Dynamic Programming (cont.)

EECS 336: Introduction to Algorithms Lecture 6

interval pricing

Reading: (5.5)

Last time:
e Shortest-paths (Bellman-Ford Alg)
e sequence alignment

Today:
e interval pricing
e summary of dynamic programming
e comparison to divide and conquer

e (integer multiply)

Example: Interval Pricing

input: e n customers S ={1,...,n}
o T days.
e i’s ok days: I; = {s;,..., [i}
e i’s value: v; € {1,...,V}
output: e prices p[t] for day ¢.

e consumer ¢ buys on day t; =
argmin, ;. p[t] if plt;] < v;.

e revenue = Y . ooy P[]

e goal: maximize revenue.

Example:
—
—
g : |
gs —
A —
—
—
Time

let’s use dynamic programming. subprob-
lem?

Question: What is “first decision we can
make” to separate into subproblems?
Answer: day and price of smallest price.

Example:

Price

Time

Step I: identify subproblem in
English

OPT(s, f,p)

= “optimal revenue from customers i with
intervals {s;, ..., fi} containd within in-
terval {s+ 1,..., f — 1} with minimum
price at least p”

Step II: write recurrence

OPT(s, f,p)
= MaXte{st1,...f~1}iqelp...v} Rev(s, T, f,p)
+ OPT(s,t,q)
+ OPT(¢, f,q).

Rev(s,t, f,p) = “the revenue from cus-
tomers ¢ with intervals {s;,..., f;} con-
taind within interval {s +1,...,f — 1}
with price p”

Step III: value of optimal solu-
tion

e optimal interval pricing = OPT(1,7,0)

Step IV: base case

e OPT(s,s+1,p) = 0.
e OPT(s,t,V +1)=0.

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

e precompute Rev(s,t, f,p) in

O(T3Vn) time.
e size of table: O(T?V)
e cost of combine: O(TV).

e total: O(TV(V +n))

Note: without loss of generality T,V
are O(n) so runtime is O(n)

Note: can be improved to O(n*) with
slightly better program.

Step VII: implementation

(exercise)

Summary of Dynamic Pro-
gramming

“divide problem into small number of sub-
problems and memoize solution to avoid re-
dundant computation”

Finding Subproblems
e identify a first decision, subproblems for
each outcome of decision.

e partition problem, sumarize information
from one part needed to solve other part.

Subproblem Properties

1. succinct
(only a polynomial number of them)

2. efficiently combinable.

3. depend on “smaller” subproblems (avoid
infinite loops), e.g.,

e process elements “once and for all”
[[today]]

e “measure of progress/size”.
[[coming soon]

Runtime Analysis

runtime = initialization 4 size of table x cost
to combine

Finding Solution
e write DP to identify value of optimal so-
lution.

e traverse memoization table to determine
actual solution.

Divide and COIlqueI' I can we do better?

e divide problem into subproblems Idea:

o solve subproblems 1. separate high order from low order bids

, .. o k=n/2 [[assume n even||
e merge solutions to solve original.

e 1y = high £ bits of x
Example: repeated squaring, sorting, many

data structures e 1, = low k bits of x

= z =42k .
Note: subproblem dependency graph vs dy- T=Tget L

namic programming 2. 2y = (22" +2)(yu2k +y1)
e DP: dependencies are directed acyclic = 2uyn2" + (xLyn + rayL)2" + zLyL
graph.

= one n bit mult requires 4 n/2 bit mults

e D&C: dependencies are tree. | mult by 2% is bit shift (easy)

= T(n)=4T(n/2) + cn

Integer multiplication | additions require cn time

= O(n?).

input: n bit integers z, v. I need a better ideal

o let H = xgyy; L = xpyy; and 2 =

output: 2n bit integer z =z - y. n
THYL T TLYH

Algorithm: elementary school multiply I Q: compute H, L, and Z in < 4 mults?
101101 Idea:
x 010110

__________ o P=(zpg+ar)(yn +yr)

000000 = TuYn +THYL + Ty + TLYL
101101
101101 =H+Z+1L
000000 3. Rearrange: Z =P —H — L
101101
+ 000000 = zy=H2"+(P—H—L)2"+ L
vhatever = 3 size n/2 mults needed.
Runtime: 7T'(n) =3T(n/2)+ cn
Runtime: T(n) = O(n?). — O(n'e3) = O(n'™),

I THIS SHOULD BE SURPRISING!

(Google: Arthur Benjamin does ”Math-
emagic”)

35 x b1

= 15x100 + (8 * 6 - 15 - 5)x10 + 5
= A 28 _____ /

= 1785

