EECS 336: Introduction to Algorithms	Lecture 10
P vs. NP (cont.)	NP, 3-SAT, INDEP-SET

Reading: 8.4-8.5

Last time:

- tractability \& intractability
- decision problems

Today:

- $\mathcal{N} \mathcal{P}$-completeness
- 3 -SAT $\leq_{\mathcal{P}} I N D E P-S E T$

A notoriously hard problem

"one problem to solve them all"
SAT, INDEP-SET ${ }_{d}$, and TSP_{d} seem very different, what do they have in common?

Note: all example problem have short certificates that could easily verify "yes" instance.
how would you verify??

Def: $\mathcal{N P}$ is the class of problems that have short (polynomial sized) certificates that can easily (in polynomial time) verify "yes" instances.

Historical Note: $\mathcal{N} \mathcal{P}=\underline{\text { non-deterministic }}$ polynomial time
"a nondeterministic algorithm could guess the certificate and then verify it in polynomial time"
note: definition asymmetric wrt "yes" and
"no"
unfortunately, no non-deterministic computers exist

```
a quantum computer is close to being non- \ is NP }\in\mathcal{P}\mathrm{ ?
deterministic
```

Note: Not all problems are in $\mathcal{N} \mathcal{P}$.
E.g., unsatisfiability.

Def:

- Problem X is in $\mathcal{N P}$ if exists short easily-verifiable certificate.
- Problem X is $\mathcal{N P}$-hard if $\forall Y \in$ $\mathcal{N} \mathcal{P}, Y \leq{ }_{\mathcal{P}} X$.
- Problem X is $\mathcal{N} \mathcal{P}$-complete if $X \in \mathcal{N} \mathcal{P}$ and X is $\mathcal{N} \mathcal{P}$-hard.

Lemma: INDEP-SET $\in \mathcal{N} \mathcal{P}$.
Lemma: $\operatorname{SAT} \in \mathcal{N} \mathcal{P}$.
Lemma: TSP $\in \mathcal{N} \mathcal{P}$.
Goal: show INDEP-SET, SAT, TSP are $\mathcal{N} \mathcal{P}$-complete.

Notorious Problem: NP

input:

- decision problem verifier program $V P$.
- polynomial $p(\cdot)$.
- decision problem instance: x
output:
- "Yes" if exists certificate c such that $V P(x, c)$ has "verified $=$ true" at computational step $p(|x|)$.
- "No" otherwise.

Fact: NP is $\mathcal{N} \mathcal{P}$-complete.

Note: Unknown whether $\mathcal{P}=\mathcal{N} \mathcal{P}$.
Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.
find simpler problems to reduce from

Plan:

1. $\mathrm{NP} \leq_{\mathcal{P}} \cdots \leq_{\mathcal{P}} 3$-SAT $[[$ next time $]]$
2. 3 -SAT $\leq_{\mathcal{P}}$ INDEP-SET
3. $3-\mathrm{SAT} \leq_{\mathcal{P}} \mathrm{HC} \leq_{\mathcal{P}} \mathrm{TSP}$

Independent Set

Recall: INDEP-SET (decision problem)
input: $G=(V, E), k$
output: $S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- $|S| \geq k$

Lemma: INDEP-SET is $\mathcal{N} \mathcal{P}$-hard.
Proof: (reduction from 3-SAT)
Part I: forward instance construction convert 3-SAT instance f into INDEP-SET instance (G, k).
literal j in clause i

- vertices $v_{i j}$ correspond to literals $l_{i j}$

I not variables

- edges for:
- clause (in triangle)
"at most one vertex selected per clause"
- conflicted literals.
"vertices for conflicting literals cannot be selected"
- "vertex $v_{i j}$ is selected" \Rightarrow "literal $l_{i j}$ is true".
I converse not true!
- "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{1} \vee z_{2} \vee z_{3}\right) \wedge$ $\left(\bar{z}_{2} \vee \bar{z}_{3} \vee \bar{z}_{4}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee z_{4}\right)$

Runtime Analysis: linear time (one vertex per literal).

Part II:: reverse certificate construction construct assignment z from S
(if G has indep. set S size $\geq m$ then f is satisfiable.)
(a) For each z_{r}

- if exists nodes in S are labeled by " z_{r} "

$$
\Rightarrow \text { set } z_{r}=1
$$

- else

$$
\Rightarrow \text { set } z_{r}=0
$$

Note: no two nodes $u, v \in S$ labeled by both z_{r} or \bar{z}_{r}, if so, there is (u, v) edge so S would not be independent.
(b) $f(\mathbf{z})=T$:

- S has $|S|=m$
$\Rightarrow S$ has one vertex per clause.
- for caluse i :
- if $v_{i j} \in S$ is not negated, then i is true.
- if $v_{i j} \in S$ is negated, then i is true.

Part III:: forward certificate construction construct independent set S from z
(if f is satisfiable then G has indep. set size $\geq m$.)

- let S^{\prime} be nodes in G corresponding to true literals.
- if more than one node in S^{\prime} in same triangle drop all but one.
$\Rightarrow S$.
- $|S|=m$.
- for all $u, v \in S$,
- $u \& v$ not in same triangle.
- l_{u} and l_{v} both true
\Rightarrow must not conflict
\Rightarrow no $\left(l_{u}, l_{v}\right)$ edge in G.
- so S is independent.

