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ABSTRACT
Peer grading is the process of students reviewing each others’
work, such as homework submissions, and has lately become
a popular mechanism used in massive open online courses
(MOOCs). Intrigued by this idea, we used it in a course on
algorithms and data structures at the University of Hamburg.
Throughout the whole semester, students repeatedly handed in
submissions to exercises, which were then evaluated both by
teaching assistants and by a peer grading mechanism, yielding
a large dataset of teacher and peer grades. We applied different
statistical and machine learning methods to aggregate the peer
grades in order to come up with accurate final grades for the
submissions (supervised and unsupervised, methods based
on numeric scores and ordinal rankings). Surprisingly, none
of them improves over the baseline of using the mean peer
grade as the final grade. We discuss a number of possible
explanations for these results and present a thorough analysis
of the generated dataset.

Author Keywords
machine learning; peer grading; peer assessment; peer review;
L@S; ordinal analysis; rank aggregation.

INTRODUCTION
Peer grading refers to a process where students grade the work
of their co-students based on a scoring rubric provided by the
instructor. While it has been experimented with in the past
(see [7]), it has become increasingly popular in the context of
MOOCs, where thousands of students hand in homework that
has to be graded (e.g., [2]). Similar to other crowd-sourcing
scenarios, the hope is that even though students may not be
perfect graders, it might be possible to come up with a fair or
∗This work was carried out while the authors were still at the Univer-
sity of Hamburg.
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accurate final grade for each submitted homework by aggre-
gating many such imperfect grades. The challenge of finding
good aggregation algorithms has been taken up by the machine
learning community and a number of suggestions have been
made in the literature (e.g., [4, 9, 5, 6, 1, 10, 8]). The bot-
tom line of these papers is that statistical models or machine
learning algorithms are successful at solving this task.

Intrigued by its idea and potential, we used peer grading in an
undergraduate course in computer science at the University of
Hamburg: the course on algorithms and data structures (AD).
Throughout one semester, students solved 6 exercise sheets
with 2-5 exercises each. 6 Teaching assistants (TAs) graded
all submissions in the traditional way, but at the same time we
applied peer grading on the same set of submissions. The data
generated during the whole semester has been made publicly
available, the link can be found on our homepages. We refer
to it as AD data below. At the end of the semester, we applied
various algorithms to aggregate the peer grades and to analyze
our data. Contrary to other researchers we found that none of
these methods show a satisfactory improvement over a simple
baseline. We will discuss a number of possible explanations
for these results and analyze sources of problems that prevent
more sophisticated methods to succeed.

OUR SETUP
For our peer grading experiment we selected the course on
algorithms and data structures at the Department of Computer
Science, University of Hamburg in the winter term 2014/15.
The course is compulsory for all bachelor students in com-
puter science and had 219 active participants in total. We had
6 TAs grade all homework in the traditional way. Roughly
once every two weeks, students received an exercise sheet as
homework, resulting in 6 sheets with 19 individual exercises
in total. The exercises consisted of puzzles on algorithms or
proofs about algorithmic properties. For example, the students
were asked to apply a given algorithm by hand on a small input
or they were asked to design an algorithm to solve a particular
problem. In each exercise, students could collect a certain
number of points. Getting at least 50% of all homework points
in the semester was a necessary requirement to pass the course.
Exercises were solved and submitted by groups of up to three
students. This semester we had a total of 79 groups. For each
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individual exercise, every group handed in their submission via
an online system (we used a modification of the moodle open
source platform1). After the submission deadline, a sample
solution together with assessment criteria was posted online by
the course instructor. We tried to describe all possible correct
solutions to the exercises, point out pitfalls or common errors
and discuss details about the grading procedure. Grading took
place simultaneously in the following three different ways.

(i) Self grading. The students were asked to read and under-
stand the sample solution and then grade their own submission
first. While they solved exercises in groups of three, the self
grading took place individually, resulting in 3 self grades per
submission.

(ii) Peer grading. Each student graded 2 randomly selected
submissions of other groups, resulting in about 6 peer grades
per submission. Grading was double-blind.

(iii) TA grading. All submissions were furthermore randomly
assigned to and graded by one of the 6 TAs.

In two exercise sheets, we experimented with slightly altered
settings. In one case, we increased the number of peer grades
by each reviewer from 2 to 5, which results in about 15 peer
grades for each submission. On another exercise sheet, we
applied ordinal peer grading: Instead of assigning every sub-
mission an absolute grade, we gave each student a total of 5
peer submissions and asked them to only rank these submis-
sions from worst to best.

In order to ensure that the students take their peer grading du-
ties seriously, we made a reasonable peer grading performance
a mandatory requirement to pass the course: students were
required to participate in the peer grading of at least 5 exercise
sheets, and we announced that sloppy grading behavior would
not be tolerated. Moreover, the peer grades contributed to the
final grades for the submissions with a weight of 20% (with
the other 80% being the respective TA grade). An anonymous
questionnaire at the end of the semester revealed that about
half the students liked the concept of peer grading, had the
impression that it helped them deepen their understanding, and
would like to repeat it in another course. The other half of the
students did not like it, mainly because it had taken too much
of their time.

ALGORITHMS FOR ESTIMATING TRUE GRADES
From a statistical or machine learning point of view, the most
interesting questions in the context of peer grading are the
following.

(i) Unsupervised setting. In the complete absence of TA or
instructor grades, is it possible to take several “imperfect” peer
grades and to aggregate them into a “fair” or “accurate” final
grade for each submission? MOOCs traditionally have this
setting.

(ii) Supervised setting In a setting where partial grading is
available by an instructor, is it possible to predict or recover
the instructor’s grades based on aggregated peer grades? If
instead of a single instructor, partial grading is performed by
1https://moodle.org/

several TAs, is it possible to predict missing grades in the
quality of TA grades or even better? This is a realistic scenario
in large university courses.

(iii) Adversarial setting Is it possible to come up with a grad-
ing scheme that is robust against adversarial behavior of in-
dividuals (such as students deliberately giving everyone very
high grades or trying to downgrade others) or adversarial at-
tacks of groups of students (such as a cartel of students that
act together in order to fool the grading procedure)?

Our work focuses on the first two questions. Let us introduce
some notation. Over the course of the semester, students
solved and graded several exercises. Fix one exercise and
suppose that submissions s1,s2, . . . to this exercise have been
handed in by the students. Consider a set of graders g1,g2, . . ..
By score(s,g) we denote the score given to submission s by
grader g. In the unsupervised scenario, we do not have any
data on what the “true” score of each submission should be.
Instead, the standard approach is to simply define the true
score score(s, true) as the population average over the scores
of all potential graders. As we only observe the scores of few
graders in practice, the goal of an unsupervised algorithm is
to correct for inaccuracies that are introduced by the actual
grading procedure. In the supervised setting the true score may
be given by the instructor or TAs. The goal of supervised peer
grading algorithms is to give an estimate score(s,estimated)
of the true scores for all submissions based on the set of the
given peer grades.

Depending on whether the focus is on the absolute values of
the scores or just on the ranking of the submissions, the model
performance is evaluated using different error functions. We
use the L2 error to compare the absolute score values and the
Kendall-τ error to compare the rankings induced by the scores.
The Kendall-τ error between two rankings counts the number
of pairs of items for which the ranking order is inversed. For
each pair of items an error of 0 is given for agreement, 1 for
inversion, and an error of 0.5 if exactly one of the rankings
gives both items the same rank. The final Kendall-τ error is
the mean over the errors for all possible pairs.

Unsupervised models
Mean and Median. We simply estimate the true score of
a submission by taking the mean (resp. median) of all peer
grades for this submission. These algorithms serve as baseline.

Unsupervised-single-task (UST). Following [4], we make
some model-based assumptions. Fix a single exercise. We
assume that the true scores of all submissions to this exercise
are normally distributed as N (µscore,σ

2
score). Each grader

g has an inherent bias(g) and a certain reliability(g). The
intuition is that the bias models the tendency of a grader to
generally give high scores or to be very strict, whereas the
reliability accounts for the variance in the grading performance.
Formally, if a submission s has a true score(s, true), then the
grade reported by g is normally distributed as

N
(

score(s, true)+bias(g),1/ reliability(g)
)
.

As the actual true score is not known, it is replaced by the
current estimate score(s,estimated) in practice. The bias of
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Figure 1. Fitting UST and UMT on artificial data (100 submissions, 100 graders, 5 exercises). The panels show the L2 and Kendall-τ errors of the
estimated grades with respect to the actual underlying true grades. The box plots show the distribution over the errors of 100 independently generated
datasets while the number of peer grades per submission increases along the x-axis. Left: Dataset generated according to UMT’s model assumptions
with reasonably realistic hyperparameters (true scores generated with N (1/2,1/62), bias N (0,1/82) and reliability Γ(3,1/30)). Right: Skewed true
score distribution according to Weibull(3/2,1/3) and additionally, 20 graders always draw scores uniformly at random while bias and reliability for the
remaining 80 graders is modeled as before.

all graders is distributed as N (0,σ2
bias) and the reliability is

Gamma-distributed as Γ(α,β ). The hyperparameters µscore,
σscore, σbias, α , β can be used to control the weight of bias and
reliability estimation as well as the strength of regularization.
The goal is to fit the model to the observed data and to learn
the parameters bias(g), reliability(g) and score(s,estimated).
For this purpose we use the EM algorithm, which [4] found to
give results similar to those obtained by more elaborate Gibbs
sampling procedures.

Unsupervised-multiple-tasks (UMT). In our course, each
student graded a total of about 57 different submissions for 19
exercises over the whole semester. While the UST model just
learns from one exercise at a time, the UMT model learns the
parameters jointly over all exercises. UMT’s basic assumption
that the bias and reliability of a grader are inherent attributes
and do not vary over different exercises could lead to more
accurate estimates as there is much more data to work with.

Evaluating UST and UMT on artificial data confirms the find-
ing in [4] that such models do a remarkable job at recovering
the true underlying score, see Figure 1 for an illustration. As
more grades per submission are added, UST performs almost
as well as UMT and they both beat simple algorithms such
as mean and median by far. For example, UMT only needs
4 grades per submission to reach the error rates of the mean
algorithm with 9 peer grades as seen in the left figures. In par-
ticular, the models even work reasonably well on artificial data
with a model mismatch, i.e. data that has not been generated
according to the model assumptions.

Ordinal models. It has been suggested that instead of col-
lecting numeric grades for each submission (cardinal peer
grading), it might be more reliable to ask each student to only
rank a set of submissions. Using those partial rankings of each
reviewer, the purpose of the ordinal algorithms is to gener-
ate an overall ranking of all submissions and to assign them
cardinal rankings following a certain score distribution.
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Figure 2. Fitting the ordinal algorithms on artificial data (100 submissions, 100 graders, 1 exercise, 6 peer grades per submission) according to UMT
model assumptions (left) and on the noisy skewed dataset (right) as in Figure 1. The two bars for BC, MAL, MALS, THUR and PL show the performance
without (left bar) and with (right bar) reliability estimation.

A very simple algorithm for this purpose is Borda Count
(BC). Given a ranked set of submissions s0 < .. . < sk by a
reviewer (where k+1 is the number of reported grades by each
reviewer), the algorithm gives submission si the score i that
is the number of submissions that were ranked lower than si.
The sums of these scores for each submission determine the
overall BC score. A number of more elaborate models have
been described for this purpose in [5]: Mallows (MAL) and
scored Mallows (MALS), Bradley-Terry (BT), Thurstone
(THUR) and Plackett-Luce (PL).

We will focus here on the BT model, which assumes that the
likelihood of switching the ranking of a pair of submissions de-
pends on the distance of their true scores and on the reliability
of the grader:

P(score(s1, true)> score(s2, true))

=
1

1+ exp(− reliability(g) · (score(s1,g)− score(s2,g)))

The scores and reliabilities are then estimated using an alter-
nating stochastic gradient descent algorithm. The performance
of the ordinal algorithms in comparison to the Mean base-
line on artificial datasets is shown in Figure 2. Note that the
Mean baseline is computed on the actual grades as opposed
to the ordinal models that only have access to the rankings.
Nonetheless, all ordinal models but MAL beat the Mean al-
gorithm. The reliability estimation only shows improvements
in the right figure, which is unsurprising, as ordinal grading
implicitly applies a threshold for inaccuracies in the reported
grades: while it is likely that a reviewer misses the true car-
dinal grade, getting just the order right is much easier, so the
effects of the reliability estimation are only visible here when
a large portion of the reviewers is reporting random grades.
Increasing the magnitude of the bias values for the reviewers
decreases the performance of the Mean algorithm while that
only has a negligible effect on the ordinal models (not shown
in the figure).

Supervised models
In the supervised models, the goal is to learn to use the peer
grades to predict the true grades as given by an instructor. In
our case, we take the grades provided by the TAs as ground
truth. We consider the following two approaches.

Supervised-naive (SN). As baseline we use the following
naive algorithm. For all exercises, the submissions are split
into a training set and a test set. We use the TA grades as
ground truth for the training sets to estimate the overall student
grader biases. With those bias estimates, we compute the bias-
corrected mean scores. Denote the submissions that student g
graded over the whole course in the training set by s1, . . . ,sn.
Taking the TA grades as true scores, we calculate the overall
bias for the student as

bias(g) =
1
n

n

∑
i=1

score(si,g)− score(si, true).

On the test set, let g1, . . . ,gk be all students who graded sub-
mission s. The bias-corrected mean score is then given as

score(s,estimated) =
1
k

k

∑
j=1

score(s,g j)−bias(g j).

Supervised-multiple-tasks (SMT). Another approach is to
incorporate the TA grades directly into the UMT model. For
some subset of the submissions, the respective TA grades
are put into the model like any other peer grade, but the TA
reliabilities are set to a high constant. This automatically
corrects the student reviewer biases towards the TA grades and
also gives higher reliabilities to students that grade similar to
the TAs. To see how much this improves the overall accuracy,
the error is only computed on submissions whose TA grades
are unknown to the model.

Linking the data
While all introduced models estimate the scores, bias and
reliability in a very direct way, more accurate results might be
obtained by linking up the data in other ways. For example,
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Figure 3. TA grades compared to mean peer grades. Left: Smoothed and rescaled score histograms for three selected exercises. Right: Overview of all
submissions and their grades. Each circle depicts one submission with its position indicating the TA score and mean peer grade (jitter added to avoid
clustering due to different scales). If the TAs and students fully agreed on the scores, all circles would lie on the indicated diagonal.

it stands to reason that students with higher grades on their
own homework submissions are likely to be more reliable at
grading than students with lower grades. One may even take
it a step further by making the homework scores dependent
on their grading reliability in order to motivate them to put
more effort into the peer grading. Another example is that
better performing students might have higher standards when
grading other submissions, effectively resulting in a negative
bias.

Assuming the data shows strong correlations in this regard,
there are several ways to incorporate these additional ties into
the model. A very simple approach is fitting a linear function
between the own homework scores to the bias/reliability and
to use that in the computation of the final grades. Using UMT,
one can also build a hybrid model by scaling the estimated
reliability with the output of the linear function that takes the
own score as input. Such approaches have been shown to
improve the model accuracy, see e.g. [4, 3]. We will study
these correlations in our dataset and analyze whether they can
be used to improve the score estimates.

OUR DATASET AND ITS ANALYSIS

AD data: first observations
We will begin with an overview over the raw data. To be able
to compare performances across different exercises, we rescale
the scores of each exercise to lie in the interval [0,1]. A differ-
ent standardization of shifting and rescaling the scores to have
mean 0 and variance 1 (z-scores) leads to very similar results.
To get a first impression of our data, consider the plots on the
left in Figure 3. In each panel, the figure shows histograms
of scores for a particular exercise. These already show a num-
ber of interesting points. Not very surprisingly, we see that
self grades are often higher than peer grades, which in turn
tend to be higher than the grades given by the TAs. For some
of the exercises, it looks like the peer grade histograms are
“shifted versions” of the TA histograms but this is not always

the case. To the contrary, sometimes the overall characteristics
and shapes of the histograms are quite different. In general
the scores do not seem to be normally distributed. The first
obvious reason is that the scores are bounded to a fixed interval
which can lead to several artifacts. The score distributions are
often skewed, for example when the exercise was easy and
many students got full marks for their submission. In many
cases the score distribution is clearly bi- or multi-modal: this
can arise if a large number of students solved only part of the
exercise whereas others solved it completely.

A second aspect illustrated in Figure 3 (right) visualizes the
relationship between TA grades and peer grades for individual
submissions. While the tendency of peer grades generally
being higher than the TA grades is again evident here, we can
also see quite a number of submissions that received a score of
0 by TAs but moderate to large scores by peers. Looking into
the corresponding submissions reveals that a typical reason is
a wrong solution to the exercise where many reviewers miss
the error and give full marks instead. We can also see in the
figure that there is a large number of submissions with full TA
grades but slightly lower peer grades. This happens because it
is simply unlikely for all 6 peer grades to be full scores and a
single lower grade will drag down the mean value.

On a more abstract level, the figure reveals that the “sources of
error” for a grader are not only a bias due to different taste or
different levels of strictness as suggested in the probabilistic
models, but also a serious lack of understanding or information.
This is problematic for statistical algorithms: if a submission
gets high scores by most peer graders, there is no way to know
whether this is really justified because the given solution is
correct or whether the reason is that all peer graders have
overlooked a crucial mistake in the submission. On the other
hand, it is hard to detect cases of otherwise reliable graders
getting a score completely wrong, in particular in the realistic
scenario where only few grades are given for each submission.
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Figure 4. Comparing the performance of the ordinal models without reliability estimation on the AD dataset with the mean algorithm as baseline. The
exercises on the x-axis are sorted by the error of the mean algorithm. In exercises 61 and 62 (green), each student reported 5 instead of 2 peer grades.
Exercises 51 and 52 (red) were graded ordinally, so the BC algorithm is used as a baseline instead of the mean.

Fitting the models to the data
We analyze our data using the introduced models. In the un-
supervised scenario, we simply take all grades, fit the models,
and estimate a “true score”. Note that in the unsupervised
setting, we cannot optimize the model to fit any ground truth
(such as the TA grades). If the histogram of peer grades is
shifted with respect to the TA grades2, there is no way for an
unsupervised model to correct for this. Hence, comparing the
estimated true scores to TA scores by any loss function that
compares the scores directly, such as the L2 error, might be
dominated by the overall bias shift. To cover for this, we use
the Kendall-τ rank correlation as a second error measure.

The hyperparameters of the models are chosen as follows. The
parameters µscore, σ2

score and σ2
bias for UST and UMT only

control the strength of regularization and were found to have
little to no impact on the overall accuracy. The reliability
parameters α and β control whether the model gives all stu-
dents a similar reliability or fits them to a large variety of
reliability values. In our evaluations, we use the sample mean
and variance of the given peer grades for each exercise to
set µscore and σ2

score and fix the remaining hyperparameters at
σ2

bias = 1/36, α = 3 and β = 1/30. For BT, we again use the
sample mean and variance as priors and choose α = 10, β = 2
for the reliability. Note that in the exercise sheet where we
applied the pure ordinal setting, students only report rankings
of submissions, so sample mean and variance are unknown
there. In that case, the parameters can be chosen arbitrarily to
control the distribution of the resulting scores.

Analysis of unsupervised models
We will begin with a comparison of the ordinal algorithms
(For this section, the implementation provided by [5] was
used.) A plot of the algorithm performance on each individual
exercise is shown in Figure 4. In our case study we usually
collected numeric grades – only their induced rankings are
fed into the ordinal algorithms. For that reason, we again use
2See e.g. in the third panel of Figure 3 (left).

the Mean algorithm as baseline. Exercises 51 and 52 are an
exception to that, as we collected the grades in an ordinal fash-
ion there, so we use the simple BC algorithm as baseline for
those two exercises. With the exception of Mallow’s model,
all ordinal algorithms perform very similarly. In particular,
using only the peer grades they all perform worse than the
mean algorithm by a significant margin. The difference is
smaller when the peer and self grades are combined, as there
are significantly more pairwise comparisons in this dataset
which helps the ordinal models. Adding the reliability esti-
mation to the models curiously increased the Kendall-τ errors
in most exercises by 0.01-0.03 (not shown in the figure). On
the exercises 61 and 62, we asked each student to grade 5
other submissions instead of 2. The effect is visible on the
peer grades, as the performance of the ordinal algorithms is
substantially better on those tasks, strengthening the point
that ordinal models inherently need more grades to match the
performance of cardinal algorithms.

As a further experiment, we collected the grades in an ordinal
fashion in exercises 51 and 52. Much to our surprise, the em-
barrassingly simple approach of the BC algorithm yields no
worse results than the rankings of the more complex ordinal
algorithms on exercise 51 and even beats them on exercise
52. This could imply that more complicated models are not
needed for ordinal peer grading. Additionally, we can see that
the performance of the ordinal algorithms on exercises 51 and
52 is rather bad in general. One reason for this might be the
grading behavior of the students in ordinal tasks. Many stu-
dents reported that they made less of an effort for ordinal peer
grading than for cardinal peer grading because they considered
it easier to quickly come up with a ranking than to report abso-
lute grades. We believe that this might be a serious drawback
of collecting peer grades in an ordinal fashion. If students do
not look at the details of a submission, it is unlikely that the
overall grading performance improves over cardinal grading.

Figure 5 shows the results of the cardinal models on our
AD dataset along with BT representing the ordinal models.
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Figure 5. Fitting cardinal models to our AD data. The box plots show the L2 errors (top) and Kendall-τ errors (bottom) with respect to the TA grades
of each exercise over the whole semester. In each panel, the three groups refer to the data that was used to fit the models: the 3 self grades only, the 6
peer grades, or both together.

Note that BT cannot be run exclusively on the self assessment
grades, as each student only graded one submission which
does not imply any ranking. As opposed to the results on the
artificial data in Figure 1 where the model-based approaches
clearly outperform the baseline, we can now see that UST and
UMT provide no improvement over the simple mean. This
finding is disappointing and contradictory to the results in
the literature. We will discuss possible explanations for this
behavior in the following section.

Why do the models provide no improvements over mean?
Amount of data. We have about 6 peer grades and 3 self
grades per submission, collected over 19 exercises. Each
student submitted around 57 grades in total. The results on
artificial datasets as well as other studies on peer grading
suggest that this should be enough to get a reasonably reliable
estimate. A lack of data is not the problem here.

Model assumptions mismatch. As seen above, our data usu-
ally does not satisfy the model assumptions (normal distribu-
tions, etc). However, experiments with artificial data whose
distributions do not agree with the model assumptions show
that the model typically still works reasonably well. We do
not believe that the model mismatch is the major source of the
problem.

Model fitting. We set the hyperparameters as described above,
though in our experiments, we found that the models are not
sensitive to the choice of the hyperparameters. The actual
model fitting was done with the EM algorithm. [4] reported
that the results of the EM algorithm are almost equal to the
ones of Gibbs sampling. Furthermore, simulations with a
number of different artificial datasets resulted in consistent
estimates for the score, bias and reliability values.

TAs as baseline. We evaluate our errors against the TA grades,
that is we consider the scores or orderings given by the TA
grades as ground truth. However, these grades have been given
by 6 different TAs, so the variance within these grades might
make them unsuitable to serve as ground truth (in the extreme
case, if we compared against random grades, then none of the
models would outperform the others). We first study this effect
with artificial experiments. Consider the setting in Figure 1,
but we now add noise to the true grades before computing the
errors (we use Gaussian noise with standard deviation 0.05).
The results can be seen in Figure 6 (right). They still look
similar to the original results in Figure 1, just the overall per-
formance worsened slightly due to the noise. In particular, the
UST and UMT models still considerably outperform the mean
estimate. This is even the case if we use an unrealistically
large standard deviation for the noise, say 0.2.
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Figure 6. Analyzing the effect of using several TAs as baseline. Left: Smoothed histograms of all given grades by the TAs and students. Right: Box
plots in the same setting as in Figure 5 (top right), but with white noise added for the evaluation step to simulate the effect of using several TAs: errors
were computed against noisy true grades (independent Gaussian noise N (0,0.052)).

As a next step, we look at our actual data to evaluate the
consistency among the TA grades in comparison to the con-
sistency among the peer grades. Due to constraints during
data collection, we did not have the possibility to conduct an
extensive experiment to compare the grading performance of
the TAs with each other. Instead, we consider the following
evaluations. We first compare the average reported grade of
the TAs to the average grades given by the student reviewers.
As can be seen in Figure 7 (left), the TAs have a very low
bias amongst each other, in particular it is much lower than
the biases amongst the students. Next, we look at the over-
all histograms of all given grades by each TA, see Figure 6
(left). There is little variance amongst the TA histograms, in
particular compared to the variance in the peer histograms. All
in all it looks like the TAs grade reasonably consistently, so
we believe that the use of different TA grades as ground truth
cannot be the major reason for the lack of improvement of the
probabilistic models over the simple baseline.

Bias vs. reliability. As seen in Figure 7 (mid, right), the over-
all biases are not very large, only few exceed an absolute value
of |0.1|. On the other hand, the variance in reporting grades is
quite high. More than half the students reported grades that
deviate from the mean peer grades with a standard deviation
of at least 0.14 (a variance of roughly 0.02). To gain some
intuition on the values, note that a student who theoretically
always reported the same score 0.72 for all submissions (the
overall mean peer grade on all exercises together) would end
up with a variance of 0.05.

It was reported by [4] that more than 90% of UST’s improve-
ments are due to the fact that the model-based approaches
correct for the bias, an effect that we also confirmed on artifi-
cial data. However, in our AD data, the errors induced by low
reliabilities dominate the errors due to bias. This may be part
of the reason why the models do not perform well here.

Sources of grading error. As discussed above, reasons for
differences in grading behavior are not only that people have

“different tastes” or are “differently strict”. Rather, it is often
the case that graders make serious errors due to lack of infor-
mation or lack of understanding in the topic. This problem is
bound to come up when using peer grading in a course such
as algorithms and data structures and might be much less of
an issue when grading is used to evaluate project reports [5]
or design questions [2].

To check whether the model-based algorithms improve if we
just use “easy-to-grade” exercises, we selected a number of
exercises where the errors were low, indicating that the stu-
dents had no difficulties in grading the submissions. We found
that even in this scenario, the model-based algorithms do not
perform better than the mean. This may be due to the fact that
in easy-to-grade exercises, the mean algorithm does a good
enough job at eliminating the different biases or reliabilities,
so there is not much room left for improvements. Similarly,
if we just train on “difficult-to-grade” exercises, we do not
find an improvement of model-based algorithms compared to
the mean. The reason is that in this scenario, the errors are
dominated by the submissions that are graded totally wrong
by a large number of students, so none of the algorithms can
do a good job.

Unmotivated students. One might suspect that some pro-
portion of students tried to get away with minimal effort and
produced grades that are pretty much random. However, look-
ing closely into the data reveals that we only had a very small
number of these students, so the models should succeed at
giving them low reliabilities and lead to a better performance.

Analysis of supervised models
Considering the results for the supervised learning models in
Figure 5, we see a similarly disappointing picture: the super-
vised models do not improve over the simple mean estimator.
While the Kendall-τ errors do not change much compared
to the unsupervised models, the variance in L2 errors over
different tasks gets smaller. This is an effect of calculating
the student reviewer bias values against the TA grades which
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Figure 7. Left: Histogram depicting the mean of all peer grades that each student (and TA) reported over the course of the semester. Mid, right: For
each student and all exercises, the deviations of the student’s reported grade from the mean of all other grades for the same submissions are calculated.
The sample mean of those deviations is the reviewer bias while the sample variance is similar to the inverse of the reliability in the UST and UMT
models.

improves the overall error in tasks that have a very high error
and overfits in tasks that were graded well by most students
in the first place. All in all, supervision does not seem to
have a significantly positive effect on the performance of our
algorithms.

Analysis of further correlations in the data
To see whether we can meaningfully improve the performance
of the models, we first check the correlation between the mean
homework performance and the overall bias or mean deviation
of the students’ reported grades compared to the TA grades.
For bias, we use the same formula as in the SN model. The
mean deviation for a student g is likewise calculated on all
reported grades s1, . . . ,sk over the whole course in relation to
the TA grades score(s, true) as

1
k

k

∑
i=1
|(score(si,g)−bias(g))− score(si, true)| .

The homework performance and the bias of the students are
only weakly correlated with an r-value3 of−0.22, i.e. students
with higher grades on their own submissions tend to report
lower grades. However, this is not due to better students being
stricter or having higher standards but rather because better
students are more likely to find flaws in the submissions and
therefore report lower grades on average. While the former
would necessitate a correction, this would punish students for
doing a good job at finding large mistakes and results in a
worse overall performance concerning grade accuracy.

The correlation between the mean deviation and the homework
grades is even weaker at an r-value of only −0.10, indicat-
ing a marginally higher agreement between well performing
students and the TAs. A possible explanation for the low cor-
relations is the fact that students handed in submissions in

3Pearson product-moment correlation coefficient.

groups which means that the scores of each student do not nec-
essarily reflect their knowledge on the topic. A more personal
measure is given by the exam that was written at the end of
the course. First, we note that the exam grades and the mean
homework grade for the students are correlated with an r-value
of 0.28, a rather low value. Taking the exam grades instead
of the mean homework grade, the correlation with the bias is
now slightly higher at r =−0.26 while the mean deviation is
correlated with the exam grades at r =−0.28 which is much
stronger than the correlation with the homework scores.

We incorporate the exam grades as a measure of reliability
into the model using both mentioned approaches. To use
the exam grades directly as the (constant) reliability for each
student in the UMT model, we simply scale them to lie in
the range [0,150], resulting in a distribution similar to the
Gamma-distribution for the estimated reliability in UMT. For
the second approach, we estimate the reliability as usual in
UMT but then multiply these values with the normalized exam
grades (exam grade divided by mean exam grade). Both ap-
proaches yield similar results that are only marginally better
than UMT. It seems that using the exam grade for the reliabil-
ity compensates for some of the error that UMT introduces
but still fails to significantly improve over a simple mean.

CONCLUSIONS
We have mixed feelings towards peer grading after evaluating
all the data collected in our algorithms and data structures
course. The positive point of view is that even though peer
grades tend to be more optimistic than TA grades, the size of
this effect is not very large. The peer grades give a reasonably
informed picture of the true grades. For this reason, using sim-
ple estimates such as the mean grade is competitive to more
elaborate model-based algorithms. From an application point
of view this finding is helpful: an easy to understand mech-
anism such as a simple mean is more acceptable to students
than a complicated model when it comes to generating their
final grades.
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From a statistical or machine learning point of view, our re-
sults are somewhat disappointing. None of the models we
tested outperforms the simple mean estimator on our data. Our
general feeling is that it will be very difficult to come up with
algorithms that do a much better job in this particular setting.
The reasons for this difficulty might be the heterogeneity of
the score distributions of different exercises, the high vari-
ance among graders and the different and rather unpredictable
sources of grading errors (“lack of understanding” rather than
a “slightly different taste”). It seems very hard to model all
these aspects unless one has a much larger amount of grades
per submission. However, the peer grading setup does not al-
low us to simply scale up the number of grades per submission,
because students are not willing to invest even more time into
this process. Finally, let us mention that our negative findings
may be special to a course such as algorithms and data struc-
tures. Peer grading could be more successful for tasks where
grading is a matter of taste rather than of understanding.

As opposed to other papers in the literature, we could not
confirm the hypothesis that collecting grades in an ordinal
rather than in a cardinal fashion leads to improved estimates.
To the contrary, the students themselves reported that they
tend to be more sloppy when being asked to provide ordinal
grades, so we are somewhat pessimistic about ordinal grading
in general.

The data set generated by our class as well as a moodle plugin
that supports peer grading in a group-based scenario as used
in the AD course have been been made publicly available on
our homepages.
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sitätskolleg/TP 16 Lehrlabor at Universität Hamburg), the Ger-
man Research Foundation (LU1718/1) and the Institutional
Strategy of the University of Tübingen (Deutsche Forschungs-
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