EECS 336: Introduction to Algorithms Lecture 12
P vs. NP (cont.) NP, CIRCUIT-SAT, 3-SAT

Reading: Chapter 8; guide to reductions Notorious Problem: NP
Last time:)
mput:

; < ;
o 3-SAT <p INDEP-SET e decision problem verifier program

e 3-SAT <p HC VP.
Today: e polynomial p(-).
e NP <p CIRCUIT-SAT <p e decision problem instance: x

LE3-SAT <p 3-SAT.
output:

e “Yes” if exists certificate c such that
V P(x,c) has “verified = true” at
computational step p(|z]).

e “No” otherwise.

Fact: NP is N"P-complete.

Agenda: Find a first simple N"P-complete
problem.

Circuit Satisfiability = computer can run it in poly steps.
Example: e cach step of computer is circuit.
output e output of one step is input to next step

e unroll p(|z|) steps of computation

= 3 poly-size circuit @'(x,c) =

VP(z,c)
o e hardcode x: Q(c) = Q'(x,¢)
@ @ e @ @ Part II-III: backward/forward certificate
construction
Problem 4: CIRCUIT-SAT ®z=C¢C
I PICTURE

input: boolean circuit Q(z)
e directed acyclic graph G = (V, E)

e internal nodes labeled by logical
gates:

(13

“and”, “or”, or “not”

e leaves labeled by variables or con-
stants

T F z1,...,2%,.
e root r is output of circuit
output:
e “Yes” if exists z with Q(z) =T
e “No” otherwise.
Lemma: CIRCUIT-SAT is N'P-hard.
Part I: forward instance construction

convert NP instance (V P, p, x) to CIRCUIT-
SAT instance @)

e VP(-,-) polynomial time

LE3-SAT

“CIRCUIT-SAT <p LE3-SAT <p 3-SAT”

Problem 5: LE3-SAT

“like 3-SAT but at most 3 literals per or-
clause”

Note: <p is transitive: if ¥ <p X and
Xngtheanp Z.

Recall: NP <p CIRCUIT-SAT

Plan: CIRCUIT-SAT <p LE3-SAT <p 3-
SAT

I conclusion: 3-SAT is NP-hard

Lemma: CIRCUIT-SAT <, LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)
Part I: forward instance construction

convertt CIRCUIT-SAT instance () into 3-
SAT instance f

should be f should be satisfiable iff () has
input that makes it’s output true

e variables x, for each vertex of ().

e encode gates

e not: if v not gate with input from

U
Ty
v Q)
Ty
uQ
need z, = 7,

= add clauses (x, V) A (T, V Ty)
e or: if v is or gate from u to w

need x, = T, N Ty

Ty \ Tyy | 00 | 01 | 11 | 10
0 17070710
1 o111

= add clauses (T, Vx,V,)A(z,V
Tu) N (Ty V Tyy)

e and: if v is and gate from u to w

= add clauses (x, V T,Zy) A (T, V
o) N Ty V Ty).

0: if v is O leaf.

need x, =0

= add clause (z,)
need z, =1

1: if vis 1 leaf.

= add clause (z,)

literal: if v is literal z;

= do nothing
[z, can be anything]]

root: if v is root

output

Ly

need z, = 1
= add clause (z,).

Runtime Analysis:
nomial time.

construction is poly-

e at most 3 clauses in f per node in Q.
Part II: backward certificate construction

convert LE3-SAT assignment x to CIRCUIT-
SAT assignment z

1. read z from x corresponding to literals.
Claim: f(x) = Q(z)

e f constrains variables x; to “proper cir-
cuit outcomes” and root is True.

= Q(z) is True.
Part III: forward certificate construction

convert CIRCUIT-SAT assignment z to LE3-
SAT assignment x

1. simulate () on z
2. read x from values of gates in circuit.
Claim: Q(z) = f(x)

e by construction, f(-) encodes proper
working ciruit that evaluates to True.

e Since Q(z) is true, and x is from simula-
tion of Q(-), f(x) is true.

QED

Lemma: LE3-SAT <p 3-SAT

Note: 3-SAT <p LE3-SAT is obvious,
LE3-SAT <p 3-SAT is not.

Part I: forward instance construction con-
vert LE3-SAT instance f into 3-SAT instance

f/

f' < f rename variables to

add variables wy, wy [[idea: w; = F]

add w; to 1- and 2-clauses
(ll) = (ll Vw V wg).
(ll V lg) = (ll ViV wl).

e ensure w; = 0 add variables y;,1y; and
clauses:

w; VY1 V yo
w; VY1 V yo

()
()
(w; Vy1 V)
(w; V71 V §a)
e denote X' = (x, wy, wa, Y1, Y2)

Runtime Analysis: construction is poly-
nomial time.

Part II: backward certificate construction
x' = x

1. read x from x’ (all but last 4 variables).
Claim: f'(x') — f(x)

o Let x' = (Z,wy, ws, y1,Y2)-

o f'(x') = True

= by construction, w; = False

simplif
= f/(vavFvylva) :p>y f(X)

= f(x) = True.
Part III: forward certificate construc-
tion
x = x

1. set X' = (x,F,F,F, F)
Claim: f(x) — f'(x')
o f(x) = True
o f(x, w1, wa, y1,Y2) simplify

“clauses with only w; and v;”

o with w; = F and y; = F (or
anything) these are true. QED

