (b)
 Expected payoff depends only on the mean, not on the variance or

 any other aspect of the distribution. (c) Induced final estimate preci-
 sion depends only on b, not on any other aspect of the forecasting
 technology. The term in S amounts to a fair lottery in x and can for
 our purposes be ignored. The term R is the entrance fee, while the

 degree of forecasting care is determined completely by Q. If Y = pu +
 h is forecast instead of Y = pu, expected payoff will be reduced by Qh2,
 so higher Q induces more diligent forecasting.

 The simplicity of the contracts above coupled with their satisfaction
 of properties a-c makes them particularly easy to administer. The
 planner has only to select an appropriate Q and R in (2). In fact, as we
 shall see later, a contract of type (2) is optimal in the class of all
 contracts.

 Let the planner's beliefs about b be described by a cumulative distri-

 bution function G(), so that G(bo) denotes the subjective probability
 that b does not exceed bo, and let 13 be the perceived upper bound to b.
 If the planner is committed to hiring the forecaster regardless of type,
 she should adjust (2) until a type 13 forecaster would be indifferent
 between working and not working. This implies an entrance fee of

 R = Pr + Q(y2 +I - 2(P3Q)1/2 (3)

 for any chosen Q, by analogy with (1').

 Since (1) induces final estimate precision (c/b)"/2 for an agent of
 expertise b, (2) must induce final estimate precision n(b) = (Qlb)"2.
 Forecaster b's gross expected payoff is

 - (Q) - Pr + 2(13Q)"/2 = Q"/2(213/2 - b"/2) - P3r.

 Subtracting the investigation cost b[n(b) - r] yields the net expected
 payoff

 2QI/2(pl/2 - b"/2) - r(13 - b). (4)

 Thus for a given b, expected forecasting rent rises linearly with final
 estimate precision. Rent is positive for b less than 13 and rises at an
 increasing rate as b falls.
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 For a given b and Q, the planner's costs equal the forecaster's gross

 expected payoff plus the direct planning loss cur2 + [c/n(b)], or

 (913 1/2 h1/2?J1/2 - +CT /2 I)1/2 (2ldl2 - h /2)Ql2 -Pr + + cb"20 .

 The planner chooses Q* to minimize the expectation of (5). For 8 the
 expectation of b112, we have

 _* = (6)

 where A [(2P3l2/8) - 1]1/2. Again, it must be emphasized, the deriva-
 tion assumes that c is high enough to warrant hiring even the worst

 available forecaster. Otherwise, the planner might be willing to com-
 pletely forgo high-cost investigations in order to reduce rents for

 more expert forecasters. This turns 13 into a choice variable, and the
 resulting first-order condition (since 8 need no longer be constant)
 has no general closed-form solution.

 When (6) applies, expected cost A* = (f(Q*) equals

 261/281/2a - Pr + cu2. (7)
 At the optimum, forecasting error ciQ* - 1/2 accounts for half of EAC
 (the first term in [7]), the same proportion as under certainty. For r

 small, the remainder is split between expected "full" measurement

 costs fbn(b)dG(b) and forecasting rents in ratio 8:2(131/2 - 8).

 III. Costs of Agency

 The costs of agency under uncertainty-or, perhaps I should say
 instead, the costs of uncertainty under agency-are measured by the
 value A. Consider as a benchmark the optimal allocation when b is
 randomly distributed according to G(-) but costlessly verified prior to

 contracting. The EAC in (7) is A times as high as in the benchmark,
 while for every value of b, final estimate precision is a fraction 1/A of
 its value in the benchmark.

 The lower 8 is relative to its upper bound, the greater the relative

 advantages of full information. By Jensen's inequality, the expecta-
 tion of a square root is less than or equal to the square root of the
 expectation. Hence 8 is at most 1/2, where ? is the mean of b, and the
 greater the spread of G(-) about its mean, the greater the gap between

 8 and 1/2 will be. Indeed, if we take the binomial expansion of [? + (b
 - 4?)]1/2, 8 is seen to equal the expectation of

 A1/2F1 (b - 4?)2 _ 5(b - )4 _ 1
 L 8(2 3244 *- a'
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 which clearly rises as G(-) is compressed toward its mean. One not
 surprising implication is that the share of forecasting rent in expected

 administrative cost (8/[431/2 - 28] = 1/2A2) tends to rise both with the
 variance of expertise and with the difference between the mean ex-

 pertise and its upper bound.

 For a numerical example, suppose that b is uniformly distributed

 on [(x, 13] The efficiency advantage A - 1 to full information about b

 is 15 percent for ax = 13/2, 25 percent for ax = 13/4, and 33 percent for

 (x = r3/9. .Another probability measure we shall have occasion to refer

 to again is defined by G(b) (bl4)l for b E [0, r], 1 > 0 ("log-linear"). Its
 density is increasing for 1 less than one, decreasing for 1 greater than

 one, and uniform for 1 equal to one. Here A works out to [1 + (1/1)]1/2,

 so that the advantages to full information increase without limit as
 density is weighted toward the origin. For r small, expected forecast-

 ing rent amounts to 1/1 of expected direct measurement cost.

 IV. Self-Screening of Expertise

 In the preceding derivations, no communication was allowed between

 principal and agent about the agent's expertise. Could such com-

 munication be used to reduce expected administrative costs? If so,

 how substantial are the likely savings? This section addresses these

 questions.

 For b the agent's reported expertise, expand contracts (2) to take

 the form

 H(b, Y, x) = Q(b)(2xY - Y2) - R(b) (8)

 expertise. Final estimate precision will be [Q(b)lb]1/2, yielding an ex-
 pected net payoff to the agent of

 br + Q(b)(Y0 + r) - R(b) - 2[bQ(b)]"2.

 For this to be maximized at b = b, we must have

 R'(b) = {Y? + + - [QQb) ]"2Q'(b) V b. (9)

 To solve this for R(-), make the change of variable n(b) [Q(b)lb]'12, SO
 that n(*) equals final estimate precision given truthful revelation. Inte-
 grating and checking the efficiency boundary condition of zero net

 payoff at b = b = 13 establishes that

 R(b) = +)bn2(b) - n(z)dz - 2bn(b) + Pr. (10)
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 Expected net payoff to the forecaster works out to

 n(z)dz + (b - )r. (11)

 The planner strives to minimize the sum of expected forecasting loss

 and expected gross payoff to the forecaster, or

 L Ln(b) + { n(z)dz + bn(b) g(b)db
 (12)

 = ic L~ 4 + _n(b) + bn(b) g(b)db, Ja[n(b) g(b)
 where g(Q) is the density of G() on support [(x, 13] The solution to
 (12) is

 n*(b) =bj + [G(b)/bg(b)]}) {b[1 + (I/EG)] (13)
 where EG denotes the elasticity of G() with respect to b. This is less
 than the first-best solution by a ratio [1 + ('/EG)]- 1/2. Precision is
 sacrificed to reduce the "information rents" accruing to all but the
 worst forecasters. Prior beliefs about expertise exert their influence

 through the ratio G(b)/g(b), which closely resembles the inverse hazard
 rate appearing in the solution to most adverse selection problems

 (Maskin and Riley 1984). Indeed, had we defined the cumulative
 distribution as the probability-currently 1 - G(b)-of an expert

 worse than b, as is customary for adverse selection problems, then the
 inverse hazard rate would have appeared.

 In the standard terminology of the literature, b[1 + (1/E(;)] is the
 forecaster's "virtual" type; that is, as part of the trade-off for truthful
 revelation, the planner agrees to act as if the forecaster were of the

 virtual rather than the true type. To say this another way, the game of
 hiring forecasters under uncertainty is equivalent to the game of hir-

 ing their virtual type counterparts under certainty.

 The preceding derivation is misleading in one important respect.

 We have looked only at the first-order condition for truthful revela-
 tion of b when a second-order condition must be met too. The condi-

 tion is 2bn'(b) + n(b) ' 0, which together with (13) requires

 dEG 0. (14)
 db(14

 In other words, the proportional gap between the virtual type and the

 true type must rise with b or stay constant. If not, (13) will not define
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 the optimum policy. There will be partial or complete pooling of

 types; that is, the optimal contract will be identical along some interval

 of expertise. A more detailed discussion, including instructions for

 calculating the constrained optimum, is found in Guesnerie and Laf-

 font (1984). It can also be shown, either by checking directly for

 stationary points or through applying Guesnerie and Laffont's more

 general methods, that satisfaction of (14) guarantees the optimality of

 the contract defined by (8), (10), and (13).

 To get some intuition for (14), consider that the n(-) of (13) implies

 Q(b) = 1 + (1E)C (15)

 So the second-order condition can be reinterpreted as requiring that

 the marginal incentives for precise forecasting rise with the claimed

 prowess (fall with b). Otherwise a good forecaster could increase mar-

 ginal payoffs by feigning inability. This kind of "monotonic sorting"

 requirement is typical for adverse selection problems; see Mirrlees

 (1971) for the original illustration with income taxation.

 If EG is constant or globally increasing, communication of expertise
 will thus have no value whatsoever. Moreover, even when communi-

 cation is worthwhile, it may not be worth very much. Suppose, for

 example, that expertise is normally distributed between ax and one.

 Spreadsheet calculations show that the percentage EAC savings from

 relying on communication is maximized at an (x of 0.31, where it

 equals 0.174 percent, or less than one part in 500. Thus the savings
 from communication about expertise, while important theoretically,

 are minuscule in practice given a uniform prior distribution.'

 ' Communication has a slightly larger though still small impact on forecast precision
 and the distribution of expected rents across agents. With a uniform distribution of
 expertise, separation of contracts according to expertise induces the most skilled
 forecasters to take more measurements than they would otherwise and less skilled
 forecasters to take fewer measurements than they would otherwise, with overall esti-
 mate precision slightly higher on average. With (x = 0.31, e.g., final estimate precision
 is 23 percent higher for the most skilled agent. It falls, rapidly at first but at a decreas-
 ing rate, to 11 percent for an expertise of 0.4, 4 percent for an expertise of 0.5, and
 eventually to -6 percent for the least skilled agent, for an average precision gain of 3
 percent. Notwithstanding the more thoroughgoing investigation, expert forecasters
 expect less rent-up to 2.7 percent less with a = 0.31 and r small-with self-screening
 contracts; on the other hand, rents are higher for the worst agents than they would be
 otherwise-up to 8.8 percent higher for (x = 0.31 and r small (the limiting value, [2/(2
 - a)], is found using L'H6pital's rule). Because of the extra measurement cost for more
 precise estimates, the EAC ratio with and without self-screening is not monotonic in
 expertise: for ax = 0.31 the savings start at 0.2 percent for the most expert agent,
 increase to 1.1 percent at an expertise of 0.45, and fall to - 1.4 percent for an expertise
 of 1.
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 V. A Broader Perspective on Forecaster

 Self-Screening

 The preceding model of forecaster self-selection seems fairly com-

 plicated as risk-neutral principal-agent models go. Consider, by way

 of comparison, Laffont and Tirole's (1986) treatment of a regulated

 firm. There both cost outcome and product "quality" (which may be

 quantity) are observed by the regulator. Here, however, only the out-

 come is verified, not the quality (precision) of the forecast. Even

 knowledge of the mean-squared discrepancy between the outcome

 and the forecast would not indicate quality since that measure com-
 bines the variance l/n of the estimator with the variance au2 of the

 outcome. From this perspective, it is perhaps less surprising that coax-

 ing a revealing message out of the agent is so costly than that there is

 ever any merit to self-selection.

 Despite these differences, the results of Section IV can nevertheless

 be derived as a special case of the Laffont-Tirole model, as Jean
 Tirole has perceptively pointed out. Using their terminology, let us

 relabel the forecasting precision n as the effort e, the agent's disutility

 b(n - r) as T(e), and the direct expected planning cost c/n (excluding

 payments to the forecaster and the unavoidable component cu 2) as I.
 The term I is nonlinear in e, unlike Laffont and Tirole's expected

 cost function, but a footnote in their paper suggests how to generalize

 their results.2

 Suppose it were possible to peg the agent's money transfer t(Q)
 directly to I. The agent's utility is U(b) = max[t(%) - T(e(C, b))],

 where P(e('(, b)) = b[(cl/) - r]. First- and second-order conditions
 for agent maximization require

 t)= - b2b (16)

 2bc 0.(17)

 The principal maximizes E[-T - t('4)] subject to U'(b) = r- (c-':),
 U(13) = 0, and (16) and (17). Ignoring for a moment (17), we have

 Et-' (- t('6)] = E[-C - C /(e('C, b))- U(b)]

 = ((- () lb - r)dx g(b)db (18)

 = f-% - (C b(C -r C - G) g(b)A]

 2 Rogerson (1987) follows up on Laffont and Tirole's footnote and provides a gen-
 eral characterization of what is implementable through linear schemes.
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 where the last equality follows by reversing the order of integration.
 Equation (18) is maximized by setting - 1 + (bcKC2) + (bc1/2eG) = 0
 for every b, so that

 = [bc I + orb c[ 1 +(l/eG)] (19)

 Differentiate (16) and substitute into (17) to see that b'((C) must be
 positive. If it is, (19) indicates the optimum. It remains to be seen
 whether the optimum can be "implemented," to use Laffont and
 Tirole's expression, by a menu of contracts linear in (C. A necessary
 and sufficient condition for implementation is convexity of t(-) since
 t(.) can then be expressed as the envelope of linear contracts. From
 (16) and (19), t(-) is convex if and only if bI%2 = {c[1 + (1/EG)]}- is
 decreasing in (. Hence EG must be decreasing in ( and in b (since
 b'('B) > 0), which is condition (14) again. Moreover, (14) and (19)
 together imply b'(%) > 0, so the latter condition may be dropped as
 redundant. In economic terms, the inability to peg rewards to fore-
 casting precision forces a stronger second-order condition on the"
 model than would otherwise apply.

 From here it is easy to verify that the contract described in (8), (9),
 and (15) is optimal. Note that this is optimality in the class of all
 contracts, not just optimality in the class of equation (2) type contracts
 as shown earlier. Thus application of the Laffont-Tirole methodology
 strengthens the previous results and helps illuminate the difficulties
 with self-selection.

 VI. Competition between Forecasters

 While theoretically intriguing, the results of the previous two sections
 are disappointing from a practical standpoint. Self-screening is much
 less valuable than one might have hoped. This section pursues a dif-
 ferent tack to reducing planning costs: using competition among
 forecasters. Competition improves efficiency both directly, by en-
 abling the manager to hire the best available agent, and indirectly, by
 reducing the expected rents paid a given forecaster. As we shall see,
 both the direct and indirect savings can be substantial.

 Let G(b) continue to denote the probability that a randomly chosen
 agent will have expertise b or better. Instead of facing a single appli-
 cant, however, the planner will now be allowed to choose one appli-
 cant from a pool. Two polar cases will be considered: one in which the
 forecaster pool is assembled prior to contracting and cannot be ex-
 panded later, and another in which the forecaster pool is infinitely
 expandable at cost A per forecaster. Appendix B addresses the possi-
 bility of splitting up investigations among forecasters.
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 As Laffont and Tirole (1987) have pointed out, the optimal compe-

 tition procedure for the regulation-with-cost-observation model, with

 agent risk neutrality, is a variant on a second-price auction. In the
 present context, have every forecaster i announce his or her exper-

 tise b;. For b the lowest bid and B the second-lowest. award the con-

 tract H*(b, Y, x; K(-, B)) to the forecaster with the lowest bid b, where
 H*(b, Y, x; G(-)) denotes the optimal contract in the single-agent case
 (given by [8], [9], and [15]) and K(-; B) G(-)IG(B) denotes the condi-
 tional distribution of the minimum bid given a second-lowest value

 of B. For a brief justification of this choice, consider that no rejected

 bidders would want such a contract since it would be unprofitable,

 and that for the sole remaining bidder of distribution K(-, B), the

 planner cannot expect to do better.

 Since EK equals EG, we see from (15) that the Q*(-) term in the chosen
 contract is independent of B. The auction can be reformulated as (i)

 ask forecasters to submit their Q = c/[1 + (1/EG)], (ii) choose the
 highest Q for Q*, and (iii) auction off the right to be rewarded Q*

 times 2xY - y2 (alternatively, the right to be fined Q*[Y - X]2). When
 G(b) = (bl/)', Q* is independent of b as well, and the optimal proce-
 dure reduces to one step: auction off the reward schedule [cl/(l +
 1)](2xY - y2), or -[cl/(l + 1)](Y - X)2.

 Obviously, competition between potential forecasters offers poten-
 tial savings to the manager. But it is not obvious how much of the

 savings are due to the more favorable expertise distribution of the

 chosen forecaster and how much are due to savings on forecaster

 rents. To clarify the distinction, let us compare planning costs in four

 different frameworks: Auction: an auction among T available

 forecasters, each with expertise drawn from a log-linear distribution:

 G(b) (blp)l on [0, f]; Unscreened Expert: one forecaster, who is
 probabilistically just as expert as the best forecaster in Auction, with

 no self-screening of expertise; Self-screened Expert: same as Expert,

 but with self-screening of expertise; First-Best: same expertise distri-

 butions as above but with costless independent screening of expertise.

 The EAC for First-Best equals 2c"/2fb"12dL(b), where L(-) 1 - [1 -
 G( )]T is the distribution of the minimum value bmin. Integration by
 parts establishes that

 - 13 b3 rb2
 f f(b)dL(b) = T! ... f(bl)dG(b2) ... dG(bT)1

 for any function f(-). (In words, the unconditional expectation of

 f(bmin) equals the expectation conditional on the one in T! probability
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 event b, < b2 < . .. < bT.) It follows that the expectation of (bmin)k (k =
 - 1) equals

 I1 2 .. j I T ok (20)
 (k + l) (k + 2 1) ... (k + T-)~3(0

 Substituting k = 1/2 into (20), we see that access to the Tth agent stands

 to reduce EAC by 100/(2Tl + 1) percent. For example, when exper-
 tise is uniform on [0, r3], EAC is 20 percent less with two agents than
 with one and 14 percent less with three agents than with two.

 In framework Auction, the contract pivots on the expertise B of the

 second-best forecaster. Conditional on B, EAC is

 1/2 + 1 1/2 12
 2c"2A(B, K(; B))f b"12dK(b; B) = 2c1/2(1 + f b 2dK(b; B), (21)

 where

 B)) [fbl/2dK(b; B) - (22)

 is defined analogously to the A in (6). The EAC is [1 + (1/1)]1/2 times
 the corresponding conditional value for First-Best, and since this ratio
 is constant, it must hold unconditionally as well. For a uniform distri-

 bution on [0, P3], the percentage discrepancy is 41 percent.
 For Unscreened Expert, EAC is A(r3, L(Q)) times the EAC for First-

 Best, where A(f, L(A)) equals

 [2('/2 +1) ... (?2+ Tl) -11/2.(3
 [ TWIT 1] . ~~~~~~~(23) T!I1T

 For a uniform distribution on [0, A], the percentage EAC increment

 for Unscreened Expert over First-Best is 41 percent for T = 1, 66
 percent for T = 2, 84 percent for T = 3, 98 percent for T = 4, and
 110 percent for T = 5.

 For Self-screened Expert, the EAC integral does not appear to be

 solvable analytically. Clearly, for any given T, EAC(Unscreened Ex-

 pert) - EAC(Self-screened Expert) - EAC(Auction) - EAC(First-

 Best). The advantages of Self-screened Expert over Unscreened Ex-

 pert increase with the number of competitors, as dEL/db is more
 negative for higher T. Obviously, for T = 1 there is no advantage at
 all to screening as long as EG is constant.

 Figure 1 graphs the results for I = 1. Competition in Auction
 squeezes out some but not all forecasting rents. And all these values

 decline toward zero as T rises (more generally, toward the EAC of the

 best possible forecaster). For 1 = 1, the ability to extract second-best
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 FORECASTING INCENTIVES 1105

 levels of rent offers significant savings, comparable to or exceeding
 the gains from better forecaster selection. An auction with three par-

 ticipants captures about half the difference in EAC between no

 screening and full screening, whereas self-screening captures only

 one-tenth.

 As the number of competitors increases, expected second-best ex-

 pertise is driven closer to first-best expertise, raising the relative

 efficiency of an auction. Thus with six participants an auction cap-

 tures about two-thirds of the difference between no screening and

 full screening, whereas self-screening captures about a quarter.

 Additional insights into the value of competition can be gleaned

 from examination of auctions with flexible pool size. Suppose that the

 planner can decide sequentially whether to elicit another bid, at con-

 stant search cost A per forecaster. In this case the manager should

 hire the first agent revealing a b below some predetermined thresh-

 old B. The optimal screening rule takes this form because of the

 "memoryless" nature of the process: previously incurred costs and
 revealed expertise levels have no effect on future agents' screening

 costs and likely expertise levels.

 The first agent appearing with b ? B will accept H*(-) and the
 search will end. Again, since EK equals EG, final estimate precision is
 n*(b) in (13) independent of B. The expected number of agents

 screened, T(B), equals one times the probability G(B) that the first

 agent is taken plus 1 + T(B) times the probability that the first agent is
 not taken. Thus T(B) = 1/G(B). For EG = 1, the optimum B can be
 shown to satisfy

 [c1(?1;1/2)2 - PB r 0, (24)

 so that for r small,

 - F 11/2(1 + '/2)A at 12/(21 +1)
 - L ( + 1)"/2"1/2 2

 The lower the marginal search cost and the higher the cost of estimate
 imprecision, the lower the threshold should be set, which means that

 the manager will tend to screen more agents. The elasticities of the

 threshold with respect to A or 1/c are equal and less than one-half.
 The threshold rises with A, but B/e falls, so that as the support of G()
 widens, more agents tend to be screened.

 The absolute savings from access to competition vary with A and
 other parameters in a predictable manner and will not be examined
 further here. We shall focus instead on the expected relative shares of

 search costs, direct measurement costs, estimate imprecision losses,
 and information rents. Surprisingly, these shares are independent of
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 A, c, or P. Straightforward calculations show that optimal expected
 search costs amount to 1/(21 + 1) of the total administrative costs. The

 rest of EAC is divided among imprecision, measurement, and rent in

 ratio 1 + 1: 1: 1, so that the losses from imprecise specification of the

 mean equal total expected payment to forecasters. (This last property

 can be shown to hold for all optimal contracts, regardless of G(-).) For
 1 = 1, search costs, imprecision losses, and forecaster payments each

 account for a third of EAC; expected forecaster payments in turn are
 divided evenly between direct measurement costs and information

 rents.

 Figure 2 illustrates how the composition of EAC varies with 1. When

 1 is very small so that the distribution is weighted toward very expert

 forecasters, it is worthwhile to set the threshold very low and spend
 the bulk of planning funds on screening. As 1 rises, search declines in
 importance. Rent shares rise with 1 up to 1 = V72 (- 0.7), where they
 reach 17 percent, and decline thereafter as the effect of the bunching

 of expertise toward the upper bound begins to dominate the effect of
 looser selection criteria. Losses from estimate imprecision always ex-

 ceed direct measurement costs, but the gap decreases as 1 rises, until

 in the limit (one forecaster of known expertise P) each factor accounts
 for half of EAG.

 VII. Conclusion

 Previous literature on forecast elicitation has tended to assume that

 forecasters' beliefs are immutable. In reality, a forecaster generally

 begins with some rough ideas about the event in question and under-

 takes further investigation in order to refine them. How much

 refinement will occur depends on both the costs of investigation and

 the potential compensation.

 When learning is costly, a planner doing her own forecasting must

 weigh the marginal cost of investigation against the expected mar-

 ginal benefit of more precise information. A planner who hires some-

 one else to do the forecasting must in addition provide an appropriate

 compensation scheme. This scheme must induce the forecaster to

 simultaneously take the desired number of investigations and report

 the final estimate truthfully. If the planner is uncertain about the

 forecaster's expertise, the problem is even more complicated. A con-

 tract for inducing a given amount of learning is likely to offer the

 forecaster expected rents, and the magnitude of these rents must be

 considered in choosing an optimal contract.

 Despite the multiple layers of uncertainty, the optimal contract

 need not be complex, provided both parties are risk-neutral. How-

 ever, the rents involved are likely to be substantial. Sometimes it is
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 1 io8 JOURNAL OF POLITICAL ECONOMY

 possible to reduce agency costs through forecaster self-screening, but

 not always. Even when self-screening does have value, the value may

 not be large enough to warrant the added contractual complexity.

 A much more promising alternative is to compete two or more

 forecasters against each other. The planner may simply offer a mul-

 tiple of her own forecast evaluation weights (the variant with self-

 screening lets forecasters submit their own evaluation weights) and

 auction off the right to be selected. Competition between forecasters

 reduces planning costs both by improving the odds of selecting an

 especially good forecaster and by reducing that forecaster's expected
 rents. In many cases, the second factor is at least as important as the

 first. With possibilities of sequential search, an optimizing manager

 may find it worthwhile to invest a significant share of total planning

 budgets on screening or training potential forecasters.

 Why does self-selection achieve so little in this problem, when com-

 petition offers so much? The core of the problem seems to be the
 planner's inability to verify forecast precision. Because of that inabil-

 ity, the planner is forced to try to simulate the "ideal" contract by an

 envelope of contracts linear in ex post cost. Success requires that the

 "ideal" contract be convex in expected cost. This imposes a more

 stringent second-order condition on what is otherwise a straightfor-

 ward application of Laffont and Tirole's (1986) work on firm regula-

 tion under ex post cost and quality observation.
 I shall close with a few remarks on the broader implications of the

 analysis. The analysis suggests that a planning hierarchy faces a costly

 trade-off between improving forecast quality and reducing adminis-

 trative expenses. This source of planning inefficiency does not appear

 to have been addressed before in the literature. In many planning

 hierarchies, performance would probably be improved by giving

 forecasters a chance to profit from accurate estimates. The drawback

 is that rents are likely to be substantial. In government, especially,

 where incentives for economizing are weak, suspicions of waste or

 corruption would be raised. Distinguishing "honest" from "dishonest"

 rents could indeed be difficult.

 The analysis also suggests that organizations that operate on a

 "need-to-know" principle, so that forecasting expertise is restricted to

 one or a handful of individuals, do so at a cost of reduced planning
 efficiency. Perhaps this is a factor in the disappointing efficiency
 record of Soviet central planning. Carrying "redundant" forecasting

 expertise would seem to be wasteful. Yet redundancy can make for

 more vigorous competition, which improves selection and squeezes
 forecasting rents. At the very least, the notion that planning obviates
 inefficient competitive information gathering must be supplemented
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 with its opposite: that competition in information gathering helps to

 remedy inefficient planning.

 Appendix A

 Optimality of Quadratic/Linear Contracts

 We are looking for contracts H(Y, x) that possess the following three features:
 (a) Truthful reporting of Y is encouraged; that is, expected reward is always
 maximized by reporting the perceived mean of x. (b) Expected payoff is the
 same for all distributions of x having mean Y. (c) Induced final estimate
 precision is the same for all forecasters having expertise b. Savage (1971) has
 shown that all contracts satisfying condition a must take the form

 H(Y, x) = V(Y) - V'(Y)(Y - x) + W(x) with V( ) convex. (A1)

 For an economic interpretation of (Al), see Osband (1985). In general, incen-
 tives for investigation will vary with the convexity of V( ). Suppose that the
 agent thinks that the mean is either Y + w or Y - w with equal probability and
 that an investigation costing b could determine the mean exactly. Without
 investigation, expected payoff is maximized by reporting Y; its value there
 exclusive of the W( ) term is V(Y). With investigation, expected payoff exclu-
 sive of S( ) and investigation cost would be either V(Y + w) or R(Y - w), each
 with probability l/2. So a risk-neutral agent should undertake an investigation

 if and only if {[V(Y + w) + R(Y- w)]/2} - V(Y) - b. The left-hand expression
 is just the distance from (Y, V(Y)) to the midpoint of the chord connecting
 (Y - w, V(Y - a)) with (Y + a, V(Y + 4)). The more convex V(-) is, the larger
 W is, and the smaller b is, the more attractive the investigation will be (see fig.
 Al).

 More generally, let the postinvestigation estimate correction W have distri-
 bution Jy(-). For example, if the current unbiased estimate has precision n
 and the forecasting technology involves taking an additional conditionally
 independent measurement of precision e at cost be, Jy(-) will have precision
 (n/e)(n + e), or n2/e in the limit (Zellner [1971] or any standard textbook on
 Bayesian inference). Measurement will be worthwhile if and only if

 f V(Y + w)dJy(w) -V(Y) + be. (A2)
 Condition c says that satisfaction of (A2) should depend only on be and n2/e.
 We claim that this implies that V(-) is quadratic. To do so we make use of the
 following lemma, proved in Osband and Reichelstein (1985).

 LEMMA. If the expectation of a function g( ) is zero for all distributions such

 that the expectations of h&(*), h2(-), . . . are zero, then g( ) is a linear combina-
 tion of the hi( )'s.

 To apply the lemma, let Be be the threshold value at which the forecaster is
 indifferent between measurement and nonmeasurement. By condition c we
 have

 f [V(Y + o) - V(Y) - Be]dJy(w) = 0

 for allJy( ) with mean zero and variance E/n2. Substituting g(I) V(Y + w)-
 V(Y) -Be, h,(w) = w, and h2(W) = -2 (E/n2) into the lemma establishes that
 V(Y- w) = V(Y) + Be + jw + kW2 - (ek/n2) for some constants and k, so
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 that V(Q) is quadratic with coefficient k on the square. Evaluating at X = 0
 shows that k = Bn2. The terms in V(Y) and V'(Y) in (Al) thus reduce to
 Bn2(2xY - f2) plus a linear term in x.

 It remains to show that W(-) is linear. By condition b, the expectation of
 W(-) must equal W(-) of the expectation. Another application of the lemma
 with g(x) W(x) - W(Y) and h(x) a x - Y yields the result.

 Appendix B

 On Hiring More than One Forecaster

 The treatment of competition in the text assumes that the planner ultimately
 hires only one forecaster. Hiring one forecaster is always best provided "start-
 up" costs for forecasters are sufficiently high. Even without start-up costs,
 however, hiring one forecaster may be optimal.

 Consider the following forecasting technology: starting from the unbiased
 estimate Yo of , having precision r, take successive independent "measure-
 ments" of p,, each having precision one and costing b, and calculate the best
 linear unbiased estimator (the precision-weighted average of the measure-
 ments and prior). Then if measurements are independent across forecasters,
 one person's forecast cannot be used to flush information out of another. In
 the constant Q, R contracts described in equations (2)-(6), it costs the planner
 an expected [2(b3)"12 - b]n - Br to secure an n precision forecast from a type
 b agent, given threshold bid B. This payment is linear in n and increasing in b.
 Therefore, the planner will find it cheaper, no matter what the total final
 precision is, to have the best forecaster perform all the measurements. In an

 unrestricted model based on (8), gross expected payment for an nj precision
 forecast from by type forecasters is

 fB

 J nj(z, Bj)dz + (by - 3)r + bjn(bj, By),

 where (bi, B-) is the vector (b1, bT). If priors are shared, total final estimate
 precision N equals Inj(bj, B)- (T - 1)r. The planner must then choose the
 nj(.)'s and N to minimize

 f . . . I [ l)r + Y. nj(z, Bj)dz + Ibmn1jdG(bl) ... dG(bT) (B1)

 subject to n? > r and In, = N. Set up a Hamiltonian for (B 1) with multipliers Xj
 on the n -? r constraints. First-order conditions are readily seen to require Xj
 to be positive for all but the lowest by; that is, only the most expert forecaster
 should be induced to do any additional investigation.

 It remains an open question whether splitting investigations might be
 superior when measurements are correlated across forecasters: say, that mea-
 surement 1, if taken, would be the same for all forecasters, that measurement
 2 would be the same for all forecasters, and so on.
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