EECS 336: Introduction to Algorithms
 Lecture 11 P vs. NP (cont.)
 INDEP-SET, Hamiltonian Cycle

Reading: 8.4-8.5; guide to reductions

Last time:

- $\mathcal{N} \mathcal{P}$-completeness
- 3-SAT $\leq_{\mathcal{P}} I N D E P-S E T$

Today:

- 3 -SAT $\leq_{\mathcal{P}}$ INDEP-SET
- 3 -SAT $\leq_{\mathcal{p}} \mathrm{HC}$

Independent Set

Recall: INDEP-SET (decision problem)
input: $G=(V, E), k$
output: $S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- $|S| \geq k$

Lemma: INDEP-SET is $\mathcal{N} \mathcal{P}$-hard.
Proof: (reduction from 3-SAT)
Part I: forward instance construction
convert 3-SAT instance f into INDEP-SET instance (G, k).
literal j in clause i

- vertices $v_{i j}$ correspond to literals $l_{i j}$
- edges for:
- clause (in triangle)
"at most one vertex selected per clause"
- conflicted literals.
"vertices for conflicting literals cannot be selected"
- "vertex $v_{i j}$ is selected" \Rightarrow "literal $l_{i j}$ is true".
- "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{1} \vee z_{2} \vee z_{3}\right) \wedge$ $\left(\bar{z}_{2} \vee \bar{z}_{3} \vee \bar{z}_{4}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee z_{4}\right)$

Runtime Analysis: linear time (one vertex per literal).

Part II:: reverse certificate construction construct assignment \mathbf{z} from S
(if G has indep. set S size $\geq m$ then f is satisfiable.)
(a) For each z_{r}

- if exists nodes in S are labeled by " z_{r} "

$$
\Rightarrow \text { set } z_{r}=1
$$

- else

$$
\Rightarrow \text { set } z_{r}=0
$$

Note: no two nodes $u, v \in S$ labeled by both z_{r} or \bar{z}_{r}, if so, there is (u, v) edge so S would not be independent.
(b) $f(\mathbf{z})=T$:

- S has $|S|=m$
$\Rightarrow S$ has one vertex per clause.
- for caluse i :
- if $v_{i j} \in S$ is not negated, then i is true.
- if $v_{i j} \in S$ is negated, then i is true.

Part III:: forward certificate construction construct independent set S from z
(if f is satisfiable then G has indep. set size $\geq m$.)

- let S^{\prime} be nodes in G corresponding to true literals.
- if more than one node in S^{\prime} in same triangle drop all but one.

$$
\Rightarrow S
$$

- $|S|=m$.
- for all $u, v \in S$,
- $u \& v$ not in same triangle.
- l_{u} and l_{v} both true

$$
\Rightarrow \text { must not conflict }
$$

\Rightarrow no $\left(l_{u}, l_{v}\right)$ edge in G.

- so S is independent.

Problem: Hamiltonian Cycle

input: $G=(V, E)$ (directed)
output: cycle C to visit each vertex exactly once.

Lemma: hamiltonian cycle is $\mathcal{N} \mathcal{P}$-hard
Proof: (reduction from 3-SAT)
Step 1: construction

- turn 3-SAT formula f in to graph G with hamiltonian cycle iff f is satisfiable.
- idea: variable $=$ isolated path, right-toleft $=$ true, left-to-right $=$ false.
- idea: clause is node, which needs to be hit by at most one literal being true.
- construction:
- left-right path per variable.
- splice in clause nodes.

Step 2: runtime.
Step 3: correctness.

TSP

Lemma 0.1 TSP is $\mathcal{N} \mathcal{P}$-hard.
Proof: reduction from Hamiltonian Cycle

- encode edges with cost 1
- encode non-edges with cost n.
\Rightarrow exists $H C$ iff $T S P$ cost $\leq n$

