Last time:

• Shortest-paths (Bellman-Ford Alg)

Today:

 \bullet interval pricing

Example: Interval Pricing

input: • n customers $S = \{1, \ldots, n\}$

 \bullet T days.

• i's ok days: $I_i = \{s_i, \ldots, f_i\}$

• *i*'s value: $v_i \in \{1, \dots, V\}$

output: • prices p[t] for day t.

• consumer i buys on day $t_i = \operatorname{argmin}_{t \in I_i} p[t]$ if $p[t_i] \leq v_i$.

• revenue = $\sum_{i \text{ that buys}} p[t_i]$.

• goal: maximize revenue.

Example:

Question: What is "first decision we can make" to separate into subproblems?

Answer: day and price of smallest price.

Example:

Step I: identify subproblem in English

OPT(s, f, p)

= "optimal revenue from intervals strictly between s and f with minimum price at least p"

Step II: write recurrence

OPT(s, f, p)

 $= \max_{s < t < f, q \ge p} \operatorname{Rev}(s, t, f, p)$ $+ \operatorname{OPT}(s, t, q)$ $+ \operatorname{OPT}(t, f, q).$

 $\operatorname{Rev}(s,t,f,p)=$ "the revenue from customers with interals within [s,t] and overlapping t who are offered price p" with

Step III: value of optimal solution

• optimal interval pricing = OPT(1, T, 0)

Step IV: base case

- OPT(s, s + 1, p) = 0.
- OPT(s, t, P + 1) = 0.

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

- precompute Rev(t, p) in O(TVn) time.
- size of table: $O(T^2V)$
- cost of combine: O(TV).
- total: $O(T^3V^2)$ (assuming $n < T^2V$).

Note: without loss of generality T, V are O(n) so runtime is $O(n^5)$

Note: can be improved to $O(n^4)$ with slightly better program.

Step VII: implementation

(exercise)