Reading: 8.4-8.5

Last time:

- tractability & intractability
- decision problems

Today:

- \mathcal{NP} -completeness
- 3-SAT $\leq_{\mathcal{P}} INDEP SET$

A notoriously hard problem

"one problem to solve them all"

SAT, INDEP-SET_d, and TSP_d seem very different, what do they have in common?

Note: all example problem have <u>short</u> <u>certificates</u> that could easily verify "yes" instance.

how would you verify??

Def: \mathcal{NP} is the class of problems that have short (polynomial sized) certificates that can easily (in polynomial time) verify "yes" instances.

Historical Note: $\mathcal{NP} = \underline{\text{non-deterministic}}$ polynomial time

"a nondeterministic algorithm could guess the certificate and then verify it in polynomial time"

note: definition asymmetric wrt "yes" and "no"

unfortunately, no non-deterministic computers exist

a quantum computer is close to being non- \blacksquare is NP $\in \mathcal{P}$? deterministic

Note: Not all problems are in \mathcal{NP} .

E.g., unsatisfiability.

Def:

- Problem <u>X is in \mathcal{NP} </u> if exists short easily-verifiable certificate.
- Problem X is \mathcal{NP} -hard if $\forall Y \in \mathcal{NP}, Y \leq_{\mathcal{P}} X$.
- Problem <u>X</u> is \mathcal{NP} -complete if $X \in \mathcal{NP}$ and X is \mathcal{NP} -hard.

Lemma: INDEP-SET $\in \mathcal{NP}$.

Lemma: SAT $\in \mathcal{NP}$.

Lemma: $TSP \in \mathcal{NP}$.

Goal: show INDEP-SET, SAT, TSP are \mathcal{NP} -complete.

Notorious Problem: NP

input:

- decision problem verifier program VP.
- polynomial $p(\cdot)$.
- decision problem instance: x

output:

- "Yes" if exists certificate c such that VP(x, c) has "verified = true" at computational step p(|x|).
- "No" otherwise.

Fact: NP is \mathcal{NP} -complete.

Note: Unknown whether $\mathcal{P} = \mathcal{NP}$.

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

find simpler problems to reduce from

Plan:

- 1. NP $\leq_{\mathcal{P}} \cdots \leq_{\mathcal{P}} 3$ -SAT [[*next time*]]
- 2. 3-SAT $\leq_{\mathcal{P}}$ INDEP-SET
- 3. 3-SAT $\leq_{\mathcal{P}}$ HC $\leq_{\mathcal{P}}$ TSP

Independent Set

Recall: INDEP-SET (decision problem)

input: G = (V, E), k

output: $S \subset V$

- satisfying $\forall v \in S, (u, v) \notin E$
- $|S| \ge k$

Lemma: INDEP-SET is \mathcal{NP} -hard.

Proof: (reduction from 3-SAT)

Part I: forward instance construction

convert 3-SAT instance f into INDEP-SET instance (G, k). literal j in clause i

- vertices v_{ij} correspond to literals l_{ij}
- not variables
 - edges for:
 - clause (in triangle)

"at most one vertex selected per clause"

• conflicted literals.

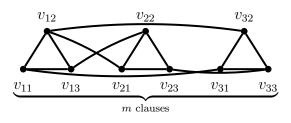
"vertices for conflicting literals cannot be selected"

• "vertex v_{ij} is selected" \Rightarrow "literal l_{ij} is true".

converse not true!

• "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f(z_1, z_2, z_3, z_4) = (z_1 \lor z_2 \lor z_3) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_2 \lor z_4)$



Runtime Analysis: linear time (one vertex per literal).

Part II:: reverse certificate construction

construct assignment \mathbf{z} from S

(if G has indep. set S size $\geq m$ then f is satisfiable.)

(a) For each z_r

• if exists nodes in S are labeled by " z_r "

$$\Rightarrow$$
 set $z_r = 1$

• else

$$\Rightarrow \text{ set } z_r = 0$$

- Note: no two nodes $u, v \in S$ labeled by both z_r or \overline{z}_r , if so, there is (u, v) edge so S would not be independent.
- (b) $f(\mathbf{z}) = T$:
 - S has |S| = m
 - \Rightarrow S has one vertex per clause.
 - for caluse i:
 - if $v_{ij} \in S$ is not negated, then i is true.
 - if $v_{ij} \in S$ is negated, then *i* is true.

Part III:: forward certificate construction

construct independent set S from \mathbf{z}

(if f is satisfiable then G has indep. set size $\geq m$.)

- let S' be nodes in G corresponding to true literals.
- if more than one node in S' in same triangle drop all but one.

 \Rightarrow S.

- |S| = m.
- for all $u, v \in S$,
 - u & v not in same triangle.
 - l_u and l_v both true
 - \Rightarrow must not conflict
 - \Rightarrow no (l_u, l_v) edge in G.
 - so S is independent.