Approximation Algorithms

EECS 336: Introduction to Algorithms Lecture 17

knapsack, pseudo-polynomial time, PTAS

Reading: 11.8
Last Time:
e approximation
e metric TSP
e knapsack
Today:
e pseudo polynomial time

e knapsack (1 + €) approx.

Def: A is an f-approximation the value of
its solutions is at least OPT/3 (maximization
problems)

Recall: knapsack problem
input:
e n objects
e sizes s; (non-negative real number)
e values v;
e capacity C'.
output: subset S that
o fits: Y . g5 < C

e maximizes values: ), ¢ v;.



Pseudo-polynomial Time

“polynomial if numbers in input are written

in unary (not binary)”

Integer Knapsack

input: e n objects S ={1,...,n}
e s; = size of object i (integer).
e v; = value of object i.
e capacity C' of knapsack (integer)
output:
e subset K C S of objects that

(a) fit in knapsack together
(i.e., ZiEK Si < C)

(b) maximize total value

(i.e., ZiEK UZ')
Find a subproblem:
e consider object i € S.

e if ¢ in knapsack:

value of knapsack is v; + optimal
knapsack value on S\ {i} with ca-

pacity C' — s;.

e if 7 not in knapsack:

value of knapsack is optimal knap-

sack on S\ {i} with capacity C'.
Succinct description:

e remaining objects {7, ..
by “j??

e remaining capacity represented by D €

{0,...,C.

., n} represented

Step I: identify subproblem in

English

OPT(j, D)

= “value of optimal size D knapsack on

{j,...,n}”

Step II: write recurrence

OPT(y,D)

= max(v; + OPT(j +1,D — s;),OPT(j +

~—
if s; <D

1,D))

Step III: base case

OPT(n +1,D) = 0 (for all D)

Step IV: iterative DP

Algorithm: knapsack
1. VD, memo[n + 1, D] = 0.
2. for i = n down to 1,

for D = C' down to 0,

(a) if ¢ fits (i.e., s; < D)

memo|[j, D] = max[OPT(j + 1, D),

v; +OPT(j +1,D —s;)]
(b) else,
memolj, D] = OPT(j + 1, D)

3. return memoll, C|



Correctness

induction

Runtime

T'(n,C) = O(# of subprobs x cost per subprob)
= O(n(C).

Note: Knapsack DP is pseudo-polynomial
time.




Polynomial Time Approxi-
mation Scheme (PTAS)

“for any constant €, get (14 ¢€)-approximation
algorithm in polynomial time.”

Note: often pseudo-polynomial time alg can
be converted into PTAS by rounding..

Knapsack PTAS

Goal: output (1 + €)-approximation to opti-
mal knapsack value.

Idea: round so that numbers are integers in
range from 0 to poly(n).

Recall: for old knapsack dynamic program,
need sizes to be integer, but approximation
would allow for rounding values not sizes.

Approach:

1. write new dynamic program that is
pseudo-polynomial in values not capac-
itiy. O(n*vmax)

2. divide values by €vyay/n and round up.
(range from 0 to n/e.)

3. solve dynamic program on rounded val-
ues.

Value-based Knapsack DP

Idea: instead of maximizing value, let’s min-
imize size.

Part I: Subproblem

MinSize(i, V') = smallest total size of subset
of {i,...,n} with total value at least V.

Part II: Recurrence

MinSize(i, V')

= max{s; + MinSize(i + 1, max{V — v;,0}),
MinSize(i + 1,V)}
Part III: Invocation
L Ve
2. while MinSize(1,V) > C
V—V-1
3. output V.

Part IV: Base case
0 V=0

o O0.W.

MinSize(n 4+ 1,V) = {
Theorem: ALG has pseudo-polynomial run-
time O(n%vyay) if v;s are integer.

Proof: table size =n X Y. v; <N X NUpax

Polynomial Time Approximation

Scheme

Algorithm: Knapsack (1 + €)-approx
1. round v; up to multiple of €v,,4,/n — T;
2. divide 9; by €U0 /n — 0; (integer)

A

3. solve integral knapsack on 01,...,0, —

S

4. output max(Vmax, Y ;eq Vi)



Correctness

Lemma: ALG is optimal for v;s and v;s.

Proof: via correctness of DP.

Lemma: ALG is polynomial in n (for
const. €)
Proof:

i ﬁmax = Umaz X t— = n/e

€Vmazx

e runtime is

O(n*Vpaz) = O(n3/e) = O(n?).
Lemma: ALG is (1 + €)-approx for v;s.
Proof:

1. lower bound on OPT

OPT = v,

(OPT’s actual values)

ies*
< Z 0; (OPT’s rounded values)
ies*
< Z 0; (ALG’s rounded values)
ics
Last step by optimality of ALG on vs

and Us.

2. upper bound on algorithm

e bound 1:

ALG = Zvi

i€S
(ALGs’s actual values)

:Zﬁi—zwz’—%)

i€s €S oo
> E Uy — N X EVpaz /M
€S

- E Vi — €Umax

€S

e bound 2: ALG > v,,4s.

3. combine:

ALGZZ@—EW

€S <ALG
>OPT
> OPT — eALG

So (14 €)ALG > OPT.
QED

Complexity of Approximation

Def: APX = class of problems with constant
approximations

Def: PTAS = class of problems with PTASs.

DRAW PICTURE of P < PTAS < APX <
NP



