EECS 336: Introduction to Algorithms	Lecture 9
\mathbf{P} vs. NP	indep set, 3-sat, TSP

Reading: 8.0-8.3
"guide to reductions"

Last time:

- max flow alg / ford-fulkerson
- duality: max flow $=$ min cut

Today:

- reducitons (cont)
- tractibility and intractibility
- decision problems
- 3 -SAT $\leq_{\mathcal{P}}$ INDEP-SET

Summary of Reduction

Def: $\underline{Y \text { reduces to } X \text { in polynomial time (no- }}$ tation: $Y \leq_{P} X$ if any instance of Y can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of X.

Note: to prove correctness of general reduction, must show that correctness (e.g., optimality) of algorithm for X implies correctness of algorithm for Y.

Def: one-call reduction maps instance of Y to instance of X, solution of Y to solution of X. (also called a Karp reduction)

Note: a one-call reduction gives two algorithms:
(a) from instance y of Y, construct instance x^{y} of X.
(b) from solution $\operatorname{OPT}\left(x^{y}\right)$, construct solution to y with value at least $\operatorname{OPT}\left(x^{y}\right)$

Note: the proof of correctness of a one-call reduction gives one (additional) algorithm:
(c) from solution $\mathrm{OPT}(y)$, construct solution to x^{y} with value at least $\mathrm{OPT}(y)$

Theorem: reduction from "(a) and (b)" is correct if (a), (b), and (c) are correct.

Proof:

- for instance y of Y, let instance x^{y} of X^{Y} be outcome of (a).
- (b) correct $\Rightarrow \mathrm{OPT}(y) \geq \mathrm{OPT}\left(x^{y}\right)$.
- (c) correct $\Rightarrow \mathrm{OPT}\left(x^{y}\right) \geq \mathrm{OPT}(y)$.
$\Rightarrow \mathrm{OPT}(y)=\mathrm{OPT}\left(x^{y}\right)$
\Rightarrow output of reduction has value $\mathrm{OPT}(y)$.

Decision Problems

"problems with yes/no answer"
Def: A decision problem asks "does a feasible solution exist?"

Example: network flow in (G, c, s, t) with value at least k.

Example: perfect matching in a bipartite graph (A, B, E).

Note: objective value for decision problem is 1 for "yes" and 0 for "no".

Note: (b) and (c) only need to check "yes" instances.

Theorem: perfect matching reduces to network flow decision problem.

Note: Can convert optimization problem to decition problem

Def: the decision problem X_{d} for optimization problem X is has input $(x, \theta)=$ "does instance x of X have a feasible solution with value at most (or at least) θ ?"

Tractability and Intractability

Consequences of $Y \leq_{P} X$:

1. if X can be solved in polynomial time then so can Y.

Example: $X=$ network-flow; $Y=$ bipartite matching.
2. if Y cannot be solved in polynomial time then neither can X.

Reductions for Intractabil- Reduction ity

"reduce known hard problem Y to problem X to show that X is hard"

Problem Y: 3-SAT

input: boolean formula $f(\mathbf{z})=\bigwedge_{j}\left(l_{i 1} \vee l_{i 2} \vee\right.$ $l_{i 3}$)

- literal $l_{j k}$ is variable " z_{i} " or negation " \bar{z}_{i} "
- "and of ors"
- e.g., $f(\mathbf{z})=\left(z_{1} \vee \bar{z}_{2} \vee x_{3}\right) \wedge\left(z_{2} \vee \bar{z}_{5} \vee\right.$ $\left.z_{6}\right) \wedge \cdots$
output:
- "Yes" if assignment \mathbf{z} with $f(\mathbf{z})=$ T exists

$$
\text { e.g., } \mathbf{z}=(T, T, F, T, F, \ldots)
$$

- "No" otherwise.

Problem X : INDEP-SET

input: $G=(V, E), k$
output: $S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- $|S| \geq \theta$

Lemma: 3 -SAT $\leq_{\mathcal{P}}$ INDEP-SET
Part I: forward instance construction convert 3 -SAT instance f into INDEP-SET instance (G, θ).
literal j in clause i

- vertices $v_{i j}$ correspond to literals $l_{i j}$
- edges for:
- clause (in triangle)
"at most one vertex selected per clause"
- conflicted literals.
"vertices for conflicting literals cannot be selected"
- "vertex $v_{i j}$ is selected" \Rightarrow "literal $l_{i j}$ is true".
- "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{1} \vee z_{2} \vee z_{3}\right) \wedge$ $\left(\bar{z}_{2} \vee \bar{z}_{3} \vee \bar{z}_{4}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee z_{4}\right)$

Runtime Analysis: linear time (one vertex per literal).

Part II: reverse certificate construction
construct assignment z from S
(if G has indep. set S size $\geq m$ then f is satisfiable.)
(a) For each z_{r}

- if exists nodes in S are labeled by " z_{r} "

$$
\Rightarrow \text { set } z_{r}=1
$$

- else

$$
\Rightarrow \text { set } z_{r}=0
$$

Note: no two nodes $u, v \in S$ labeled by both z_{r} or \bar{z}_{r}, if so, there is (u, v) edge so S would not be independent.
(b) $f(\mathbf{z})=T$:

- S has $|S|=m$
$\Rightarrow S$ has one vertex per clause.
- for caluse i :
- if $v_{i j} \in S$ is not negated, then i is true.
- if $v_{i j} \in S$ is negated, then i is true.

Part III: forward certificate construction construct independent set S from z
(if f is satisfiable then G has indep. set size $\geq m$.)

- let S^{\prime} be nodes in G corresponding to true literals.
- if more than one node in S^{\prime} in same triangle drop all but one.

$$
\Rightarrow S
$$

- $|S|=m$.
- for all $u, v \in S$,
- $u \& v$ not in same triangle.
- l_{u} and l_{v} both true
\Rightarrow must not conflict
\Rightarrow no $\left(l_{u}, l_{v}\right)$ edge in G.
- so S is independent.

