Reading: Chapter $2 \& 3$.

Announcements:

- discussion on Piazza
- grading:
- homework: 25%
- peer review: 25%
- midterms: 30%
- final: 15%
- participation: 5%
- sections, Mondays, various times.
- homework partners
- Homework plan:
- assigned thursday, due thursday, work in pairs, graded for accuracy and quality.
- peer review.
- TAs: Yiding Feng, Isaac Lee, Zhiping Ziu.
- office hours

Algorithms

- algorithms are everywhere. examples:
- digital computers,
- parlementary procedure,
- scientific method,
- biological processes.
- algorithms design and analysis governs everything.
- good algorithms are closest things to magic.
- course philosophy: no particular algorithm is important.
- course goals: how to design, analize, and think about algorithms.
- we will not cover anything you could figure out on your own.

Algorithms for Fibonacci Remembering Redundant ComputaNumbers tion (memoization)

" $0,1,1,2,3,5,8,13,21, \ldots "$
Question: recursive alg?
Algorithm: Recursive Fibonacci
fib(k):

1. if $k \leq 1$ return k
2. (else) return $\mathrm{fib}(k-1)+\mathrm{fib}(k-2)$

Example:

Analysis

"what is runtime?"
Let $T(k)=$ number of calls to fib

$$
\begin{aligned}
T(0)=T(1) & =1 \\
T(k) & =T(k-1)+T(k-2) \\
& \geq 2 T(k-2) \\
& \geq 2 \times 2 T(k-4) \\
& \geq \underbrace{2 \times 2 \times \cdots \times 2}_{k / 2 \text { times }} \times 1 \\
& =2^{k / 2}
\end{aligned}
$$

Conclusion: at least "exponential time"!

Iterative Algorithm

Algorithm: Iterative Memoized Fibonacci
Idea: remember redundant computation (memoize)

Algorithm: Memoized Recursive Fibonacci fib-helper(k)

1. if memo[k] ≤ 0

- memor $[\mathrm{k}]=$ fib-helper $(\mathrm{k}-1)+$ fibhelper ($\mathrm{k}-2$)

2. return memo[k]
fib(k)
3. memo $=$ new int $[k]$
4. $\operatorname{memo}[0]=0 ; \operatorname{memo}[1]=1 ; \operatorname{memo}[2, \ldots, \mathrm{k}]$ $=-1$;
5. return fib-helper(k)

Analysis

- cost to fill in each entry: 1 additions.
- number of entries: k
- total cost: $T(k)=k$ additions.

Conclusion: "linear time".
Note: memoizing redundant computation is essential part of "dynamic programming".

1. memo $=$ new int $[k]$;
2. $\operatorname{memo}[0]=0, \operatorname{memo}[1]=1$
3. for $\mathrm{i}=2 . . \mathrm{k}$

$$
\operatorname{memo}[\mathrm{i}]=\operatorname{memo}[\mathrm{i}-1]+\operatorname{memo}[\mathrm{i}-2]
$$

4. return memo[k]

Question: Can we compute fib with less memory (space)?

Algorithm: Iterative Fibonacci
fib(k):

1. $\operatorname{last}[0]=0, \operatorname{last}[1]=1$;
2. for $\mathrm{i}=2 . . \mathrm{k}$
(a) $\operatorname{tmp}=\operatorname{last}[1]$
(b) $\operatorname{last}[1]=\operatorname{last}[0]+\operatorname{last}[1]$
(c) $\operatorname{last}[0]=\operatorname{tmp}$
3. return last[1]

Question: faster alg?

Fast Fibonacci

Note: algorithm operates on last like a matrix multiply
fib(k):

1. $z=\left[\begin{array}{ll}0 & 1\end{array}\right] ; A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
2. multiply $z \times \underbrace{A \times A \cdots \times A}_{k-1 \text { times }}$
3. return $z[1]$

Note: just need to compute $z \times A^{k-1}$

Exponentiation

"compute A^{k} "
Note: If $k=k_{1}+k_{2}$ then $A^{k}=A^{k_{1}} A^{k_{2}}$

- compute $A^{k_{1}}$ and $A^{k_{2}}$ and multiply.
- if $k_{1}=k_{2}$ then redundant computation

Idea: factor $A^{k}=\left(A^{\mathrm{k} / 2}\right)^{2} \times A^{\mathrm{k}} \% 2$
Algorithm: Repeated Squaring

1. if $k=1$ return A
2. $k^{\prime}=\lfloor k / 2\rfloor$.
3. $B=$ repeated-square $\left(A, k^{\prime}\right)$.
4. if k odd
return $B \times B \times A$
5. else

Analysis

Let $T(k)=$ number of multiplies.

$$
\begin{aligned}
T(1) & =0 \\
T(k) & =T(k / 2)+2 \\
& =T(k / 4)+2+2 \\
& =\underbrace{2+2+2 \cdots 2}_{\log k \text { times }} \\
& =2 \log k
\end{aligned}
$$

Note: finding subproblems is important part of "divide and conquer"

Algorithm: Fibonacci numbers via repeated squaring
fib(k):

1. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$.
2. $z=\left[\begin{array}{ll}0 & 1\end{array}\right] \times \operatorname{repeated}-$ square $(A, k-1)$.
3. return $z[1]$.

Analysis

$2 \log k 2 \mathrm{x} 2$ matrix multiplies.

Conclusions

- runtime analysis
- memoization
- divide and conquer

