
EECS 336: Introduction to Algorithms Lecture 10
P vs. NP (cont.) NP, 3-SAT, INDEP-SET

Reading: 8.4-8.5

Last time:

• tractability & intractability

• decision problems

Today:

• NP-completeness

• 3-SAT ≤P INDEP − SET

A notoriously hard prob-

lem

“one problem to solve them all”

SAT, INDEP-SETd, and TSPd seem very
different, what do they have in common?

Note: all example problem have short
certificates that could easily verify “yes” in-
stance.

how would you verify??

Def: NP is the class of problems that have
short (polynomial sized) certificates that can
easily (in polynomial time) verify “yes” in-
stances.

Historical Note: NP = non-deterministic
polynomial time

“a nondeterministic algorithm could guess
the certificate and then verify it in polyno-
mial time”

note: definition asymmetric wrt “yes” and
“no”

unfortunately, no non-deterministic com-
puters exist

1



a quantum computer is close to being non-
deterministic

Note: Not all problems are in NP.

E.g., unsatisfiability.

Def:

• Problem X is in NP if exists short
easily-verifiable certificate.

• Problem X is NP-hard if ∀Y ∈
NP, Y ≤P X.

• Problem X is NP-complete if X ∈ NP
and X is NP-hard.

Lemma: INDEP-SET ∈ NP.

Lemma: SAT ∈ NP.

Lemma: TSP ∈ NP.

Goal: show INDEP-SET, SAT, TSP are
NP-complete.

Notorious Problem: NP

input:

• decision problem verifier program
V P .

• polynomial p(·).

• decision problem instance: x

output:

• “Yes” if exists certificate c such that
V P (x, c) has “verified = true” at
computational step p(|x|).

• “No” otherwise.

Fact: NP is NP-complete.

is NP ∈ P?

Note: Unknown whether P = NP.

Note: ≤P is transitive: if Y ≤P X and
X ≤P Z then Y ≤P Z.

find simpler problems to reduce from

Plan:

1. NP ≤P · · · ≤P 3-SAT [[next time]]

2. 3-SAT ≤P INDEP-SET

3. 3-SAT ≤P HC ≤P TSP

2



Independent Set

Recall: INDEP-SET (decision problem)

input: G = (V, E), k

output: S ⊂ V

• satisfying ∀v ∈ S, (u, v) 6∈ E

• |S| ≥ k

Lemma: INDEP-SET is NP-hard.

Proof: (reduction from 3-SAT)

Part I: forward instance construction

convert 3-SAT instance f into INDEP-SET
instance (G, k).

• vertices vij correspond to literals lij

literal j in clause i

not variables

• edges for:

• clause (in triangle)

“at most one vertex selected per
clause”

• conflicted literals.

“vertices for conflicting literals can-
not be selected”

• “vertex vij is selected” ⇒ “literal lij is
true”.

converse not true!

• “indep set of size m ⇔ “satisfying as-
signment”

Example: f(z1, z2, z3, z4) = (z1 ∨ z2 ∨ z3) ∧
(z̄2 ∨ z̄3 ∨ z̄4) ∧ (z̄1 ∨ z̄2 ∨ z4)

b

v12

b

v11

b

v13

b

v22

b

v21

b

v23

b

v32

b

v31

b

v33
︸ ︷︷ ︸

m clauses

Runtime Analysis: linear time (one vertex
per literal).

Part II:: reverse certificate construction

construct assignment z from S

(if G has indep. set S size ≥ m then f is
satisfiable.)

(a) For each zr

• if exists nodes in S are labeled by
“zr”

⇒ set zr = 1

• else

⇒ set zr = 0

Note: no two nodes u, v ∈ S labeled by both
zr or z̄r, if so, there is (u, v) edge so S

would not be independent.

(b) f(z) = T :

• S has |S| = m

⇒ S has one vertex per clause.

• for caluse i:

• if vij ∈ S is not negated, then i

is true.

• if vij ∈ S is negated, then i is
true.

Part III:: forward certificate construction

construct independent set S from z

(if f is satisfiable then G has indep. set size
≥ m.)

• let S ′ be nodes in G corresponding to
true literals.

• if more than one node in S ′ in same tri-
angle drop all but one.

3



⇒ S.

• |S| = m.

• for all u, v ∈ S,

• u & v not in same triangle.

• lu and lv both true

⇒ must not conflict

⇒ no (lu, lv) edge in G.

• so S is independent.

4


