Reading: (5.5)

Last time:

- Shortest-paths (Bellman-Ford Alg)
- sequence alignment

Today:

- interval pricing
- summary of dynamic programming
- comparison to divide and conquer
- (integer multiply)

Example: Interval Pricing

input: • n customers $S = \{1, \ldots, n\}$

- \bullet T days.
- *i*'s ok days: $I_i = \{s_i, \dots, f_i\}$
- *i*'s value: $v_i \in \{1, \dots, V\}$

output: • prices p[t] for day t.

- consumer i buys on day $t_i = \operatorname{argmin}_{t \in I_i} p[t]$ if $p[t_i] \leq v_i$.
- revenue = $\sum_{i \text{ that buys}} p[t_i]$.
- goal: maximize revenue.

Example:

let's use dynamic programming. subproblem?

Question: What is "first decision we can make" to separate into subproblems?

Answer: day and price of smallest price.

Example:

Step I: identify subproblem in English

OPT(s, f, p)

= "optimal revenue from customers i with intervals $\{s_i, \ldots, f_i\}$ containd within interval $\{s+1, \ldots, f-1\}$ with minimum price at least p"

Step II: write recurrence

OPT(s, f, p)

$$= \max_{t \in \{s+1,\dots,f-1\}; q \in \{p,\dots,V\}} \operatorname{Rev}(s,t,f,p)$$

$$+ \operatorname{OPT}(s,t,q)$$

$$+ \operatorname{OPT}(t,f,q).$$

Rev(s, t, f, p) = "the revenue from customers i with intervals $\{s_i, \ldots, f_i\}$ containd within interval $\{s+1, \ldots, f-1\}$ with price p"

Step III: value of optimal solution

• optimal interval pricing = OPT(1, T, 0)

Step IV: base case

- OPT(s, s + 1, p) = 0.
- OPT(s, t, V + 1) = 0.

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

- precompute $\operatorname{Rev}(s,t,f,p)$ in $O(T^3Vn)$ time.
- size of table: $O(T^2V)$
- cost of combine: O(TV).
- total: $O(T^3V(V+n))$

Note: without loss of generality T, V are O(n) so runtime is $O(n^5)$

Note: can be improved to $O(n^4)$ with slightly better program.

Step VII: implementation

(exercise)

Summary of Dynamic Programming

"divide problem into small number of subproblems and **memoize** solution to avoid redundant computation"

Finding Subproblems

- identify a first decision, subproblems for each outcome of decision.
- partition problem, sumarize information from one part needed to solve other part.

Subproblem Properties

- 1. succinct (only a polynomial number of them)
- 2. efficiently combinable.
- 3. depend on "smaller" subproblems (avoid infinite loops), e.g.,
 - process elements "once and for all" [[today]]
 - "measure of progress/size". [[coming soon]]

Runtime Analysis

runtime = initialization + size of table \times cost to combine

Finding Solution

- write DP to identify value of optimal solution.
- traverse memoization table to determine actual solution.

Divide and Conquer

- divide problem into subproblems
- solve subproblems
- merge solutions to solve original.

Example: repeated squaring, sorting, many data structures

Note: subproblem dependency graph vs dynamic programming

- DP: dependencies are directed acyclic graph.
- D&C: dependencies are tree.

Integer multiplication

input: n bit integers x, y.

output: 2n bit integer $z = x \cdot y$.

Algorithm: elementary school multiply

whatever

Runtime: $T(n) = O(n^2)$.

• can we do better?

Idea:

- 1. separate high order from low order bids
 - k = n/2 [[assume n even]]
 - $x_H = \text{high } k \text{ bits of } x$
 - $x_L = \text{low } k \text{ bits of } x$

$$\Rightarrow x = x_H 2^k + x_L.$$

2.
$$x \cdot y = (x_H 2^k + x_L)(y_H 2^k + y_L)$$

$$= x_H y_H 2^n + (x_L y_H + x_H y_L) 2^k + x_L y_L$$

- \Rightarrow one n bit mult requires 4 n/2 bit mults
- mult by 2^k is bit shift (easy)

$$\Rightarrow T(n) = 4T(n/2) + cn$$

 \blacksquare additions require cn time

$$= O(n^2).$$

- I need a better idea!
 - let $H = x_H y_H$; $L = x_L y_L$; and $Z = x_H y_L + x_L y_H$
- **Q:** compute H, L, and Z in < 4 mults?

Idea:

- $P = (x_H + x_L)(y_H + y_L)$ = $x_H y_H + x_H y_L + x_L y_H + x_L y_L$ = H + Z + L
- 3. Rearrange: Z = P H L

$$\Rightarrow xy = H2^n + (P - H - L)2^k + L$$

 \Rightarrow 3 size n/2 mults needed.

Runtime: T(n) = 3T(n/2) + cn= $O(n^{\log_2 3}) = O(n^{1.59})$.

■ THIS SHOULD BE SURPRISING!

```
(Google: Arthur Benjamin does "Mathemagic")

35 x 51
= 15x100 + (8 * 6 - 15 - 5)x10 + 5
= \____ 28 ____/
= 1785
```