
EECS 336: Introduction to Algorithms Lecture 18
Online Algorithms ski renter, secretary

Announcements:

• final

• thursday, 3-5pm.

• cumulative

• 1 page handwritten cheat-sheet

Last time:

• pseudo polynomial time

• Knapsack PTAS

Today:

• online algorithms

• ski renter

• secretary

Approximation Algorithms

“show algorithm’s solution is always close to
optimal solution”

Challenge: for hard problems optimal solu-
tion is complex.

Approach:

1. relax constraints and solve relaxed opti-
mally.

2. fix violated constraints.

3. show “fixed solution” is close to “relaxed
solution”

1

Algorithms Flow Chart

[model problem]

|

| yes

<does greedy work>------------\

| |

|no V

| yes

<similar to> ---->[reduction]

<another problem> |

| V

|no

| no no

<find subproblem>---><NP hard?>-------[repeat]

| |yes

|yes |

| [approximate]

<independent or dependent?>

| |

| indep | dep

| |

[divide & conquer] [dynamic prog]

| |

V V

V

|

[problem solved]

Course Topics

• Dynamic Programming

• Reductions

• network flow

• NP hardness

• Approximaiton Algorithms

• Greedy algortithms

2

Online Algorithms

“algorithms that must make decisions with-
out full knowledge of input”

(e.g., if input is events over time, then algo-
rithm doesn’t know future)

Ski Renter

input:

• cost to buy skis: B.

• cost to rent skis: R.

• daily weather d1, . . . , dn with

di =

{

1 if good weather

0 if bad weather

(let k =
∑

i di)

output: schedule for renting or buying skis.

online constraint: on day i do not know
di+1, . . . , dn.

Note: optimality is impossible because don’t
know future.

Idea: approximate “optimal offline” algo-
rithm

Algorithm: OPT (offline)

• if kR < B, buy on day 1.

• else, rent on each good day.

Performance: OPT = min(kR, B).

Def: an online alg is β-competitive with op-
timal offline alg, OPT, if on all inputs x for
X,

• minimization: Alg(x) ≤ βOPT (x).

• maximization: Alg(x) ≥ OPT (x)/β.

Challenge:

• if we buy first day we ski:

• for d = (1, 0, 0, . . . , 0)

• OPT = R; Alg = B ≫ R

• if we rent each time we ski

• for d = (1, 1, 1, . . . , 1)

• OPT = B; Alg = Rn ≫ B

Algorithm: “Rent to Buy” “Rent unless to-
tal rental cost would exceed buy cost, then
buy”

Example: R = 1, B = 3

d 1 0 1 1 1 0 1 1 . . .
Alg R / R R B / 0 0 . . .

Alg = 3R + B
︸ ︷︷ ︸

≤2B

, OPT = B

Theorem: Alg ≤ 2OPT (Alg is 2-
competitive)

Proof:

case 1: kR ≤ B

• Alg: kR

• OPT: kR

⇒ Alg = OPT ≤ 2OPT .

case 2: kR > B

• Alg: total rental + B ≤ 2B

• OPT: B

⇒ Alg ≤ 2OPT .

Note: competitive analysis gives very strong
approximation result.

3

Secretary Problem

input:

• sequence of candidates 1, . . . , n.

• ordering on candidate qualities.

output:

• “hire” / “no hire” decisions.

• to hire best candidate.

online constraint: must make hire/no hire
decision for i before seeing i + 1, . . . , n.

Fact: “optimal offline” always hires best sec-
retary.

Claim: no deterministic algorithm approxi-
mates optimal offline.

Proof: two candidates

case 1: Alg hires 1

• 2 is better.

case 2: Alg doesn’t hire 1

• 1 is better.

Idea: consider randomized algorithms.

(maximize probability of hiring the best can-
didate.)

Claim: randomized algorithm is n-
competitive offline.

Proof:

• Alg: for all i, pick ith secretary with
probability 1/n.

• Alg is right with probability 1/n

• OPT is always right.

⇒ n-competitive.

Claim: no algorithm hires best candidate
with probability Ω(1/n).

Idea: consider randomized inputs.

Assumption: candidates arrive in a uni-
formly random order.

Example: n = 3

1 2 3 1 3 2 3 1 2 2 1 3 2 3 1 3 2 1
(a) (a) (b) (b) (b)

Two algs for example:

(a) take i candidate for some i

⇒ Pr[success] = 1/3

(b) look at 1st, condition choice of 2nd or
3rd.

• if 2nd better than 1st, hire 2nd

• else, hire 3rd.

⇒ Pr[success] = 1/2

Algorithm: Secretary Alg

• interview k candidates but make no of-
fers

• hire next secretary that is better than
any of first k.

Lemma: For k = n/2 alg is 4-competitive.

Proof:

• hire best when 2nd best in first half and
1st best in second half.

• Recall: Pr[A&B] = Pr[A | B]Pr[B].

• Pr[2nd best in first half] = 1/2

• Pr[1st best in second half | 2nd best in first half] =
n/2

n−1
≥ 1/2

4

⇒ Pr[hire best] ≥
Pr[2nd in 1st 1/2]Pr[1st in 2nd 1/2 | 2nd in 1st 1/2] ≥
1/4.

Question: what is best k?

Theorem: for k = 1/e alg is e-competitive
and this is best possible.

5

