EECS 336: Introduction to Algorithms

Reading: (5.5)
Last time:

- Shortest-paths (Bellman-Ford Alg)
- sequence alignment

Today:

- interval pricing
- summary of dynamic programming
- comparison to divide and conquer
- (integer multiply)

Example: Interval Pricing

input: - n customers $S=\{1, \ldots, n\}$

- T days.
- i 's ok days: $I_{i}=\left\{s_{i}, \ldots, f_{i}\right\}$
- i 's value: $v_{i} \in\{1, \ldots, V\}$
output: - prices $p[t]$ for day t.
- consumer i buys on day $t_{i}=$ $\operatorname{argmin}_{t \in I_{i}} p[t]$ if $p\left[t_{i}\right] \leq v_{i}$.
- revenue $=\sum_{i \text { that buys }} p\left[t_{i}\right]$.
- goal: maximize revenue.

Example:

> let's use dynamic programming. subproblem?

Question: What is "first decision we can make" to separate into subproblems?

Answer: day and price of smallest price.
Example:

Step I: identify subproblem in English

$\operatorname{OPT}(s, f, p)$
$=$ "optimal revenue from customers i with intervals $\left\{s_{i}, \ldots, f_{i}\right\}$ containd within interval $\{s+1, \ldots, f-1\}$ with minimum price at least $p "$

Step II: write recurrence

$$
\begin{aligned}
& \operatorname{OPT}(s, f, p) \\
& =\max _{t \in\{s+1, \ldots, f-1\} ; q \in\{p, \ldots, V\}} \operatorname{Rev}(s, t, f, p) \\
& \quad+\operatorname{OPT}(s, t, q) \\
& \quad+\operatorname{OPT}(t, f, q) .
\end{aligned}
$$

$\operatorname{Rev}(s, t, f, p)=$ "the revenue from customers i with intervals $\left\{s_{i}, \ldots, f_{i}\right\}$ containd within interval $\{s+1, \ldots, f-1\}$ with price $p "$

Step III: value of optimal solution

- optimal interval pricing $=\operatorname{OPT}(1, T, 0)$

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

- precompute $\operatorname{Rev}(s, t, f, p) \quad$ in $O\left(T^{3} V n\right)$ time.
- size of table: $O\left(T^{2} V\right)$
- cost of combine: $O(T V)$.
- total: $O\left(T^{3} V(V+n)\right)$

Note: without loss of generality T, V are $O(n)$ so runtime is $O\left(n^{5}\right)$

Note: can be improved to $O\left(n^{4}\right)$ with slightly better program.

Step VII: implementation

 (exercise)
Step IV: base case

- $\operatorname{OPT}(s, s+1, p)=0$.
- $\operatorname{OPT}(s, t, V+1)=0$.

Summary of Dynamic Programming

"divide problem into small number of subproblems and memoize solution to avoid redundant computation"

Finding Subproblems

- identify a first decision, subproblems for each outcome of decision.
- partition problem, sumarize information from one part needed to solve other part.

Subproblem Properties

1. succinct
(only a polynomial number of them)
2. efficiently combinable.
3. depend on "smaller" subproblems (avoid infinite loops), e.g.,

- process elements "once and for all" [[today]]
- "measure of progress/size".
[[coming soon]]

Runtime Analysis

runtime $=$ initialization + size of table \times cost to combine

Finding Solution

- write DP to identify value of optimal solution.
- traverse memoization table to determine actual solution.

Divide and Conquer

- divide problem into subproblems
- solve subproblems
- merge solutions to solve original.

Example: repeated squaring, sorting, many data structures

Note: subproblem dependency graph vs dynamic programming

- DP: dependencies are directed acyclic graph.
- D\&C: dependencies are tree.

Integer multiplication

input: n bit integers x, y.
output: $2 n$ bit integer $z=x \cdot y$.
Algorithm: elementary school multiply

$$
101101
$$

x 010110

000000
101101
101101
000000
101101
$+000000$
whatever

Runtime: $\quad T(n)=O\left(n^{2}\right)$.

- can we do better?

Idea:

1. separate high order from low order bids

- $k=n / 2$ [[assume n even $]$]
- $x_{H}=$ high k bits of x
- $x_{L}=$ low k bits of x

$$
\Rightarrow x=x_{H} 2^{k}+x_{L} .
$$

2. $x \cdot y=\left(x_{H} 2^{k}+x_{L}\right)\left(y_{H} 2^{k}+y_{L}\right)$

$$
=x_{H} y_{H} 2^{n}+\left(x_{L} y_{H}+x_{H} y_{L}\right) 2^{k}+x_{L} y_{L}
$$

\Rightarrow one n bit mult requires $4 n / 2$ bit mults
mult by 2^{k} is bit shift (easy)
$\Rightarrow T(n)=4 T(n / 2)+c n$
additions require cn time

$$
=O\left(n^{2}\right)
$$

\| need a better idea!

- let $H=x_{H} y_{H} ; L=x_{L} y_{L} ;$ and $Z=$ $x_{H} y_{L}+x_{L} y_{H}$

【 Q: compute H, L, and Z in <4 mults?

Idea:

- $P=\left(x_{H}+x_{L}\right)\left(y_{H}+y_{L}\right)$

$$
\begin{aligned}
& =x_{H} y_{H}+x_{H} y_{L}+x_{L} y_{H}+x_{L} y_{L} \\
& =H+Z+L
\end{aligned}
$$

3. Rearrange: $Z=P-H-L$
$\Rightarrow x y=H 2^{n}+(P-H-L) 2^{k}+L$
$\Rightarrow 3$ size $n / 2$ mults needed.
Runtime: $\quad T(n)=3 T(n / 2)+c n$
$=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.59}\right)$.

】 THIS SHOULD BE SURPRISING!

(Google: Arthur Benjamin does "Mathemagic")
35×51
$=15 \times 100+(8 * 6-15-5) \times 10+5$
= ___-_ 28 __-_-_/
= 1785

