Reading: 11.0-11.3

Last time:

- greedy by value
- MST correctness.
- matroids

Today:

- approximation
- metric TSP
- knapsack

Approximation Algorithms

"instead of computing an optimal solution is $\mathcal{N} \mathcal{P}$-complete, try to compute an approximately optimal solution instead"

Def: \mathcal{A} is an β-approximation the value of its solutions is at most $\beta \mathrm{OPT}$ (minimization problems)
(at most OPT / β for maximization problems)
Question: how well can we approximate NP-complete problems?

$1+\epsilon$	const	\log	linear	inapprox
Knapsack	METRIC-TSP			TSP

Metric TSP

Def: distances are a metric if

- symmetry: $d(u, v)=d(v, u)$

- triangle inequality: $d(u, v) \leq d(u, w)+$ $d(w, v)$

Def: Metric TSP $=$ TSP when edge costs are a metric.

Lemma: MST is smaller than TSP tour.

Challenge:

- $\mathcal{N} \mathcal{P}$-hardness \Rightarrow don't understand optimal soln's.
- how can we approximate something we don't understand?

Proof:

- take any tour
- remove one edge
\Rightarrow get a tree (degerate $=$ a line)
\Rightarrow cost of tour $>$ cost of MST.
Algorithm: METRIC-TSP via MST

1. find MST.
2. double it \Rightarrow cycle
(with repeated vertices)
3. remove repeated vertices (short-cut) \Rightarrow tour.

Example:

- HC in $G^{\prime} \Rightarrow \mathrm{TSP}$ of cost n.
- no HC in $G^{\prime} \Rightarrow \mathrm{TSP}$ of cost $>\alpha n$.
- α-approxiate TSP distinguishes these two cases.

Cycle: ?
QED

Example:

Knapsack

input:

- n objects
- $\operatorname{sizes} s_{i}$ (non-negative real number)
- values v_{i}
- capacity C.
output: subset S that
- fits: $\sum_{i \in S} s_{i} \leq C$
- maximizes values: $\sum_{i \in S} v_{i}$.

Note: Knapsack is $\mathcal{N} \mathcal{P}$-complete
Goal: approximation algorithm for knapsack
Step 0: try things that don't work.
Idea: Greedy by value/size
Example: $\mathbf{v}=(2, C), \mathbf{s}=(1, C)$
Greedy $\Rightarrow 2 ; \mathrm{OPT} \Rightarrow C$.
Step 1: find upper bound.
Fact: optimal fractional knapsack (FOPT) \geq optimal integral knapsack (OPT)

Step 2: find algorithm to approximate upper bound.

Note: the difference between FOPT and GREEDY is that FOPT adds fraction of last object.

Fact: FOPT \leq GREEDY $+\underbrace{v_{\text {last object }}}_{\leq \max _{i} v_{i}}$.
So either:

- GREEDY \geq FOPT $/ 2$, or
- $\max _{i} v_{i} \geq F O P T / 2$.

Algorithm: Max or Greedy by value/size

1. run GREEDY.
2. $\mathrm{MAX}=\max _{i} v_{i}$.
3. if MAX \geq GREEDY, take MAX
4. else, take GREEDY.

Lemma: alg is 2-approximation.
Proof: ALG $\geq \mathrm{FOPT} / 2 \geq \mathrm{OPT} / 2$.

Pseudo-polynomial Time

"polynomial if numbers in input are written in unary (not binary)"

Integer Knapsack

input: - n objects $S=\{1, \ldots, n\}$

- $s_{i}=$ size of object i (integer).
- $v_{i}=$ value of object i.
- capacity C of knapsack (integer)
output:
- subset $K \subseteq S$ of objects that
(a) fit in knapsack together

$$
\text { (i.e., } \sum_{i \in K} s_{i} \leq C \text {) }
$$

(b) maximize total value

$$
\text { (i.e., } \sum_{i \in K} v_{i} \text {) }
$$

Greedy fails, e.g.,

- largest value/size:

$$
\begin{aligned}
& \mathbf{v}=(C / 2+2, C / 2, C / 2) . \\
& \mathbf{s}=(C / 2+1, C / 2, C / 2)
\end{aligned}
$$

- smallest value/size:

$$
\begin{aligned}
& \mathbf{v}=(1, C / 2, C / 2) . \\
& \mathbf{s}=(2, C / 2, C / 2) .
\end{aligned}
$$

Find a subproblem:

- consider object $i \in S$.
- if i in knapsack:
value of knapsack is $v_{i}+$ optimal knapsack value on $S \backslash\{i\}$ with capacity $C-s_{i}$.
- if i not in knapsack:
value of knapsack is optimal knapsack on $S \backslash\{i\}$ with capacity C.

Succinct description:

- remaining objects $\{j, \ldots, n\}$ represented by " j "
- remaining capacity represented by $D \in$ $\{0, \ldots, C\}$.

Step I: identify subproblem in English

$\operatorname{OPT}(j, D)$

$$
\begin{aligned}
= & \text { "value of optimal size } D \text { knapsack on } \\
& \{j, \ldots, n\} "
\end{aligned}
$$

Step II: write recurrence

$\operatorname{OPT}(j, D)$

$$
=\max (\underbrace{v_{j}+\operatorname{OPT}\left(j+1, D-s_{j}\right)}_{\text {if } s_{j} \leq D}, \operatorname{OPT}(j+
$$

Step III: base case

$\operatorname{OPT}(n+1, D)=0($ for all $D)$

Step IV: iterative DP

Algorithm: knapsack

1. $\forall D, \operatorname{memo}[n+1, D]=0$.
2. for $i=n$ down to 1 , for $D=C$ down to 0 ,
(a) if i fits (i.e., $s_{i} \leq D$)

$$
\operatorname{memo}[j, D]=\max [\mathrm{OPT}(j+1, D)
$$

$$
\left.v_{j}+\mathrm{OPT}\left(j+1, D-s_{j}\right)\right]
$$

(b) else,

$$
\operatorname{memo}[j, D]=\operatorname{OPT}(j+1, D)
$$

3. return memo $[1, C]$

Correctness

induction

Runtime

$T(n, C)=O(\#$ of subprobs \times cost per subprob) $=O(n C)$.

Note: Knapsack DP is pseudo-polynomial time.

