EECS 336:	Introduction	to	Algorithms
P vs. NP (c			O

Lecture 13

LE3-SAT, 3-SAT, wrap-up

Reading: Chapter 8; guide to reductions

Last time:

• NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT

Today:

- CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT (cont)
- LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT
- \mathcal{NP} review.

Lemma 0.1 $CIRCUIT\text{-}SAT \leq_{\mathcal{P}} LE3\text{-}SAT$

Part I:: forward instance construction

 $Q \Rightarrow f$

"f encodes proper working gates and output $Q(\mathbf{z}) = true$ "

LE3-SAT

"CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT"

Problem 5: LE3-SAT

"like 3-SAT but $\underline{\text{at most}}$ 3 literals per orclause"

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Recall: NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT

Plan: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-

SAT

Lemma: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)

Part I: forward instance construction

convert CIRCUIT-SAT instance Q into 3-SAT instance f

- variables x_v for each vertex of Q.
- encode gates
 - **not**: if v not gate with input from u

need $x_v = \bar{x}_u$

$x_v \setminus x_u$	0	1
0	0	1
1	1	0

- \Rightarrow add clauses $(x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$
- or: if v is or gate from u to wneed $x_v = x_u \wedge x_w$

- \Rightarrow add clauses $(\bar{x}_v \lor x_u \lor x_w) \land (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w)$
- and: if v is and gate from u to w $\Rightarrow \text{ add clauses } (x_v \vee \bar{x}_u \bar{x}_w) \wedge (\bar{x}_v \vee x_u) \wedge (\bar{x}_v \vee x_w).$
- 0: if v is 0 leaf. need $x_v = 0$

 \Rightarrow add clause (\bar{x}_v) need $x_v = 1$

- 1: if v is 1 leaf.
 - \Rightarrow add clause (x_v)
- literal: if v is literal z_j \Rightarrow do nothing
- root: if v is root

need $x_v = 1$

 \Rightarrow add clause (x_v) .

Runtime Analysis: construction is polynomial time.

• at most 3 clauses in f per node in Q.

Part II: backward certificate construction convert LE3-SAT assignment ${\bf x}$ to CIRCUIT-SAT assignment ${\bf z}$

1. read \mathbf{z} from \mathbf{x} corresponding to literals.

Claim: $f(\mathbf{x}) \Rightarrow Q(\mathbf{z})$

- f constrains variables x_i to "proper circuit outcomes" and root is True.
- $\Rightarrow Q(\mathbf{z})$ is True.

Part III: forward certificate construction convert CIRCUIT-SAT assignment ${\bf z}$ to LE3-SAT assignment ${\bf x}$

- 1. simulate Q on \mathbf{z}
- 2. read \mathbf{x} from values of gates in circuit.

Claim: $Q(\mathbf{z}) \Rightarrow f(\mathbf{x})$

- by construction, $f(\cdot)$ encodes proper working circuit that evaluates to True.
- Since $Q(\mathbf{z})$ is true, and \mathbf{x} is from simulation of $Q(\cdot)$, $f(\mathbf{x})$ is true.

Lemma: LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

Part I: forward instance construction convert LE3-SAT instance f into 3-SAT instance f'

- $f' \leftarrow f$ rename variables to
- add variables w_1, w_2
- add w_i to 1- and 2-clauses

$$(l_1) \Rightarrow (l_1 \lor w_1 \lor w_2).$$
$$(l_1 \lor l_2) \Rightarrow (l_1 \lor l_2 \lor w_1).$$

• ensure $w_i = 0$ add variables y_1, y_1 and

$$(\bar{w}_i \vee y_1 \vee y_2)$$

clauses:

$$(\bar{w}_i \vee \bar{y}_1 \vee y_2)$$

$$(\bar{w}_i \vee y_1 \vee \bar{y}_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee \bar{y}_2)$$

• denote $\mathbf{x}' = (\mathbf{x}, w_1, w_2, y_1, y_2)$

Runtime Analysis: construction is polynomial time.

Part II: backward certificate construction

$$\mathbf{x}' \Rightarrow \mathbf{x}$$

1. read \mathbf{x} from \mathbf{x}' (all but last 4 variables).

Claim: $f'(\mathbf{x}') \to f(\mathbf{x})$

- Let $\mathbf{x}' = (\bar{z}, w_1, w_2, y_1, y_2)$.
- $f'(\mathbf{x}') = \text{True}$

 \Rightarrow by construction, $w_i = \text{False}$

$$\Rightarrow f'(\mathbf{x}, F, F, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow} f(\mathbf{x})$$

$$\Rightarrow f(\mathbf{x}) = \text{True.}$$

Part III: forward certificate construction

 $x \Rightarrow x'$

1. set
$$\mathbf{x}' = (\mathbf{x}, F, F, F, F)$$

Claim: $f(\mathbf{x}) \to f'(\mathbf{x}')$

- $f(\mathbf{x}) = \text{True}$
 - $f(\mathbf{x}, w_1, w_2, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow}$ "clauses with only w_i and y_i "
 - with $w_i = F$ and $y_i = F$ (or anything) these are true. **QED**

\mathcal{NP} hardness

"proof by contradition: solve hard problem Y with blackbox for X, so X must be hard"

One-call Reductions

- 1. forward instance construction: $y \Rightarrow x^y$
- 2. backward certificate construction: x^y is yes $\Rightarrow y$ is yes.
- 3. forward certificate construction: $y \text{ is yes} \Rightarrow x^y \text{ is yes}$

Conclusion: y is yes if and only if x^y is yes. Compare:

- show
 - (a) x^y is yes $\Rightarrow y$ is yes
 - (b) x^y is no $\Rightarrow y$ is no.
- show
 - (a) x^y is yes $\Rightarrow y$ is yes
 - (b) y is yes $\Rightarrow x^y$ is yes.

ciding

Finding solution is as hard as de-

Example: 3-SAT

- 1. if f is satisfiable $\exists \mathbf{z}$ s.t. $f(\mathbf{z}) = T$
- 2. guess $z_n = T$
- 3. let $f'(z_1,..,z_{n-1}) = f(z_1,..,z_{n-1},T)$
- 4. simplify f' and convert from LE3-SAT to $3\text{-SAT} \Rightarrow q$
- 5. if g is satisfiable, repeat (2) on f'
- 6. if f' is unsatisfiable, repeat (2) on $f''(z_1, ..., z_{n-1})$ $f(z_1,\ldots,z_{n-1},F)$ simplified.

Example: INDEP-SET

Deciding is as hard as optimizing

Proof: (reduction via binary search)

- given
 - \bullet instance x of X
 - black-box \mathcal{A} to solve X_d
- $\operatorname{search}(A, B) = \operatorname{find} \operatorname{optimal} \operatorname{value} \operatorname{in}$ [A,B].
 - D = (A + B)/2
 - run $\mathcal{A}(x,D)$
 - if "yes", search(A, D)
 - if "no", search(D, B)