# EECS 336: Introduction to Algorithms <br> Lecture 6 <br> Dynamic Programming (cont.) 

## Last time:

- Shortest-paths (Bellman-Ford Alg)

Today:

- interval pricing


## Example: Interval Pricing

input: - $n$ customers $S=\{1, \ldots, n\}$

- $T$ days.
- $i$ 's ok days: $I_{i}=\left\{s_{i}, \ldots, f_{i}\right\}$
- $i$ 's value: $v_{i} \in\{1, \ldots, V\}$
output: - prices $p[t]$ for day $t$.
- consumer $i$ buys on day $t_{i}=$ $\operatorname{argmin}_{t \in I_{i}} p[t]$ if $p\left[t_{i}\right] \leq v_{i}$.
- revenue $=\sum_{i \text { that buys }} p\left[t_{i}\right]$.
- goal: maximize revenue.


## Example:



Question: What is "first decision we can make" to separate into subproblems?

Answer: day and price of smallest price.
Example:


## Step I: identify subproblem in English

$$
\begin{aligned}
& \mathrm{OPT}(s, f, p) \\
& =\text { "optimal revenue from intervals strictly } \\
& \text { between } s \text { and } f \text { with minimum price at } \\
& \quad \text { least } p "
\end{aligned}
$$

## Step II: write recurrence

$\operatorname{OPT}(s, f, p)$

$$
\begin{aligned}
& =\max _{s<t<f, q \geq p} \operatorname{Rev}(s, t, f, p) \\
& \quad+\operatorname{OPT}(s, t, q) \\
& \quad+\operatorname{OPT}(t, f, q)
\end{aligned}
$$

$\operatorname{Rev}(s, t, f, p)=$ "the revenue from customers with interals within $[s, t]$ and overlapping $t$ who are offered price $p "$ with

## Step III: value of optimal solution

- optimal interval pricing $=\operatorname{OPT}(1, T, 0)$


## Step IV: base case

- $\operatorname{OPT}(s, s+1, p)=0$.
- $\operatorname{OPT}(s, t, P+1)=0$.


## Step V: iterative DP

(exercise)

## Correctness

induction

## Step VI: Runtime

- precompute $\operatorname{Rev}(t, p)$ in $O(T V n)$ time.
- size of table: $O\left(T^{2} V\right)$
- cost of combine: $O(T V)$.
- total: $O\left(T^{3} V^{2}\right)$ (assuming $n<$ $\left.T^{2} V\right)$.

Note: without loss of generality $T, V$ are $O(n)$ so runtime is $O\left(n^{5}\right)$

Note: can be improved to $O\left(n^{4}\right)$ with slightly better program.

## Step VII: implementation

(exercise)

