
EECS 336: Introduction to Algorithms Lecture 7
Reductions network flow, reduction, bipartite matching

Reading: 7.1,7.5

Last time:

• Interval Pricing

Today:

• Reductions

• Network flow

• Bipartite matching

1

Reductions

“to solve problem B given solution to prob-
lem A, transform instances from problem B

into instances of A, solve, transform solution
back”

Problem A: Network Flow

“given a network with bandwidth constraints
on links, how much data can we send from
source to sink”

Def: a flow graph G = (V, E) is a directed
graph with:

• c(e) = capacity of edge e

• s ∈ V is source.

• t ∈ V is sink.

Def: a flow f in G is an assignment of flow
to edges “f(e)” satisfying:

• capacity: ∀e, f(e) ≤ c(e)

• conservation: ∀v 6= s, t,∑

e into v

f(e) =
∑

e out of v

f(e)

Def: the value of a flow is
|f | =

∑

e out of s

f(e) =
∑

e into t

f(e)

Problem: Network Flow

input: flow graph G, s, t, c(·).

output: flow f with maximum value.

Example:

s

a

b

t

20

10

30

10

20

Max flow = 30.

Theorem 1: there is an algorithm to com-
pute the max flow in polynomial time.

Theorem 2: if capacities are integral, then
max flow is integral (on each edge).

Problem B: bipartite matching

Def: G = (V, E) is a bipartite if exists par-
titioning of V into A and B s.t.,

• u, v ∈ A ⇒ (u, v) 6∈ E,

• u, v ∈ B ⇒ (u, v) 6∈ E,

Recall: a matching is a set of edges M ⊆ E

each node is connected by at most one edge
in M

• a perfect matching is one where all
nodes are connected by exactly one edge.

• a maximum matching is one with max-
imum cardinality.

Problem: bipartite matching

input: bipartite graph G = (A, B, E)

output: a maximum matching M .

2

Reducing bipartite matching to

max flow

“use max flow alg to solve bipartite match-
ing.”

Steps:

1. convert matching instance into flow in-
stance.

2. run flow alg flow instance.

3. convert flow soln to matching soln with
same value.

4. prove flow soln optimal iff matching soln
optimal.

(a) (convert flow soln to matching soln
with same value)

(b) convert matching soln to flow soln
with same value.

Step 1:

(a) connect s to each v ∈ A with capacity 1.

(b) connect t to each u ∈ B with capacity 1.

(c) set capacity of each edge e ∈ E to 1.

Step 2: compute (integral) max flow f

Step 3: matching is M = {e ∈ E : f(e) = 1}

• |M | = |f |

• (capacity constraints imply matching)

Step 4: Proof:

• any matching M ′ can be turned into a
flow f ′ with |f ′| = |M ′|

(send form s to each matched edge to t

one unit of flow)

• any integral flow f ′ can be turned into a
matching M ′ with |f ′| = |M ′|

(Step 3)

⇒ size of output matching = value of max
flow = size of max matching.

Runtime

Tmatching(n, m) = O(n + m) + Tmax flow(n, m)

3

Reductions

Def: Y reduces to X in polynomial time (no-
tation: Y ≤P X if any instance of Y can be
solved in a polynomial number of computa-
tional steps and a polynomial number of calls
to black-box that solves instances of X.

Note: to prove correctness of general reduc-
tion, must show that correctness (e.g., opti-
mality) of algorithm for X implies correctness
of algorithm for Y .

Def: one-call reduction maps instance of Y

to instance of X, solution of Y to solution of
X. (also called a Karp reduction)

Note: a one-call reduction gives two algo-
rithms:

(a) construction of XY instance from Y in-
stance.

(b) construction of Y solution from XY so-
lution (with same value).

Note: the proof of correctness of a one-call
reduction gives one algorithm:

(c) construction of XY solution from Y so-
lution (with same value).

(Only need to consider XY instances not
general X instances.)

Theorem: reduction from “(a) and (b)” is
correct if (a), (b), and (c) are correct.

Proof:

• for instance y of Y , let instance xyofXY

be outcome of (a).

• (b) correct ⇒ OPT(y) ≥ OPT(xy).

• (c) correct ⇒ OPT(xy) ≥ OPT(y).

⇒ OPT(y) = OPT(xy)

⇒ output of reduction has value OPT(y).

4

