Reading: 8.4-8.5; guide to reductions

Last time:

- \mathcal{NP} -completeness
- 3-SAT $\leq_{\mathcal{P}} INDEP SET$

Today:

- 3-SAT $\leq_{\mathcal{P}}$ INDEP-SET
- 3-SAT $\leq_{\mathcal{P}}$ HC

Independent Set

Recall: INDEP-SET (decision problem)

input: G = (V, E), k

output: $S \subset V$

- satisfying $\forall v \in S, (u, v) \notin E$
- $|S| \ge k$

Lemma: INDEP-SET is \mathcal{NP} -hard.

Proof: (reduction from 3-SAT)

Part I: forward instance construction

convert 3-SAT instance f into INDEP-SET instance (G, k).

literal j in clause i

- vertices v_{ij} correspond to literals l_{ij}
- edges for:
 - clause (in triangle)

"at most one vertex selected per clause"

• conflicted literals.

"vertices for conflicting literals cannot be selected"

- "vertex v_{ij} is selected" \Rightarrow "literal l_{ij} is true".
- "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f(z_1, z_2, z_3, z_4) = (z_1 \lor z_2 \lor z_3) \land$ **Part III::** forward certificate construction $(\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_2 \lor z_4)$

Runtime Analysis: linear time (one vertex per literal).

Part II:: reverse certificate construction

construct assignment \mathbf{z} from S

(if G has indep. set S size $\geq m$ then f is satisfiable.)

(a) For each z_r

- if exists nodes in S are labeled by " z_r "
 - \Rightarrow set $z_r = 1$
- else

 \Rightarrow set $z_r = 0$

Note: no two nodes $u, v \in S$ labeled by both z_r or \bar{z}_r , if so, there is (u, v) edge so S would not be independent.

(b) $f(\mathbf{z}) = T$:

- S has |S| = m
- \Rightarrow S has one vertex per clause.
- for caluse *i*:
 - if $v_{ij} \in S$ is not negated, then iis true.
 - if $v_{ij} \in S$ is negated, then *i* is true.

construct independent set S from \mathbf{z}

(if f is satisfiable then G has indep. set size > m.)

- let S' be nodes in G corresponding to true literals.
- if more than one node in S' in same triangle drop all but one.

 \Rightarrow S.

- |S| = m.
- for all $u, v \in S$,
 - u & v not in same triangle.
 - l_u and l_v both true
 - \Rightarrow must not conflict
 - \Rightarrow no (l_u, l_v) edge in G.
 - so S is independent.

Problem: Hamiltonian Cycle

input: G = (V, E) (directed)

output: cycle C to visit each vertex exactly once.

Lemma: hamiltonian cycle is \mathcal{NP} -hard

Proof: (reduction from 3-SAT)

Step 1: construction

- turn 3-SAT formula f in to graph G with hamiltonian cycle iff f is satisfiable.
- idea: variable = isolated path, right-toleft = true, left-to-right = false.
- idea: clause is node, which needs to be hit by at most one literal being true.
- construction:
 - left-right path per variable.
 - splice in clause nodes.

Step 2: runtime.

Step 3: correctness.

\mathbf{TSP}

Lemma 0.1 *TSP is* \mathcal{NP} *-hard.*

Proof: reduction from Hamiltonian Cycle

- encode edges with cost 1
- encode non-edges with cost n.

 \Rightarrow exists HC iff TSP cost $\leq n$