
Scaling Short-answer Grading by Combining Peer
Assessment with Algorithmic Scoring

Chinmay Kulkarni, Richard Socher
Michael S. Bernstein
Stanford University

Stanford, CA 94305-9035
{chinmay,socherr,msb}@cs.stanford.edu

Scott R. Klemmer
University of California, San Diego

La Jolla, CA 92093-0440
srk@ucsd.edu

ABSTRACT

Peer assessment helps students reflect and exposes them to
different ideas. It scales assessment and allows large online
classes to use open-ended assignments. However, it requires
students to spend significant time grading. How can we lower
this grading burden while maintaining quality? This paper
integrates peer and machine grading to preserve the robust-
ness of peer assessment and lower grading burden. In the
identify-verify pattern, a grading algorithm first predicts a
student grade and estimates confidence, which is used to es-
timate the number of peer raters required. Peers then iden-
tify key features of the answer using a rubric. Finally, other
peers verify whether these feature labels were accurately ap-
plied. This pattern adjusts the number of peers that evaluate
an answer based on algorithmic confidence and peer agree-
ment. We evaluated this pattern with 1370 students in a large,
online design class. With only 54% of the student grading
time, the identify-verify pattern yields 80-90% of the accu-
racy obtained by taking the median of three peer scores, and
provides more detailed feedback. A second experiment found
that verification dramatically improves accuracy with more
raters, with a 20% gain over the peer-median with four raters.
However, verification also leads to lower initial trust in the
grading system. The identify-verify pattern provides an ex-
ample of how peer work and machine learning can combine
to improve the learning experience.

Author Keywords

assessment; online learning; automated assessment; peer
learning

INTRODUCTION

Short answer questions are a powerful assessment mecha-
nism. Many real-world problems are open-ended and require
students to generate and communicate their response. Con-
sequently, short-answer questions can target learning goals
more effectively than multiple choice; instructors find them
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easier to construct; and short answers are relatively im-
mune to test-taking shortcuts like eliminating improbable an-
swers [13].

Many online classes could adopt short-answer questions, es-
pecially when their in-person counterparts already use them.
However, staff grading of textual answers simply doesn’t
scale to massive classes. In our experience, grading each an-
swer takes approximately a minute. Grading a hundred stu-
dents is feasible, taking two hours per question. For an on-
line class of 5,000 students this involves two person-weeks
of grading per question. Automated grading and peer assess-
ment both offer ways to scale assessment [17, 29], but in iso-
lation, both introduce an unsatisfactory tradeoff.

While algorithmic grading consistently applies criteria to all
student work [29], it has many shortcomings. It frequently re-
lies on textual features [28], rather than semantic understand-
ing. For instance, automated essay scoring software uses
counts of bigrams and trigrams (sequences of two or three
words) [8]; NLP techniques like syntactic parsing [5]; dimen-
sion reduction techniques such as PCA [10]; or a combination
of these features [7]. This reliance on textual features reflects
algorithms’ limited ability to capture the semantic meaning of
student work. This limited understanding can cause grading
errors because answers using unconventional phrasing may
be penalized. Furthermore, students may game algorithms
with answers that match patterns, but are otherwise incor-
rect [26]. This has, in turn, led to public skepticism about
algorithmic grading [1].

Algorithmic grading for short answers is especially challeng-
ing, because the limited text provides fewer lexical features.
Algorithms can still use features like word overlap, but accu-
racy suffers [14].

In contrast, peers can more robustly handle ambiguity and dif-
ferences in phrasing, and students learn by assessing others’
work. However, peer assessment requires students to spend
time grading several (e.g., five) peers. Student raters need
training, and still may differ in how they apply grading cri-
teria, and ratings may drift over time [29]. Raters also suf-
fer from systematic cognitive biases including the Halo Ef-
fect (wrongly generalizing opinions on one characteristic to
the entire answer), stereotyping (e.g. gendered/nationalistic
cues affect grading [17]), or perception differences (grading
of prior answers affects grading of the current answer) [29].
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Figure 1. Overview of the assessment process. (1) Machine learning algorithm predicts grades and confidence. Number of independent identifications

decided based on confidence (2) Peers identify attributes in answer using rubric (3) Two other peers verify existence of attributes. Final score is sum of

verified attributes (5) if attributes are rejected, one more rater is asked to Identify. If two independent identifications are identical amongst raters, one

is considered a verification (4).

Could machine-learning algorithms mitigate grader biases
and minimize human effort? Crowdsourcing algorithms can
correct inter-rater differences [22], and recruit more raters
when they encounter unreliable raters [16, 21]. Inspired by
these successes, this paper introduces a workflow that intelli-
gently combines algorithmic and peer assessment to provide
the benefits of both, while mitigating their individual draw-
backs.

The identify-verify workflow uses algorithmic grading to es-
timate how many independent peer assessments are needed.
The algorithm estimates “ambiguity” of the answer using its
prediction confidence. More raters are assigned to highly am-
biguous answers and fewer to less ambiguous ones. In this
paper, the range was 1 to 3 raters. Peers then identify key
features of the answer using a staff-provided rubric. Other
peers verify whether these feature labels were accurate. Few
peers are needed when initial human ratings agree with a
high-confidence machine rating. The algorithm seeks more
assessments when raters disagree. The algorithm automati-
cally seeks higher quality assessment if more raters are avail-
able.

An experiment compared hybrid grading with peer grading;
1370 students from an online human-computer interaction
class participated. Compared to a baseline of aggregating in-
dependent peer ratings using a median, integrating machine
grading yields comparable accuracy with lower effort. For bi-
nary questions, using the machine grading with identify (and
no verify step) yields 83% of the peer-median accuracy, and
only needs 54% of human effort. For an enumerative short-
answer question, 70% of the effort yields 80% accuracy. For
both types, adding verification yields higher accuracy and
more reliable information about the answers’ attributes, but
increases human effort. A follow-up experiment investigated
how identify-verify works with a varying number of graders,
compared to the baseline of median of peer grades. Adding
the verify step yielded a 20% gain in accuracy over the peer-
median method with four raters.

In addition to saving time, this hybrid also provides students
richer, structured feedback about their answers in addition to
their scores. Students see both a list of features of the answer
they got right, and common errors they made.

This paper makes two contributions. First, it introduces the
identify-verify pattern for combining peer and machine grad-

ing. Second, it presents experimental results demonstrating
the accuracy benefits and the tradeoffs in human effort of the
identify-verify pattern in various configurations.

CLASS SETUP

We evaluated the identify-verify approach in a large, online
class introducing human-computer interaction. This class is
based on an in-person class that uses short-answer questions
to assess if students students’ knowledge. For instance, short
answers assess if students can construct well-formed inter-
view questions, if they understand prototyping strategies, and
can explain differences between experimental designs. The
system described in this paper introduced these short-answer
questions to the online class. Students answer short answer
questions on two quizzes, one in Week 3 of the class, and
once on the final (Week 9).

PILOT: LENIENT PEERS, STRICT MACHINES

We piloted short-answer questions in the May 2013 offering
of the class. The pilot explored whether simply combining
peer and machine scores using a median yielded accurate re-
sults. In addition, it aimed to understand the relative merits
of machine and peer grading.

Three independent peer raters scored each student answer.
The site provided raters with a grading rubric and staff-graded
examples to calibrate themselves (similar to Calibrated Peer
Review [6]). After grading a staff-provided example, students
assessed peer answers. A machine classifier reliant on textual
features scored all answers as well. The system combined
human and machine scores by taking the median of all four
scores. Other methods of combining grades, such as linear
regression, were sensitive to outliers.

To assess accuracy, we compared the median grade to the staff
grade for 200 submissions. We found that accuracy increased
with increasing number of peer raters, consistent with prior
work [12, 17]. In addition, we made the following observa-
tions:

• Peers were more lenient than staff, and writing flu-
ency swayed judgments on correctness: Peers some-
times awarded points to plausible-sounding but incorrect
answers. For instance: “Rewrite the interview question
‘Do you like the WordArt feature from Microsoft Word?’
to address problems with it”. The problems with the in-
terview question are that it is leading and it assumes users
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have an opinion on the feature. One incorrect student an-
swer was “With respect to your experience, how much do
you like the WordArt feature, on a scale of 1-5?” Three
peer raters marked this as correct, even though it has the
same problems as the original question. We also found that
cues such as how confidently the answer was written, or
whether it used fluent language seemed to affect the peer’s
rating. Prior work has shown similar Halo effects influence
human grading more generally [29].

• Peers understand ambiguous answers better: For ex-
ample, for the same WordArt question, machine grading
marked the correct answer “How do you add images or
text in different styles into your documents in Microsoft
Office?” as incorrect (possibly because training examples
had few correct answers without the word WordArt). How-
ever, two of three peer raters marked it to be correct.

Together, these two factors meant algorithmic grading was
stricter, since it only awarded credit when the answer
matched example answers closely (the average machine
grade was 16% lower than staff). Peer grading was more
lenient than staff: the average peer grade was 14% higher
than staff.

• High-confidence predictions from machine grading
were generally accurate, and agreed with peer assess-
ment. For binary questions, when the algorithm re-
ported confidence larger than 80%, staff and machine
grades matched 85% of the time (staff and a single peer
agreed 78% of the time). In addition, for low-confidence
predictions, staff/machine disagreement was larger than
staff/median-peer disagreement. (When confidence was
50-60%, staff and machine grades agreed 53% of the time.
For these same submissions, a single peer agreed with staff
grade 52% of the time, but the median of three raters agreed
with staff 68% of the time.) Therefore, low-confidence pre-
dictions are somewhat informative, but cannot be trusted
reliably.

This pilot suggests that few peers are needed for answers
graded with high algorithmic confidence, but more peers may
be necessary for assessing questions with low confidence.
However, a simple median for combining human grades and
machine grades cannot handle machine grades are not uni-
formly reliable. This suggests that a grade-combination
scheme should tune the number of raters based on algorithmic
confidence. Essay scoring on standardized tests uses one such
scheme: the GMAT compares a human essay score with the
machine score, and recruits more human raters if the scores
differ [4].

Combination schemes could also leverage peers’ ability to
understand ambiguous answers, but should account for them
being biased and lenient. Prior work suggests it is possible
to create processes that mitigate cognitive biases [19, 15], but
simply alerting students to their biases does not help mitigate
them [25]. Therefore, this paper seeks to create a workflow
and interface to mitigate biases and improve accuracy.

THE IDENTIFY/VERIFY ARCHITECTURE

Based on these pilot insights, we designed a grading system to
combine the strengths of human and machine grading. This
system seeks to minimize human effort while still retaining
current accuracy. We choose to reduce human effort, rather
than improve accuracy, because many large, online classes
(including our evaluation class) are pass-fail, and we found
accuracy from the pilot (between 67% and 82%) reasonable.
At this accuracy, we estimate the number of students who
should have passed but didn’t due to grading errors to be less
than 3%. This paper leverages the insight that partitioning
tasks so people can audit each other improves quality and ef-
ficiency [2, 18].

Identify-verify comprises three steps (Figure 1). First, a
machine-learning algorithm predicts a grade and confidence
score for each submission. The system assigns a number of
peers is assigned to grade the answer based on the confidence
score. Second, peers use a grading rubric to identify which
features the answer contains (Figure 2). Third, they ver-
ify other peers’ feature identification for other answers (Fig-
ure 3). Identify-verify assigns a final grade by combining
the grade for verified features in the answer; our prototype
uses the sum of feature grades. For instance, if a student
submission is identified to have two features each worth one
point, the submission is awarded two points, the sum of fea-
ture scores. Below, we describe each step in the assessment
process.

Step 1: Algorithm estimates grade and number of raters

Before peer assessment begins, a machine-learning algorithm
predicts the grade for each answer. We built a generic text
classifier using etcml.com with the predicted grade as the out-
put. This classifier uses textual features such as word, bigram
and trigram counts, length of answers, and letter n-grams (to
capture use of word fragments like “creati-”, which match
“creativity”, “creative”, “creation” etc.).

Teaching assistants provided numeric scores and cor-
rect/incorrect attributes for about 500 student responses per
question. The numeric grades were used as labels to train
the classifier. Instructors provided teaching assistants an ini-
tial rubric for grading. TAs then expanded this rubric with
correct/incorrect attributes they identified, and added exam-
ple student answers with those attributes. Future work could
bootstrap attributes and examples using prominent features
from the trained classifier.

The system then uses the classifier trained on staff-graded an-
swers to grade all answers. The classifier outputs the most
likely grade (the prediction), as well as the probabilities of all
possible grades (e.g., an answer may have a grade of 1 with
probability of 0.2, and a grade of 0 with probability 0.8). For
the rest of the grading process, we use the probability of the
most likely grade (in our example 0.8) as the algorithm’s con-
fidence in the grade. (Future work could consider using other
statistics).

The algorithm’s confidence determines the initial number of
peer raters assigned to each answer. The intuition behind
this is that confidence represents a measure of ambiguity—
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answers with high confidence are usually those that are
clearly right or wrong. Conversely, ambiguous answers of-
ten have low confidence, and therefore should have more in-
dependent human assessments. We require answers with high
confidence (> 90%) to have a single rater, those with medium
confidence (75%-90%) required two, and all other answers
required three raters. Overall, 34% of student submissions
had grades predicted with > 80% confidence, and 16% of
submissions had grades predicted with > 90% confidence.

This paper seeks to demonstrate the feasibility of combin-
ing human and machine grading. It does not determine the
most suited machine-grading algorithm. Therefore, while our
classifier represents the state-of-the-art in text classification,
it does not use any special logic for answer grading. We
hope that demonstrating feasibility with a generic classifier
will also inspire other researchers to create better ones.

Step 2: Peers identify answer attributes

In this step, randomly-chosen peers independently identify
correct/incorrect attributes in student answers. Raters select
these attributes from the expanded grading rubric from Step 1
(Figure 2). Staff associated a score with the presence of each
attribute, which could be negative.

To minimize the impact of too-few ratings, the system solic-
its ratings in order of greatest need. Specifically, the system
finds the student answer that has the largest number of re-
quired assessments, with the fewest completed. Ties are bro-
ken randomly.

The grading page displays this answer along with the grading
rubric. Peer raters mark each attribute present by clicking
a checkbox next to it. To encourage students to be critical
(and reduce the leniency we saw in our pilot), the grading
rubric is initially shown with incorrect attributes displayed,
and correct attributes collapsed (Figure 2). Raters expand the
correct attribute section by clicking the drop-down arrow.

Raters are asked to identify attributes in four student submis-
sions. After a rater completes identification, the answer and
its attributes are queued for verification. If two identifiers
independently select the same attribute, that also constitutes
verification. Such answers skip the separate verify step.

Even with high-confidence machine predictions, it is impor-
tant that student grades do not suffer due to an over-optimistic
algorithm. The current system requests one additional iden-
tification for high-confidence answers where the peer and al-
gorithm grades differ by one or more points. (In this paper,
answers are worth up to 3 points, and only whole point values
are awarded.)

Step 3: Other peers verify attributes correctly identified

Now, independent raters verify attributes identified in the pre-
vious step by other peers. This interface groups answers ac-
cording to the identified attribute, e.g. grouping all answers
marked as “More sharing of features between designs” (Fig-
ure 3). Peers then verify whether answers contain the marked
attribute. We hypothesize that grouping submission marked
with the same attribute increases accuracy because verifiers

are presented with a group of nominally-similar responses for
comparison.

When two raters independently verify an identified attribute,
the system marks the attribute as verified and removes it from
the verification pool. If two raters reject an identified at-
tribute, the system returns the submission to the identify pool
for one additional identifier, since the initial identification was
inaccurate.

Similar to the identification step, the system presents sub-
missions to verifiers in decreasing order of the number com-
pleted, and breaks ties randomly. This again provides ev-
ery submission with some data quickly. This algorithm also
needs at most three verifications: after three, each attribute
will either have been verified, or rejected.

Optimizing the number of raters

Identify-verify reduces the grading workload by recruiting
fewer raters when the grading algorithm reports high confi-
dence. This scheme is also cautious. First, we increment the
number of identifications required for high-confidence pre-
dictions if peers disagree with the predicted grade. Second,
identified attributes for an answer that are rejected may in-
dicate the answer was difficult to grade, so we request addi-
tional assessments.

Display results and feedback

A student’s final score is the sum of scores of all verified at-
tributes, clamped to the minimum and maximum score for
the question. Students see their score along with the features

Figure 2. Identify UI: Students identified whether student answers had

staff-provided features (which indicated right/wrong answers)
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that peers identified, and correct attributes that their answer
missed (Figure 4). Thus, students receive more than a grade:
they receive detailed information about what they did well
and poorly.

EVALUATION

Identify-verify seeks comparable accuracy to using the me-
dian grade of independent peers, but with less human effort.
Our comparison baseline asks three peers to grade a student
answer.

Experiment 1: Does identify-verify yield accurate grades?

This controlled experiment explored two questions: First,
does identify-verify grade accurately and lower effort? Sec-
ond, does identify-verify reduce leniency from our pilot? (We

Figure 3. Verify UI: Students verified if other peers had assessed answers

correctly.

Figure 4. Identify-verify presents student grades with features present,

and those missing in answers

Figure 5. Student grade display in baseline condition (Grades are com-

puted using Identify-verify, but detailed feedback is hidden.)

hypothesize that leniency is due to the Halo effect, and using a
structured process and interface would reduce this bias [15].)

Conditions

This between-subjects experiment had three conditions. In
the peer-median condition, students assess four peers using
a grading rubric, and enter their grade into a text field (Fig-
ure 6). In the identify-only condition, students assess four
peers using the same grading rubric, but would instead use the
Identify interface to select which aspects of the rubric were
present in the student answer (Figure 2). In the identify-verify
condition, students assessed four peers using the Identify in-
terface. Then, they would verify assessments of eight answers
that other students had created in the Identify step (Figure 3).

We wanted to reduce grading burden in the class, and since
we hypothesize that Identify-verify would save student effort,
the experiment used an unbalanced assignment; 20% of stu-
dents randomly assigned to the peer-median condition, and
the rest split evenly between identify and identify-verify.

Questions

Students assessed answers to two short-answer questions.
Question 1 asked students to rewrite an interview question:
“Rewrite the following interview question to address its prob-
lems: ‘Do you like the Word Art feature of Microsoft Of-
fice?”’, and had a binary grade (credit or no-credit). Question
2 asked students to enumerate “three benefits of sharing mul-
tiple designs with your team members, instead of sharing only
one design?”. Students could earn 0-3 points on this question,
one per enumerated benefit. Students assessed four submis-
sions per question, so there were a total of eight assessments
per participant.

After they had completed grading, the system invited students
to participate in a short survey. The survey measured trust in
the system, and time taken for grading vis-a-vis their initial
expectations.

Figure 6. Peer-median UI: Students entered grades in a text box.
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Table 1. Peer-median was faster for each rating, but employed more raters, so took more time overall. Overall, the time each condition took and its

quality correlated.

Type Method #assessments: Median (mean) Accuracy κ Human effort (seconds)
Binary Peer-median 3 0.85 0.57 109
Binary Peer-median 2 0.68 0.21 73
Binary Identify only 1 (1.15) 0.71 0.41 59
Binary Identify-verify 1 (1.15) + 2 (2.08) verifications 0.72 0.41 91
Binary Machine prediction – 0.60 0.19 –

Enum. Peer-median 3 0.49 0.32 103
Enum. Peer-median 2 0.33 0.19 68
Enum. Identify only 1 (1.42) 0.39 0.15 71
Enum. Identify-verify 1 (1.42) + 3 (3.1) verifications 0.45 0.22 104
Enum. Machine prediction – 0.28 0.09 –

The system showed students their final grades a day after the
peer assessment period ended. All students saw grades com-
puted using Identify-verify. To measure the effects of detailed
feedback, the system showed those in the peer-median condi-
tion only the final score (Figure 5), students in other condi-
tions saw both the score and identified attributes (Figure 4).
After they saw results, we invited students to a second survey,
which gauged how accurate they perceived grading to be and
how satisfied they were with feedback.

Participants 2,556 students submitted answers; 1,370 per-
formed assessment (the others dropped the class). 620 stu-
dents participated in the pre-results survey, and 102 partici-
pated in the post-results survey. In all, students created 11006
assessments and 12264 verifications.

Measures

For both the peer-median and the identify-verify strategies,
course staff looked at 100 student answers for each question
with three peer-median assessments, and 100 more answers
with two peer-median assessments. (We did not select based
on the number of identify assessments, because the system
dynamically determined this number for each answer). For
each student answer, we compared the staff grade to the com-
puted grade.

Results

In terms of both effort and accuracy, the ranking of conditions
was the same: Peer-median was highest, identify-verify was
the middle, and identify-only least (See Table 1.) Peer-median
had three raters. Identify-only had median one rater. Identify-
verify had median one rater, with two verifiers for the binary
question and three verifiers for the enumeration.

How accurate is identify-verify assessment?

Peer-median required disproportionately more effort than
identify-only to achieve its results. Identify-only consumed
54% of the effort to achieve 83% of the accuracy in the bi-
nary question, and 71% of effort for 80% of accuracy in the
enumeration question. Identify-verify consumed 84% of ef-
fort for 85% of accuracy in the binary question, and identical
effort for 92% of accuracy for the enumeration question. This
study only examined one effort level. The second study sim-
ulates multiple effort levels.

Verification provided a large benefit for the enumeration
question, but minimal benefit for the 1-level question. Labels

were rejected at similar rates (19.8% for 1-level and 18.6%
for enumeration). For a binary question, not all attributes
need to be identified to accurately grade it (for example, if
the answer is wrong for two reasons, identifying just one is
sufficient). Therefore, we hypothesize that the benefits of
verification are larger for questions that are non-binary, and
investigate this in Experiment 2.

Identify assessments take longer, more accurate

Students took significantly longer to select an attribute la-
bel than to select a score (see Figure 7), log-transformed
t(6789) = 28, p < 0.01). Labeling also yielded more ac-
curate work (see Table 1). Identify-verify reduced leniency,
while retaining peers ability to assess unusual answers better
than machines (see Table 2 and Table 3).

36 35

56

50

12 11

0

20

40

60

Peer−median Identify Verify
Assessment type

M
e
d
ia

n
 t
im

e
 (

s
e
c
o
n
d
s
) Question type

Binary
Enumeration

Figure 7. Assessment took longer using the Identify interface, but yields

more accurate results.

Identify-verify reduces voluntary acceptance

Fewer students in the identify-verify condition reported want-
ing to continue using the grading interface for other quizzes

Question Peer-
median
3 raters

Identify-
verify

Staff Machine

Yes/no (1 point) 0.57 0.33 0.31 0.17
Enumeration (3 points) 2.17 1.65 1.74 1.35

Table 2. Peer grade averages in points. Identify-verify reduces leniency

compared with peer-median.
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Table 3. Sampling of errors in assessment. Peer ratings help when machines are less confident of the grade.

Student answer Remarks

“How do you use the Word Art
feature and how does it help you
to meet your goals?”

Machine marked as incorrect, possibly because of leading bigrams “does it”, “help
you”. Peers marked as correct. Staff graded as correct.

“What do you think of the Word
Art feature of Microsoft Of-
fice?”

Construction marked as incorrect in the grading rubric (because it assumes opinion);
yet, two of three peers in the peer-median condition marked as correct (possibly be-
cause it’s less leading than “do you like. . . ”). Both machine, and identify peers marked
as incorrect.

“What would you like to see
changed in the ‘Word Art’ fea-
ture on Microsoft Office?”

Possibly useful interview question asks how to change, instead of understanding cur-
rent use (and so, is wrong): 3 peers in the peer-median condition marked correct; one
rater identified it as ‘Other correct answer’, but verification rejected it. Staff graded as
incorrect.

“Inspiration. Innovation. So-
cial” (for benefits of sharing
prototypes)

Uses keywords without context. Machine awarded one point (possibly due to ‘Inspi-
ration’), but Identify peers did not (this answer had no peer-median assessments), nor
did staff

“Because the best way to have
a good idea is to have lots of
ideas.” (for benefits of sharing
prototypes)

Pithy and plausible, but irrelevant. Awarded 1 point (out of 3) in peer-median evalua-
tion, none in Identify. Staff graded at 0.

(64% said yes, t(732) = 2.9, p < 0.01); no significant dif-
ferences existed between peer-median and identify-only (78%
and 75% respectively). Usability challenges with the verify
interface may have reduced interest. Some students reported
that the “the layout was very confusing” others were initially
unsure if they were verifying the student answer or the label.
15.8% of students in the peer-median condition completed
more assessments than required, while 8% of students in the
identify-only condition completed more than required.

Fewer students in the identify-verify condition believed the
process would give them a fair grade (Asked as Yes/No:
β = 0.12, t(734) = 2.7, p < 0.05). This may be because ver-
ify explicitly revealed individual peers work; reducing trust.
One student said that based “on the verification step of the
peer assessment I’m not confident that people’s quizzes are
being assessed correctly.” Furthermore, identify-only students
reported more accurate grades (µ = 1.9, t(93) = 2.04, p <

Binary Enumeration
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0 30 60 90 0 25 50 75 100
Median human effort (seconds)

A
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Condition
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Identify only
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Figure 8. With median one rater, the peer-median method takes dis-

proportionately more human effort to get high accuracy compared to

Identify-only for the yes/no question. For the enumeration question, both

methods need nearly the same effort for comparable accuracy.

0.05) than those in the peer-median or identify-verify condi-
tions (µ = 2.5, 4-point Likert scale with 1: ‘very accurate’).

Experiment 2: How number of raters affects accuracy

A second experiment investigated how the number of raters
affects accuracy. As before, students were assigned to either
the identify-verify, identify-only and the peer-median condi-
tion. All raters graded one of fifty randomly-selected submis-
sions. 634 students participated.

The final had three enumeration questions asking students to
a) mention one disadvantage of a between-subjects experi-
mental design, b) list three ways of visually grouping related
information, c) list two situations where heuristic evaluation
is preferable to user testing. The experimental setup was iden-
tical to Experiment 1.

Measures

We performed a bootstrapped simulation of the peer assess-
ment. This simulation chooses a random sample of raters for
each question. We then calculate the final grade using rat-
ings only from this sample of raters, and compare it with the
staff-assigned grade. Repeating this process multiple times
estimates peer agreement with staff [17]. Figure 9 shows me-
dian results from 20-repetition sampling, with one to eight
raters.

We benchmark each condition against its peak accuracy: the
highest accuracy seen in that condition in our simulation.
More raters did not always improve accuracy, so peak accu-
racy was achieved with fewer than eight raters in the identify-
only and peer-median conditions.

Results

A few raters identify most features

A small number of raters can identify most attributes present.
Figure 9 shows that accuracy quickly plateaus, and four raters
yield 92% of the peak accuracy with the identify-only method.
Overall, the peak identify-only accuracy was 55% with six
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raters, the peer-median had a peak accuracy of 66% with
seven raters. This early saturation is similar to heuristic eval-
uation of interfaces [20], suggesting similar processes may be
involved.

Identify raters satisfice, Identify-only errors accumulate

Identify-Only accuracy was lower than peer-median, and
much lower than Identify-Verify (see Figure 9). First, most
raters select only one attribute, even though the answer may
match multiple attributes. Of the 1488 assessments collected,
only 173 had more than one selected attribute. In contrast,
staff assessments averaged 1.4 selected attributes. Second,
because identifiers sometimes mislabel answers and there is
no mechanism (i.e. verification) that catches this, asymptot-
ically optimal performance is with relatively few raters and
relatively low quality. In contrast, the peer-median approach
uses the median of peer grades in the peer-median approach,
so grades become more accurate with more raters as outlier
ratings are discarded.

Many identifiers appear to have selected the first relevant la-
bel (Figure 10). Randomizing order across raters should miti-
gate ordering effects. Future work could investigate interfaces
that incent raters to select all relevant labels.

Verification improves accuracy, especially with more raters

Identify-verify yielded the highest accuracy: the peak accu-
racy was 82% with six raters. The simulation required labels
to have one peer verification and no peer rejections. (Ac-
tual student grading requires two verifications. Because the
system solicits verifications in decreasing order of need, the
median staff-graded submission had only one verification, or
was rejected.)

Even single-peer verification dramatically increases accuracy.
With three raters, accuracy is 28% higher than identify-only,
and 18% higher than peer-median. Peer-median assessments
took a median time of 19 second, identifications took 40s.
Verification took 12s, similar to Experiment 1. Therefore, this
18% boost in accuracy comes with approximately two extra
minutes of human effort per answer.
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Figure 9. For enumeration questions, identify accuracy is lower than

the peer-median method. Identify-verify obtains better accuracy than

peer-median, especially with three or more raters.

Because verification filters out erroneous identifications, its
benefit is larger with more raters: verification with one rater
yields a 22% benefit in accuracy, with four raters, it yields
a 27% benefit. In our simulation, three identifiers identified
most attributes, and inaccuracies with three or more raters are
due to wrongly identified attributes.

DISCUSSION

Identify-verify represents one choice in the trade-offs be-
tween human effort and grading accuracy. This choice was
optimized for a large, pass-fail class.

Is verification necessary?

Our results demonstrate how erroneous identification can be
detected with an easier operation (verification), similar to
Soylent [2]. This is especially useful for questions where all
attributes need to be correctly identified. While verification
increases grading time, it yields more yields more descrip-
tive, actionable, and accurate student feedback, which helps
students learn.

Opportunities for early feedback

To explore the possibility of automatic, early feedback, we
trained a classifier using etcml.com to detect the most com-
mon errors for each question (Table 4). Because students
unlikely to revise work without external feedback [24], even
somewhat unreliable feedback (e.g., “Check to see that. . . ”)
may have benefits.

Identify-verify uses its auto-graders confidence to indicate
ambiguity. Might students benefit from knowing that peers
may have trouble understanding them? Evidence from auto-
mated essay scoring suggests that well-designed early feed-
back may help students write clearer answers [11, 23].

Coping with fewer graders than submitters

In Experiment 1, almost twice as many students submitted
work as performed assessment; the rest dropped the class
in the meanwhile. Experiment 2 was conducted later in the
course, and a much larger fraction of the 850 students who
submitted answers also assessed. Intelligently rationing raters
is important in large online systems with voluntary partici-
pation. Identify-verify system handles this problem by ra-
tioning fewer graders for unambiguous answers. Because of
the smaller number of raters, the system asked a median of
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Figure 10. Raters were more likely to choose attributes displayed earlier

on the page.
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Table 4. Algorithmically predicting errors could automate early feed-

back.

Attribute Accuracy Precision Recall

Incorrect attribute:
“The question as-
sumes that the user
has feelings about the
feature” (Q1)

0.79 0.58 0.41

Missed attribute:
“More individual ex-
ploration in the space
of designs” (Q2)

0.59 0.64 0.79

Incorrect attribute:
“Other incor-
rect/irrelevant answer”
(Q2)

0.90 0.27 0.73

only one identification per question, saving more identifica-
tions for the most ambiguous answers. For this experimen-
tal system, students were not penalized for not participating
in assessment. Future work could explore penalties for non-
participation, or incent assessment in other ways.

When should instructors use hybrid grading?

Peer assessment works best when staff spot-grade some stu-
dent submissions because it helps staff refine assessment ma-
terials and baseline peer grades [3, 6]. However, courses may
not have the resources for staff to grade several hundred ex-
amples that can train a machine-learning algorithm. (Even
if it enables richer questions.) Furthermore, requiring large
amounts of training data may dissuade instructors from re-
vising questions. We see two opportunities exist for future
work. First, an online-learning algorithm may improve pre-
diction accuracy as students assess each other. However, be-
cause the system would demand fewer assessments as its pre-
diction accuracy increases, this may encourage free-riding.
Future work could leverage such algorithms, while balancing
for fairness. More immediately, assessment data from peers
may be used to train algorithms. For example, an advanced
cohort takes the class a week ahead of the general class. There
are many exciting opportunities for integrating peer and algo-
rithmic assessment to increase student learning and leverage
the rater’s time better.

FUTURE WORK AND CONCLUSION

This paper demonstrated the feasibility of combining ma-
chine and peer grading through the identify-verify work-
flow. It showed how this workflow results in more de-
tailed student feedback, and can be leveraged to provide early
feedback. further instructor experimentation and research,
our open-source code is available at https://github.com/
StanfordHCI/peerstudio. In addition, a hosted version of
the platform is available at http://www.peerstudio.org.

Future work falls in three categories: First, this paper assumes
the final grade for a short-answer response can be expressed
as a summed combination. Deploying this workflow in other
classes may suggest other ways to structure assessment and

verification, for e.g., as a decision tree. Second, many tech-
niques in this paper may be extended with algorithmic im-
provements. For instance, our system currently implements a
fixed-control method for dynamically controlling the number
of peer raters for a submission. A decision-theoretic model
may result in even lower grading burden [21]. Similarly, an
online learning algorithm [27] could dynamically update es-
timates of the predicted grade to guide which ratings are col-
lected. Third, in this paper, the system decided which answers
a rater should assess and which assessments to verify based
on what information was most valuable to determine the fi-
nal grade. Because performing peer assessment is a valuable
learning activity [6], future work may select submissions for
raters that optimize both score/feedback quality and student
learning (e.g. by choosing submissions for peer raters that
they can learn most from).

We propose that the combination of machine and human
grading can offer strengths that neither has in isolation. The
large scale of online classes enables machines to effectively
improve the educational experience [9]. By lessening grad-
ing burden, machines can focus peers on providing more de-
tailed feedback. Automatic feedback may also focus students
on topics they have not fully mastered. Likewise, peers can
help machines identify “unknown unknowns” that are blind
spots in their models, and help bootstrap that model quickly.
Hybrid peer-machine approaches may also help in-person
classes and many social computing areas, including crowd-
sourcing.
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