EECS 336: Introduction to Algorithms P vs. NP

Lecture 9 indep set, 3-sat, TSP

Reading: 8.0-8.3 "guide to reductions"

Last time:

 \bullet max flow alg / ford-fulkerson

 \bullet duality: max flow = min cut

Today:

- reducitons (cont)
- tractibility and intractibility
- decision problems
- 3-SAT $\leq_{\mathcal{P}}$ INDEP-SET

Summary of Reduction

Def: \underline{Y} reduces to \underline{X} in polynomial time (notation: $\underline{Y} \leq_P X$ if any instance of \underline{Y} can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of X.

Note: to prove correctness of general reduction, must show that correctness (e.g., optimality) of algorithm for X implies correctness of algorithm for Y.

Def: one-call reduction maps instance of Y to instance of X, solution of Y to solution of X. (also called a Karp reduction)

Note: a one-call reduction gives two algorithms:

- (a) from instance y of Y, construct instance x^y of X.
- (b) from solution $OPT(x^y)$, construct solution to y with value at least $OPT(x^y)$

Note: the proof of correctness of a one-call reduction gives one (additional) algorithm:

(c) from solution OPT(y), construct solution to x^y with value at least OPT(y)

Theorem: reduction from "(a) and (b)" is correct if (a), (b), and (c) are correct.

Proof:

- for instance y of Y, let instance $x^y \circ f X^Y$ be outcome of (a).
- (b) correct $\Rightarrow OPT(y) \ge OPT(x^y)$.
- (c) correct $\Rightarrow OPT(x^y) \ge OPT(y)$.
- $\Rightarrow OPT(y) = OPT(x^y)$
- \Rightarrow output of reduction has value OPT(y).

Decision Problems

"problems with yes/no answer"

Def: A <u>decision problem</u> asks "does a feasible solution exist?"

Example: network flow in (G, c, s, t) with value at least k.

Example: perfect matching in a bipartite graph (A, B, E).

Note: objective value for decision problem is 1 for "yes" and 0 for "no".

Note: (b) and (c) only need to check "yes" instances.

Theorem: perfect matching reduces to network flow decision problem.

Note: Can convert optimization problem to decition problem

Def: the decision problem X_d for optimization problem X is has input (x, θ) = "does instance x of X have a feasible solution with value at most (or at least) θ ?"

Tractability and Intractability

Consequences of $Y \leq_P X$:

1. if X can be solved in polynomial time then so can Y.

Example: X = network-flow; Y = bipartite matching.

2. if Y cannot be solved in polynomial time then neither can X.

Reductions for Intractabil- Reduction ity

"reduce known hard problem Y to problem X to show that X is hard"

Problem Y: 3-SAT

input: boolean formula $f(\mathbf{z}) = \bigwedge_{i} (l_{i1} \vee l_{i2} \vee l_{i3})$ l_{i3})

- literal l_{jk} is variable " z_i " or negation " \bar{z}_i "
- "and of ors"
- e.g., $f(\mathbf{z}) = (z_1 \vee \bar{z}_2 \vee x_3) \wedge (z_2 \vee \bar{z}_5 \vee z_5)$

output:

• "Yes" if assignment \mathbf{z} with $f(\mathbf{z}) =$ T exists

e.g.,
$$\mathbf{z} = (T, T, F, T, F, ...)$$

• "No" otherwise.

Problem X: INDEP-SET

input: G = (V, E), k

output: $S \subset V$

- satisfying $\forall v \in S, (u, v) \notin E$
- $|S| \ge \theta$

Lemma: $3\text{-SAT} \leq_{\mathcal{P}} \text{INDEP-SET}$

Part I: forward instance construction convert 3-SAT instance f into INDEP-SET instance (G, θ) . literal j in clause i

- vertices v_{ij} correspond to literals l_{ij}
- edges for:
 - clause (in triangle) "at most one vertex selected per clause"
 - conflicted literals. "vertices for conflicting literals cannot be selected"
- "vertex v_{ij} is selected" \Rightarrow "literal l_{ij} is true".
- "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f(z_1, z_2, z_3, z_4) = (z_1 \lor z_2 \lor z_3) \land$ $(\bar{z}_2 \vee \bar{z}_3 \vee \bar{z}_4) \wedge (\bar{z}_1 \vee \bar{z}_2 \vee z_4)$

Runtime Analysis: linear time (one vertex per literal).

Part II: reverse certificate construction construct assignment z from S(if G has indep. set S size $\geq m$ then f is satisfiable.)

- (a) For each z_r
 - if exists nodes in S are labeled by " z_r "

$$\Rightarrow \text{ set } z_r = 1$$

• else

$$\Rightarrow \sec z_r = 0$$

Note: no two nodes $u, v \in S$ labeled by both z_r or \bar{z}_r , if so, there is (u, v) edge so S would not be independent.

- (b) $f(\mathbf{z}) = T$:
 - S has |S| = m
 - \Rightarrow S has one vertex per clause.
 - for caluse i:
 - if $v_{ij} \in S$ is not negated, then i is true.
 - if $v_{ij} \in S$ is negated, then i is true.

Part III: forward certificate construction construct independent set S from \mathbf{z} (if f is satisfiable then G has indep. set size $\geq m$.)

- let S' be nodes in G corresponding to true literals.
- if more than one node in S' in same triangle drop all but one.

$$\Rightarrow S$$
.

- $\bullet |S| = m.$
- for all $u, v \in S$,
 - u & v not in same triangle.
 - l_u and l_v both true
 - \Rightarrow must not conflict
 - \Rightarrow no (l_u, l_v) edge in G.
 - \bullet so S is independent.