EECS 336: Introduction to Algorithms Lecture 1

Algorithms for Fibonacci Numbers memoization, repeated-squaring
Reading: Chapter 2 & 3. AlgOI‘itth
Announcements:

e algorithms are everywhere. examples:
e discussion on Piazza
e digital computers,
e grading:
e parlementary procedure,

e homework: 25%
e scientific method,

e peer review: 25%
e biological processes.
e midterms: 30%
e algorithms design and analysis governs

e final: 15% everything.
e participation: 5% e good algorithms are closest things to
. i i magic.
e sections, Mondays, various times.
h I e course philosophy: mno particular algo-
* homework partners rithm is important.
e Homework plan:

e course goals: how to design, analize, and

e assigned thursday, due thursday, think about algorithms.

work in pairs, graded for accuracy

: e we will not cover anything you could fig-
and quality.

ure out on your own.

® peer review.

e TAs: Yiding Feng, Isaac Lee, Zhiping
Ziu.

office hours



Algorithms for
Numbers

“0,1,1,2,3,5,8,13, 21, ...7
Question: recursive alg?
Algorithm: Recursive Fibonacci
fib(k):

1. if K <1 return &

2. (else) return fib(k — 1) + fib(k — 2)
Example:
fib(5)
fib 3)‘/ fib(2
fib 2{ fib(1 i)/ \ﬁ‘b 0)
ﬁb(i)/ fib(0)
Analysis

“what is runtime?”

Let T'(k) = number of calls to fib
T(0)=T(1) =1
T(k) =Tk — 1)+ T(k —2)
> 2T (k — 2)
> 2 x 27 (k — 4)
>2X2x---x2x1

k/2 times
— 2k/2

Conclusion: at least “exponential time”!

Fibonacci Remembering Redundant Computa-

tion (memoization)
Idea: remember redundant computation
(memoize)
Algorithm: Memoized Recursive Fibonacci
fib-helper (k)

1. if memo[k] <0

e memolk] = fib-helper(k—1) + fib-
helper(k—2)

2. return memolKk]
fib(k)
1. memo = new intk]

2. memo|0] = 0; memo[1] = 1; memo[2,... k]
=-1;

3. return fib-helper(k)
Example:

[N
[0f1]1]2]3]5]

Analysis

e cost to fill in each entry: 1 additions.

e number of entries: k

e total cost: T'(k) = k additions.
Conclusion: “linear time”.

Note: memoizing redundant computation is
essential part of “dynamic programming”.

Iterative Algorithm

Algorithm: Iterative Memoized Fibonacci

fib(k):



1. memo = new int[k];
2. memo|0] = 0, memo[l] =1
3. fori=2.k
memoli] = memo[i-1] + memoli-2]
4. return memolKk]

Question: Can we compute fib with less
memory (space)?

Algorithm: Iterative Fibonacci
fib(k):
1. last[0] = 0, last[1] = 1;
2. fori=2.k
(a) tmp = last|[1]
(b) last[1] = last[0] + last[1]
(c) last[0] = tmp
3. return last[1]

Question: faster alg?



Fast Fibonacci Analysis

Note: algorithm operates on last like a ma- Let T'(k) = number of multiplies.

trix multiply ;E;izg(k/Q) 2
pu— _|_
fib (k): =T(k/4)+2+2
- =2+2+2---2
_ . _ S————
1L 2=[01]; A [ 11 } sk e
= 2logk

2. multiply 2 x AxA---x A
—_—

k — 1 times Note: finding subproblems is important part

3. return z[1] of “divide and conquer

Algorithm: Fibonacci numbers via re-

Note: just need to compute z x A*~! .
peated squaring

fib(k):

.. 01
Exponentiation L A= [ 11 }

L 2. z =[0 1] x repeated-square(A, k — 1).
“compute A®”

3. ret 1].
Note: If k = k; + ky then AF = Ak Ak2 return 2|1}
k1 ks .
e compute A" and A" and multiply. Analysis
e if k; = ko then redundant computation
2log k 2x2 matrix multiplies.

Idea: factor A* = (A*/ 2)2 x Ak %2
Algorithm: Repeated Squaring

1. if £k =1 return A

Conclusions
2. K =|k/2].
3. B = repeated-square(A, k). e runtime analysis
4. if k odd e memoization
return B x B x A e divide and conquer
5. else
return B x B



