EECS 336: Introduction to Algorithms Dynamic Programming (cont)

Lecture 5
Bellman-Ford

Reading: 6.4, 6.8

"guide to dynamic programming" (Canvas)

Last time:

- Dynamic Programming (a framework)
- Integer Knapsack

Today:

• Shortest Paths.

Suggested Approach

I. identify subproblem in english

 $OPT(i) = "optimal schedule of {i, ..., n} (sorted by start time)"$

II. specify subproblem recurrence

$$\begin{array}{lll}
\text{OPT}(i) &= & \max(\text{OPT}(i + 1), v_i + \\
\text{OPT}(\text{next}(i)))
\end{array}$$

III. solve original problem (from subproblems)

Optimal Interval Schedule = OPT(1)

IV. identify base case

$$OPT(n+1) = 0$$

V. write iterative DP.

(see last thurs)

VI. analyze runtime.

 $O(n \log n)$

VII. (for homework) implement iterative DP.

(any language most students can read. e.g., Python)

Shortest Paths with Negative Weights

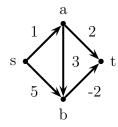
"e.g., currency exchange: nodes are currencies, path weights are exchange rates, minimize product of path weights."

Note: to minimize product of path weights, can minimize sum of logs of path weights.

Example: $r_1 r_2 = 2^{\log_2 r_1} 2^{\log_2 r_2} = 2^{\log_2 r_1 + \log_2 r_2}$.

Note: if $r \leq 1$ then $\log r$ is negative.

Example:

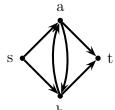


Try Dynamic programming

OPT(v)

- = shortest path from v to t.
- $= \min_{u \in N(v)} [\underbrace{c(v, u)}_{\text{weight}} + \text{OPT}(u)].$

Example:



Subproblems have cyclic dependencies!

Imposing measure of progress

"parameterize subproblems to keep track of progress" $\,$

Lemma: if G has no negative cycles, then minimum cost path is **simple** (i.e., does not repeat nodes); therefore, it has at most n-1 edges.

Proof: (contradiction)

- let *P* be the min-length path with fewest number of edges.
- suppose (for contradiction) that *P* is not simple.
 - \Rightarrow P repeats a vertex v.
- no negative cycle \Rightarrow path from v to v nonnegative.
 - \Rightarrow can "splice out" cycle and not increase length.
 - \Rightarrow new path has fewer edges than p.

 $\longrightarrow \leftarrow$

Idea: if simple path goes $s \sim v \rightarrow u \sim t$ then u-t path has one fewer edge than v-t path.

Part I: identify subproblem in english

OPT(v, k)

= "length of shortest path from v to t with at most k edges."

Part II: write recurrence

OPT(v, k)

 $= \min_{u \in N(v)} \left[c(v, u) + \mathrm{OPT}(u, k - 1) \right]$

Correctness: lemma + induction.

Part III: solve original problem

Part VI: Runtime

• minimum cost path = OPT(s, n-1).

$$T(n,m) = (\text{"size of table"})^n \times (\text{"cost per entry"})^n$$

= $O(n^3)$

(better accounting: $T(n,m) = O(n^2 + nm) = O(nm)$)

Part IV: base case

- for all k: OPT(t, k) = 0.
- for all $v \neq t$: $OPT(v, 0) = \infty$.

Part V: iterative DP

Algorithm: Bellman-Ford

1. initialize

for all
$$k$$
: OPT $[t, k] = 0$.

for all
$$v \neq t$$
: OPT $[v, 0] = \infty$.

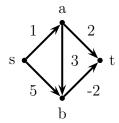
2. for k = 1 up to n - 1,

for all v

$$OPT[v, k] = \min_{u \in N(v)} OPT(u, k - 1).$$

3. return OPT[s, n-1].

Example:



	0	1	2	3
s	∞	∞	3	2
$a \\ b$	∞	2	1	1
	∞	-2	-2	-2
t	0	0	0	0