EECS 336: Introduction to Algorithms Lecture 8
Network Flow Ford-fulkerson, duality, minimum cut

Reading: 7.0-7.5
Announcements: midterm tuesday
e closed book, closed notes.
e one handwritten cheat sheet.
e dynamic programming.
e focus:
e writing Parts I-II.

e writing Parts I1I-IV
(given Parts I-1I).

Last time:

e reductions

e Network flow defn

e Bipartite matching

e reduction: matching = flow.
Today:

e Network flow

e duality: max flow = min cut

Network Flow

Example: a
10

10
Max flow = 30. b

20

Idea: repeatedly pus flow on s-t paths until
can’t push anymore.

Example: Push 20 on P = (s, a,b,1)

0206 10

Y

b
Note: when pushing flow, we can undo flow

already pushed.

Def: the residual graph Gy for flow f on
G is the graph that represents capacity con-
straints for flows after pushing f

Example: Gy a

b
Construction: Gy = (V, Ef),c(-):
For each e = (u,v) € E,

(if f(e) = c(e) discard e)

o if f(e) < c(e),
e add e to E;
o cs(e) =cle) = fle)

o if f(e) >0
o let ¢ = (v,u)
e add € to Ef
o cr(ef) = c(e) + fle)

Def: the residual capacity of e in Ey is cy(e).

Def: the bottleneck capacity of s-t path P in
G is minimm residual capacity of any edge
in P.

Def: an augmenting path P in a residual
graph G is a path with positive bottleneck
capacity.

Example: Gy after pushing 20 on P =
(s,a,b,t) ¢
20 10
S t
10 20

Augmenting path P =b(s, b, a,t) with bottle-
neck capacity 10.

Augment f with flow of 10 on P:

e f(s,b) «— f(s,b)+10

e f(a,b) — f(a,b) —10

e f(a,t) — f(a,t)+ 10
Note: can find augmenting paths with BFS.
Algorithm: Augment f with P

e b = bottleneck(P, Gy).

e for e in P:
e if ¢ a foward edge:
fle) — fle) +b
e if e a back edge:
let ¢/ = back edge
f(e') — fle) —b.

Example: G; after augmenting with P =
(s,b,a,t) a

20 10

10 20
No more augmenting paths!
Algorithm: Ford-Fulkerson
o f <« null flow.
o Gy —G.
e while exists s-t path P in G (by BFS)
e augment f with P.
e (Gt « residual graph for G and f.

e return f.

Runtime

Each iteration:
e construct Gy: O(m).
e find P: O(m).
e augmentation: O(n).

o (Total: O(m))

Fact: the value of flow increases by bottle-
neck capacity in each iteration.

Theorem: if C'is upper bound on max flow
and all capacities are integral then algorithm
terminates in O(C') iterations with runtime

O(mC)
Proof: (by “measure of progress”)
1. bottleneck capacities integral:
e current residual capacities integral
= integral bottleneck capacity

= next residual capacities inte-
gral

e induction!
2. bottleneck capacities > 1
3. flow increases by 1 each iteration
4. terminates in < C iterations.
QED
Note: C' < o .cle).

Note: Clever choice of augmenting paths
gives runtime O(m?log C).

Correctness
1. f is feasible.
2. f is optimal.

Lemma: f is feasible.

Proof: induction!

Max flow = min cut Proof: (by picture, see text for formal proof)

Proof: (of Claim 1)
“duality: for maximization problem there is Fyrom Lemma:

corresponding minimization problem” |f| = Z fle) — Z f(e)
Recall: an s-t cut (A, B) is partition of V' conord cimtod
into A and B with s € Aand t € B. < Z f(e)

e out of A
Def: the capacity of cut (A, B) is < Z c(e)

C(A, B) — Z C(e) e out of A
¢ from A to B Proof: (o?éié%mB%) no s-t path in Gy:

Goal: flow algorithm is optimal e let A* be vertices connected to s.

Proof Approach: primal = dual. (B* =V \ A%)
Claim 1: any flow f and any cut (4,B) ® (4%, B")is cut:
then |f| < c(A B). o scS*

value of flow ol cC B*
Claim 2: for flow f* with no augment- o for all e = (u,v) out of A* in G
ing path in G4« then exists cut (A*, B*) with ’
|£*| = c(A*, BY) * &Gy
Picture: = [7(e) =c(e)

e for all e = (u,v) in to A* in G:
* cuts *% o ' =(v,u) ¢ Gy
*okok K *k = f*e)=0
Kkok kKKK
" e Lemma
ootk ok = |fl= > fleg— > [f(e)
* % * ok % e out of A* e in to A*
* flows sokok = > cle)—0
e out of A*
= c¢(A*, BY)
Proof: (of theorem)
Summary
o allflows|f| < (A B*) = |f*].
by Claim 1 by Claim 2 e algorithm: augmenting paths in residual
graph.

Corollary: value of max flow = capacity of)
min cut e correctness: max-flow min-cut theorem.

e many problems can be reduced to net-
Lemma: for any flow f, cut (A4, B) then,

work flows.
/1= Z Fle) = Z fle) e entire courses on network flows.
e out of A einto A

