EECS 336: Introduction to Algorithms	Lecture $\mathbf{9}$
\mathbf{P} vs. NP	indep set, 3-sat, TSP

Announcements:

- hw4 postponed to next week.

Reading: 8.0-8.3

Last time:

- max flow alg / ford-fulkerson
- duality: max flow $=$ min cut

Today:

- reducitons (cont)
- tractibility and intractibility
- P and NP
- decision problems

Summary of Reduction

Def: $\underline{Y \text { reduces to } X \text { in polynomial time (no- }}$ tation: $Y \leq_{P} X$ if any instance of Y can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of X.

Note: to prove correctness of general reduction, must show that correctness (e.g., optimality) of algorithm for X implies correctness of algorithm for Y.

Def: one-call reduction maps instance of Y to instance of X, solution of Y to solution of X. (also called a Karp reduction)

Note: a one-call reduction gives two algorithms:
(a) from instance y of Y, construct instance x^{y} of X.
(b) from solution $\operatorname{OPT}\left(x^{y}\right)$, construct solution to y with value at least $\mathrm{OPT}\left(x^{y}\right)$

Note: the proof of correctness of a one-call reduction gives one (additional) algorithm:
(c) from solution $\operatorname{OPT}(y)$, construct solution to x^{y} with value at least $\mathrm{OPT}(y)$

Theorem: reduction from "(a) and (b)" is correct if (a), (b), and (c) are correct.

Proof:

- for instance y of Y, let instance x^{y} of X^{Y} be outcome of (a).
- (b) correct $\Rightarrow \mathrm{OPT}(y) \geq \mathrm{OPT}\left(x^{y}\right)$.
- (c) correct $\Rightarrow \mathrm{OPT}\left(x^{y}\right) \geq \mathrm{OPT}(y)$.
$\Rightarrow \mathrm{OPT}(y)=\mathrm{OPT}\left(x^{y}\right)$
\Rightarrow output of reduction has value $\operatorname{OPT}(y)$.

Decision Problems

"problems with yes/no answer"
Example: network flow in (G, c, s, t) with value at least k.

Example: perfect matching in a bipartite graph (A, B, E).

Note: objective value for decision problem is 1 for "yes" and 0 for "no".

Note: (b) and (c) only need to check "yes" instances.

Theorem: perfect matching reduces to network flow decision problem.

Intractibility and completeness

"when is a problem intractable?"
Def: \mathcal{P} is the class of problems that can be solved in polynomial time.
$X \in \mathcal{P}$ iff

$$
\begin{aligned}
& \exists \text { polynomial } p(\cdot), \\
& \exists \operatorname{alg} \mathcal{A}, \\
& \forall \text { instances } x \text { of } X, \\
& \Rightarrow \mathcal{A} \text { solves } x \text { and in time } O(p(|x|))
\end{aligned}
$$

Note: easy to show $X \in \mathcal{P}$, just give \mathcal{A} and prove poly runtime.

Examples: network-flow, matching, interval scheduling, etc.

Three Infamous Problems

Problem 1: Independent Set (INDEPSET)
input: $G=(V, E)$
output: $S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- maximizing $|S|$

Problem 2: Satisfiability (SAT)

input: boolean formula $f(\mathbf{z})$
e.g., $f(\mathbf{z})=\left(z_{1} \vee \bar{z}_{2} \vee x_{3}\right) \wedge\left(z_{2} \vee \bar{z}_{5} \vee\right.$ $\left.z_{6}\right) \wedge \cdots$

- "Yes" if assignment \mathbf{z} with $f(\mathbf{z})=$ T exists

$$
\text { e.g., } \mathbf{z}=(T, T, F, T, F, \ldots)
$$

- "No" otherwise.

Problem 3: Traveling Salesman (TSP)

input:

- $G=(V, E)$, complete graph.
- $c(\cdot)=$ costs on edges.
output: cycle C that
- passes through all vertices exactly once.
- minimizes total cost $\sum_{e \in C} c(e)$.

No polynomial time algorithm is known for any of these problems!

Theory of Intractability

Goal: formal way to argue that no polynomial time algorithm exists (or "unlikely to exist"), i.e., $X \notin \mathcal{P}$.

Challenge: must show that all algorithms fail!

Idea: to show X is difficult, reduce notoriously hard problem Y to X, i.e., reduce from \underline{Y}.

Example: to show new problem X is hard, e.g., reduce TSP to X, i.e., reduce from TSP.

Def: $\underline{Y \text { reduces to } X \text { in polynomial time (no- }}$ tation: $Y \leq_{\mathcal{P}} X$ if any instance of Y can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of X.

Consequences of $Y \leq_{\mathcal{P}} X$:

1. if X can be solved in polynomial time then so can Y.

Example: $X=$ network-flow; $Y=$ bipartite matching.
2. if Y cannot be solved in polynomial time then neither can X.

Decision Problems

Goal: show SAT, INDEP-SET, TSP equivalently hard.

Challenge: SAT, INDEP-SET, TSP problem solutions are very different.

Idea: focus on decision version of problem.
Def: A decision problem asks "does a feasible solution exist?"

Example: satisfiability.
Def: an optimization problem asks "what is the min (or max) value of a feasible solution?"

Def: the decision problem X_{d} for optimization problem X is has input $(x, D)=$ "does instance x of X have a feasible solution with value at most (or at least) D ?"

Examples:

INDEP-SET ${ }_{d}$: set S with $|S| \geq D$
$\operatorname{SAT}_{d}: \mathbf{z}$ such that $f(\mathbf{z})=T$.
TSP_{d} : tour C with $\sum_{c \in C} c(e) \leq D$

Deciding is as hard as optimizing

Theorem: $X \leq_{\mathcal{P}} X_{d}$
Proof: (reduction via binary search)

- given
- instance x of X
- black-box \mathcal{A} to solve X_{d}
- $\operatorname{search}(A, B)=$ find optimal value in $[A, B]$.
- $D=(A+B) / 2$
- $\operatorname{run} \mathcal{A}(x, D)$
- if "yes", $\operatorname{search}(A, D)$
- if "no", $\operatorname{search}(D, B)$

Finding solution is as hard as deciding

Example: satisfiability

1. if f is satisfiable $\exists \mathbf{z}$ s.t. $f(\mathbf{z})=T$
2. guess $z_{n}=T$
3. let $f^{\prime}\left(z_{1}, . ., z_{n-1}\right)=f\left(z_{1}, . ., z_{n-1}, T\right)$
4. if f^{\prime} is satisfiable, repeat (2) on f^{\prime}
5. if f^{\prime} is unsatisfiable,
repeat (2) on $f^{\prime \prime}\left(z_{1}, \ldots, z_{n-1}\right)=$ $f\left(z_{1}, \ldots, z_{n-1}, F\right)$.

Note: since $X_{d}=_{\mathcal{P}} X$, we write " X " but we mean " X_{d} "

A notoriously hard problem

"one problem to solve them all"
Note: all example problem have short certificates that could easily verify "yes" instance.

Def: $\mathcal{N P}$ is the class of problems that have short (polynomial sized) certificates that can easily (in polynomial time) verify "yes" instances.

Historical Note: $\mathcal{N P}=\underline{\text { non-deterministic }}$ polynomial time
"a nondeterministic algorithm could guess the certificate and then verify it in polynomial time"

Note: Not all problems are in $\mathcal{N} \mathcal{P}$.
E.g., unsatisfiability.

Def:

- Problem X is in $\mathcal{N P}$ if exists short easily-verifiable certificate.
- Problem X is $\mathcal{N P}$-hard if $\forall Y \in$ $\mathcal{N} \mathcal{P}, Y \leq \overline{\mathcal{P}} X$.
- Problem X is $\mathcal{N P}$-complete if $X \in \mathcal{N} \mathcal{P}$ and X is $\overline{\mathcal{N} \mathcal{P} \text {-hard. }}$

Lemma: INDEP-SET $\in \mathcal{N} \mathcal{P}$.
Lemma: $\operatorname{SAT} \in \mathcal{N} \mathcal{P}$.
Lemma: TSP $\in \mathcal{N} \mathcal{P}$.
Goal: show INDEP-SET, SAT, TSP are $\mathcal{N} \mathcal{P}$-complete.

- decision problem verifier program $V P$.
- polynomial $p(\cdot)$.
- decision problem instance: x
output:
- "Yes" if exists certificate c such that $V P(x, c)$ has "verified $=$ true" at computational step $p(|x|)$.
- "No" otherwise.

Fact: NP is $\mathcal{N} \mathcal{P}$-complete.
Note: Unknown whether $\mathcal{P}=\mathcal{N} \mathcal{P}$.
Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Plan:

1. $\mathrm{NP} \leq_{\mathcal{P}} \cdots \leq_{\mathcal{P}} 3$-SAT
2. 3 -SAT $\leq \mathcal{P}$ INDEP-SET
3. $3-\mathrm{SAT} \leq_{\mathcal{P}} \mathrm{HC} \leq_{\mathcal{P}} \mathrm{TSP}$

Notorious Problem: NP
input:

