Reading: 11.0-11.3

Last time:

- greedy by value
- MST correctness.
- matroids

Today:

- approximation
- metric TSP
- knapsack

Approximation Algorithms

"instead of computing an optimal solution is \mathcal{NP} -complete, try to compute an approximately optimal solution instead"

Def: \mathcal{A} is an β -approximation the value of its solutions is at most βOPT (minimization problems)

(at most OPT/β for maximization problems)

Question: how well can we approximate NP-complete problems?

 $\begin{array}{cccc} 1+\epsilon & \text{const} & \log & \text{linear} & \text{inapprox} \\ \text{Knapsack} & \text{METRIC-TSP} & & \text{TSP} \end{array}$

Metric TSP

Def: distances are a metric if

- symmetry: d(u, v) = d(v, u)
- triangle inequality: $d(u, v) \leq d(u, w) + d(w, v)$

Def: Metric TSP = TSP when edge costs are a metric.

Lemma: MST is smaller than TSP tour.

Proof:

- take any tour
- remove one edge
- \Rightarrow get a tree (degerate = a line)
- \Rightarrow cost of tour > cost of MST.

Algorithm: METRIC-TSP via MST

- 1. find MST.
- 2. double it \Rightarrow cycle (with repeated vertices)
- 3. remove repeated vertices (short-cut) \Rightarrow tour.

Example:

Cycle: ?

Challenge:

- \mathcal{NP} -hardness \Rightarrow don't understand optimal soln's.
- how can we approximate something we don't understand?

Approach

- 1. Bound OPT. E.g., OPT \geq MST
- 2. Design alg to approximate bound. E.g., $\mathcal{A} \leq 2\text{MST}$.

Question: can we approximate (non-metric) TSP?

Lemma: Cannot approximate TSP to any factor unless $\mathcal{P} = \mathcal{NP}$.

Proof: reduce from Hamiltonian Cycle to α -approximate-TSP

- convert HC problem G' = (V', E') to TSP problem $G, c(\cdot)$
- $G \leftarrow \text{complete graph on } V'$.
- set $c(e) = \begin{cases} 1 & \text{if } e \in E' \\ \alpha n & \text{otherwise} \end{cases}$
- HC in $G' \Rightarrow \text{TSP of cost } n$.
- no HC in $G' \Rightarrow \text{TSP of cost} > \alpha n$.
- α -approxiate TSP distinguishes these two cases.

QED

2

Example:

Knapsack

input:

- \bullet *n* objects
- sizes s_i (non-negative real number)
- values v_i
- capacity C.

output: subset S that

- fits: $\sum_{i \in S} s_i \leq C$
- maximizes values: $\sum_{i \in S} v_i$.

Note: Knapsack is \mathcal{NP} -complete

Goal: approximation algorithm for knapsack

Step 0: try things that don't work.

Idea: Greedy by value/size

Example: v = (2, C), s = (1, C)

Greedy \Rightarrow 2; OPT \Rightarrow C.

Step 1: find upper bound.

Fact: optimal fractional knapsack (FOPT) \geq optimal integral knapsack (OPT)

Step 2: find algorithm to approximate upper bound.

Note: the difference between FOPT and GREEDY is that FOPT adds fraction of last object.

Fact: FOPT
$$\leq$$
 GREEDY $+\underbrace{v_{\text{last object}}}_{\leq \max_i v_i}$.

So either:

• GREEDY \geq FOPT/2, or

• $\max_i v_i \ge FOPT/2$.

Algorithm: Max or Greedy by value/size

- 1. run GREEDY.
- 2. $MAX = \max_{i} v_i$.
- 3. if $MAX \ge GREEDY$, take MAX
- 4. else, take GREEDY.

Lemma: alg is 2-approximation.

Proof: ALG \geq FOPT/2 \geq OPT/2.

Pseudo-polynomial Time

"polynomial if numbers in input are written in unary (not binary)"

Integer Knapsack

input:

- $n \text{ objects } S = \{1, ..., n\}$
- $s_i = \text{size of object } i \text{ (integer)}.$
- v_i = value of object i.
- \bullet capacity C of knapsack (integer)

output:

- subset $K \subseteq S$ of objects that
 - (a) fit in knapsack together (i.e., $\sum_{i \in K} s_i \leq C$)
 - (b) maximize total value (i.e., $\sum_{i \in K} v_i$)

Greedy fails, e.g.,

• largest value/size:

$$\mathbf{v} = (C/2 + 2, C/2, C/2).$$

$$\mathbf{s} = (C/2 + 1, C/2, C/2).$$

• smallest value/size:

$$\mathbf{v} = (1, C/2, C/2).$$

$$\mathbf{s} = (2, C/2, C/2).$$

Find a subproblem:

- consider object $i \in S$.
- if i in knapsack:

value of knapsack is v_i + optimal knapsack value on $S \setminus \{i\}$ with capacity $C - s_i$.

• if i not in knapsack:

value of knapsack is optimal knapsack on $S \setminus \{i\}$ with capacity C.

Succinct description:

- remaining objects $\{j, \ldots, n\}$ represented by "j"
- remaining capacity represented by $D \in \{0, \ldots, C\}$.

Step I: identify subproblem in English

OPT(j, D)

= "value of optimal size D knapsack on $\{j, \ldots, n\}$ "

Step II: write recurrence

OPT(j, D)

$$= \max(\underbrace{v_j + \text{OPT}(j+1, D-s_j)}_{\text{if } s_j \le D}, \text{OPT}(j+1, D))$$

Step III: base case

$$OPT(n+1, D) = 0$$
 (for all D)

Step IV: iterative DP

Algorithm: knapsack

- 1. $\forall D, \text{ memo}[n+1, D] = 0.$
- 2. for i = n down to 1,

for
$$D = C$$
 down to 0,

(a) if
$$i$$
 fits (i.e., $s_i \leq D$)
$$\operatorname{memo}[j, D] = \max[\operatorname{OPT}(j+1, D),$$

$$v_j + \text{OPT}(j+1, D-s_j)$$

(b) else,

$$memo[j, D] = OPT(j + 1, D)$$

3. return memo[1, C]

Correctness

induction

Runtime

$$T(n, C) = O(\# \text{ of subprobs} \times \text{cost per subprob})$$

= $O(nC)$.

Note: Knapsack DP is $\underline{\text{pseudo-polynomial}}$ time.