EECS 336: Introduction to Algorithms P vs. NP (cont.)

Lecture 12 NP, CIRCUIT-SAT, 3-SAT

Reading: Chapter 8; guide to reductions

Last time:

• 3-SAT $\leq_{\mathcal{P}}$ INDEP-SET

• 3-SAT $\leq_{\mathcal{P}}$ HC

Today:

• NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT.

Notorious Problem: NP

input:

ullet decision problem verifier program VP.

• polynomial $p(\cdot)$.

 \bullet decision problem instance: x

output:

• "Yes" if exists certificate c such that VP(x,c) has "verified = true" at computational step p(|x|).

• "No" otherwise.

Fact: NP is \mathcal{NP} -complete.

Agenda: Find a first simple \mathcal{NP} -complete problem.

Circuit Satisfiability

Example:

Problem 4: CIRCUIT-SAT

input: boolean circuit $Q(\mathbf{z})$

- directed acyclic graph G = (V, E)
- internal nodes labeled by logical gates:

• leaves labeled by variables or constants

$$T, F, z_1, \ldots, z_n$$
.

 \bullet root r is output of circuit

output:

- "Yes" if exists \mathbf{z} with $Q(\mathbf{z}) = T$
- "No" otherwise.

Lemma: CIRCUIT-SAT is \mathcal{NP} -hard.

Part I: forward instance construction

convert NP instance (VP,p,x) to CIRCUIT-SAT instance Q

• $VP(\cdot, \cdot)$ polynomial time

- \Rightarrow computer can run it in poly steps.
- each step of computer is circuit.
- output of one step is input to next step
- unroll p(|x|) steps of computation
 - $\Rightarrow \exists$ poly-size circuit $Q'(\mathbf{x}, \mathbf{c}) = VP(x, c)$
- hardcode **x**: $Q(\mathbf{c}) = Q'(\mathbf{x}, \mathbf{c})$

Part II-III: backward/forward certificate construction

- \bullet z = c
- PICTURE

LE3-SAT

"CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT"

Problem 5: LE3-SAT

"like 3-SAT but <u>at most</u> 3 literals per orclause"

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Recall: NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT

Plan: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

■ conclusion: 3-SAT is \mathcal{NP} -hard

Lemma: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)

Part I: forward instance construction

convert CIRCUIT-SAT instance Q into 3-SAT instance f

should be f should be satisfiable iff Q has input that makes it's output true

• variables x_v for each vertex of Q.

- encode gates
 - **not**: if v not gate with input from u

need $x_v = \bar{x}_u$

$$\begin{array}{c|ccc}
x_v \setminus x_u & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

- \Rightarrow add clauses $(x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$
- or: if v is or gate from u to wneed $x_v = x_u \wedge x_w$

- $\Rightarrow \text{ add clauses } (\bar{x}_v \lor x_u \lor x_w) \land (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w)$
- and: if v is and gate from u to w

- \Rightarrow add clauses $(x_v \lor \bar{x}_u \bar{x}_w) \land (\bar{x}_v \lor x_u) \land (\bar{x}_v \lor x_w).$
- 0: if v is 0 leaf.

need
$$x_v = 0$$

$$\Rightarrow$$
 add clause (\bar{x}_v)

need
$$x_v = 1$$

- 1: if v is 1 leaf.
 - \Rightarrow add clause (x_v)
- literal: if v is literal z_i
 - \Rightarrow do nothing $[[x_v \ can \ be \ anything]]$
- root: if v is root

need $x_v = 1$

$$\Rightarrow$$
 add clause (x_v) .

Runtime Analysis: construction is polynomial time.

• at most 3 clauses in f per node in Q.

Part II: backward certificate construction convert LE3-SAT assignment \mathbf{z} to CIRCUIT-SAT assignment \mathbf{z}

1. read z from x corresponding to literals.

Claim: $f(\mathbf{x}) \Rightarrow Q(\mathbf{z})$

• f constrains variables x_i to "proper circuit outcomes" and root is True.

 $\Rightarrow Q(\mathbf{z})$ is True.

Part III: forward certificate construction convert CIRCUIT-SAT assignment \mathbf{z} to LE3-SAT assignment \mathbf{x}

- 1. simulate Q on \mathbf{z}
- 2. read \mathbf{x} from values of gates in circuit.

Claim: $Q(\mathbf{z}) \Rightarrow f(\mathbf{x})$

- by construction, $f(\cdot)$ encodes proper working ciruit that evaluates to True.
- Since $Q(\mathbf{z})$ is true, and \mathbf{x} is from simulation of $Q(\cdot)$, $f(\mathbf{x})$ is true.

QED

Lemma: LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

Note: 3-SAT $\leq_{\mathcal{P}}$ LE3-SAT is obvious, LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT is not.

Part I: forward instance construction convert LE3-SAT instance f into 3-SAT instance f'

- $f' \leftarrow f$ rename variables to
- add variables w_1, w_2 [[idea: $w_i = F$]]
- add w_i to 1- and 2-clauses

$$(l_1) \Rightarrow (l_1 \vee w_1 \vee w_2).$$

$$(l_1 \vee l_2) \Rightarrow (l_1 \vee l_2 \vee w_1).$$

• ensure $w_i = 0$ add variables y_1, y_1 and clauses:

$$(\bar{w}_i \vee y_1 \vee y_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee y_2)$$

$$(\bar{w}_i \vee y_1 \vee \bar{y}_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee \bar{y}_2)$$

• denote $\mathbf{x}' = (\mathbf{x}, w_1, w_2, y_1, y_2)$

Runtime Analysis: construction is polynomial time.

Part II: backward certificate construction

$$\mathbf{x}' \Rightarrow \mathbf{x}$$

1. read \mathbf{x} from \mathbf{x}' (all but last 4 variables).

Claim: $f'(\mathbf{x}') \to f(\mathbf{x})$

• Let
$$\mathbf{x}' = (\bar{z}, w_1, w_2, y_1, y_2).$$

•
$$f'(\mathbf{x}') = \text{True}$$

$$\Rightarrow$$
 by construction, $w_i = \text{False}$

$$\Rightarrow f'(\mathbf{x}, F, F, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow} f(\mathbf{x})$$

$$\Rightarrow f(\mathbf{x}) = \text{True.}$$

Part III: forward certificate construction

$$\mathbf{x} \Rightarrow \mathbf{x}'$$

1. set
$$\mathbf{x}' = (\mathbf{x}, F, F, F, F)$$

Claim: $f(\mathbf{x}) \to f'(\mathbf{x}')$

•
$$f(\mathbf{x}) = \text{True}$$

- $f(\mathbf{x}, w_1, w_2, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow}$ "clauses with only w_i and y_i "
- with $w_i = F$ and $y_i = F$ (or anything) these are true. **QED**