EECS 336: Introduction to Algorithms Dynamic Programming (cont)

Lecture 4

Integer Knapsack, Interval pricing

Reading: 6.4, 6.8, "guide to dynamic programming" (Canvas)

Last time:

- Dynamic Programming (a derivation)
- Weighted interval scheduling

Today:

- Dynamic Programming (a framework)
- Integer Knapsack
- Interval Pricing.

Interval Pricing

input: - n customers $S=\{1, \ldots, n\}$

- T days.
- i 's ok days: $I_{i}=\left\{s_{i}, \ldots, f_{i}\right\}$
- i 's value: $v_{i} \in\{1, \ldots, V\}$
output: - prices $p[t]$ for day t.
- consumer i buys on day $t_{i}=$ $\operatorname{argmin}_{t \in I_{i}} p[t]$ if $p\left[t_{i}\right] \leq v_{i}$.
- revenue $=\sum_{i \text { that buys }} p\left[t_{i}\right]$.
- goal: maximize revenue.

Suggested Approach

I. identify subproblem in english
$\mathrm{OPT}(i)=$ "optimal schedule of $\{i, \ldots, n\}$ (sorted by start time)"
II. specify subproblem recurrence
$\mathrm{OPT}(i)=\max \left(\mathrm{OPT}(i+1), v_{i}+\right.$ OPT(next(i)))
III. solve original problem (from subproblems)

Optimal Interval Schedule $=$ OPT(1)
IV. identify base case
$\operatorname{OPT}(n+1)=0$
V. write iterative DP.
(see last thurs)
VI. analyze runtime.
$O(n \log n)$
VII. (for homework) implement iterative DP.
(any language most students can read. e.g., Python)

Dynamic Programming: Finding Subproblems

"find a first decision you can make which breaks problem into pieces that
(a) do not interact (across subproblems)
(b) can be describe succinctly."

Example: Integer Knapsack

input: - n objects $S=\{1, \ldots, n\}$

- $s_{i}=$ size of object i (integer).
- $v_{i}=$ value of object i.
- capacity C of knapsack (integer)
output:
- subset $K \subseteq S$ of objects that
(a) fit in knapsack together
(i.e., $\sum_{i \in K} s_{i} \leq C$)
(b) maximize total value (i.e., $\sum_{i \in K} v_{i}$)

Question: What is "first decision we can make" to separate into subproblems?

Answer: Is item 1 in the knapsack or not?

- if 1 in knapsack:
value of knapsack is $v_{i}+$ optimal knapsack value on $S \backslash\{1\}$ with capacity $C-s_{1}$.
- if 1 not in knapsack:
value of knapsack is optimal knapsack on $S \backslash\{1\}$ with capacity C.

Succinct description:

- remaining objects $\{j, \ldots, n\}$ represented by " j "
- remaining capacity represented by $D \in$ $\{0, \ldots, C\}$.

Step I: identify subproblem in English
$\operatorname{OPT}(j, D)$

$$
\begin{aligned}
= & \text { "value of optimal size } D \text { knapsack on } \\
& \{j, \ldots, n\} "
\end{aligned}
$$

Step II: write recurrence

OPT (j, D)

$$
=\max (\underbrace{v_{j}+\mathrm{OPT}\left(j+1, D-s_{j}\right)}_{\text {if } s_{j} \leq D}, \mathrm{OPT}(j+
$$

$1, D)$)
Justification: either i is in or not (exhaustive).

Step III: solve original problem

Value of Optimal Knapsack $=\operatorname{OPT}(1, C)$

Step IV: base case
$\operatorname{OPT}(n+1, D)=0($ for all $D)$

Step V: iterative DP

Algorithm: knapsack

1. $\forall D$, memo $[n+1, D]=0$.
2. for $i=n$ down to 1 , for $D=C$ down to 0 ,

$$
\begin{aligned}
& \text { (a) if } i \text { fits (i.e., } s_{i} \leq D \text {) } \\
& \quad \operatorname{memo}[j, D]=\max [\operatorname{memo}[j+1, D],
\end{aligned}
$$

$$
\left.v_{j}+\operatorname{OPT}\left(j+1, D-s_{j}\right)\right]
$$

(b) else,

$$
\operatorname{memo}[j, D]=\operatorname{memo}[j+1, D]
$$

3. return memo $[1, C]$

VI: Runtime

$T(n, C)=O(\#$ of subprobs \times cost per subprob) $)$
$=O(n C)$.
Note: not polynomial time.

VII: implementation

(see "guide")

Alternative Approach

"isolate previously made decisions"
Suppose:

- already processed jobs $\{1, \ldots, i\}$, and
- used capacity D.

Note: previous decisions succinctly summarized by i and D

Part I: subproblem in english

$\operatorname{OPT}(i, D)=$ "value from remaining knapsack if

- already processed jobs $\{1, \ldots, i\}$
- used capacity $D . "$

Part II: recurrence

$\operatorname{OPT}(i, D)=\max \left(v_{i}+\operatorname{OPT}(i+1, D+\right.$ $\left.\left.s_{i}\right), O P T(i+1, D)\right)$
(assuming $D+s_{i} \leq C$)

Example: Interval Pricing
input: • n customers $S=\{1, \ldots, n\}$

- T days.
- i 's ok days: $I_{i}=\left\{s_{i}, \ldots, f_{i}\right\}$
- i 's value: $v_{i} \in\{1, \ldots, V\}$
output: - prices $p[t]$ for day t.
- consumer i buys on day $t_{i}=$ $\operatorname{argmin}_{t \in I_{i}} p[t]$ if $p\left[t_{i}\right] \leq v_{i}$.
- revenue $=\sum_{i \text { that buys }} p\left[t_{i}\right]$.
- goal: maximize revenue.

Example:

Question: What is "first decision we can make" to separate into subproblems?

Answer: day and price of smallest price.
Example:

Step I: identify subproblem in English

$\operatorname{OPT}(s, f, p)$
= "optimal revenue from intervals strictly between s and f with minimum price at least p "

Step II: write recurrence

$\operatorname{OPT}(s, f, p)$

$$
=\max _{s<t<f, q \geq p} \operatorname{Rev}(s, t, f, p)
$$

$$
+\operatorname{OPT}(s, t, q)
$$

$$
+\operatorname{OPT}(t, f, q)
$$

$\operatorname{Rev}(s, t, f, p)=$ "the revenue from customers with interals within $[s, t]$ and overlapping t who are offered price $p "$ with

Step III: value of optimal solution

- optimal interval pricing $=\operatorname{OPT}(1, T, 0)$

Step IV: base case

- $\operatorname{OPT}(s, s+1, p)=0$.
- $\operatorname{OPT}(s, t, P+1)=0$.

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

- precompute $\operatorname{Rev}(t, p)$ in $O(T V n)$ time.
- size of table: $O\left(T^{2} V\right)$
- cost of combine: $O(T V)$.
- total: $O\left(T^{3} V^{2}\right)$ (assuming $n<$ $\left.T^{2} V\right)$.

Note: without loss of generality T, V are $O(n)$ so runtime is $O\left(n^{5}\right)$

Note: can be improved to $O\left(n^{4}\right)$ with slightly better program.

Step VII: implementation

(exercise)

