Reading: 6.4, 6.8,

"guide to dynamic programming" (Canvas)

Last time:

- Dynamic Programming (a derivation)
- Weighted interval scheduling

Today:

- Dynamic Programming (a framework)
- Integer Knapsack
- Interval Pricing.

Interval Pricing

input: • n customers $S = \{1, \dots, n\}$

- \bullet T days.
- i's ok days: $I_i = \{s_i, \dots, f_i\}$
- i's value: $v_i \in \{1, \dots, V\}$

output: • prices p[t] for day t.

- consumer i buys on day $t_i = \operatorname{argmin}_{t \in I_i} p[t]$ if $p[t_i] \leq v_i$.
- revenue = $\sum_{i \text{ that buys}} p[t_i]$.
- goal: maximize revenue.

Suggested Approach

I. identify subproblem in english

OPT(i) = "optimal schedule of $\{i, ..., n\}$ (sorted by start time)"

II. specify subproblem recurrence

 $\begin{array}{lll}
\text{OPT}(i) &= & \max(\text{OPT}(i + 1), v_i + \\
\text{OPT}(\text{next}(i)))
\end{array}$

III. solve original problem (from subproblems)

Optimal Interval Schedule = OPT(1)

IV. identify base case

$$OPT(n+1) = 0$$

V. write iterative DP.

(see last thurs)

VI. analyze runtime.

 $O(n \log n)$

VII. (for homework) implement iterative DP.

(any language most students can read. e.g., Python)

Dynamic Programming: Succinct description: Finding Subproblems

"find a first decision you can make which breaks problem into pieces that

- (a) do not interact (across subproblems)
- (b) can be describe succinctly."

- remaining objects $\{j, \ldots, n\}$ represented
- remaining capacity represented by $D \in$ $\{0,\ldots,C\}.$

Example: Integer Knapsack

input:

- $n \text{ objects } S = \{1, ..., n\}$
- $s_i = \text{size of object } i \text{ (integer)}.$
- v_i = value of object i.
- capacity C of knapsack (integer)

output:

- subset $K \subseteq S$ of objects that
 - (a) fit in knapsack together (i.e., $\sum_{i \in K} s_i \leq C$)
 - (b) maximize total value (i.e., $\sum_{i \in K} v_i$)

Question: What is "first decision we can make" to separate into subproblems?

Answer: Is item 1 in the knapsack or not?

• if 1 in knapsack:

value of knapsack is v_i + optimal knapsack value on $S \setminus \{1\}$ with capacity $C - s_1$.

• if 1 not in knapsack:

value of knapsack is optimal knapsack on $S \setminus \{1\}$ with capacity C.

Step I: identify subproblem in English

= "value of optimal size
$$D$$
 knapsack on $\{j, \ldots, n\}$ "

$v_j + \text{OPT}(j+1, D-s_j)$

(b) else,

$$\mathrm{memo}[j,D] = \mathrm{memo}[j+1,D]$$

3. return memo[1, C]

Step II: write recurrence

$$OPT(j, D) = \max(\underbrace{v_j + OPT(j+1, D-s_j)}_{\text{if } s_j \le D}, OPT(j+1, D))$$

Justification: either i is in or not (exhaustive).

VI: Runtime

$$T(n, C) = O(\# \text{ of subprobs} \times \text{cost per subprob})$$

= $O(nC)$.

Note: not polynomial time.

VII: implementation

Step III: solve original problem

Value of Optimal Knapsack = OPT(1, C)

"isolate previously made decisions"

Alternative Approach

Suppose:

(see "guide")

- already processed jobs $\{1, \ldots, i\}$, and
- used capacity D.

Note: previous decisions succinctly summarized by i and D

Step IV: base case

$$OPT(n+1, D) = 0 \text{ (for all } D)$$

Step V: iterative DP

Algorithm: knapsack

- 1. $\forall D$, memo[n+1, D] = 0.
- 2. for i = n down to 1, for D = C down to 0,
 - (a) if i fits (i.e., $s_i \leq D$) $\operatorname{memo}[j, D] = \operatorname{max}[\operatorname{memo}[j+1, D],$

Part I: subproblem in english

 $\mathrm{OPT}(i,D)=$ "value from remaining knapsack if

- already processed jobs $\{1, \ldots, i\}$
- \bullet used capacity D."

Part II: recurrence

$$\begin{aligned} & \text{OPT}(i,D) &= \max(v_i + \text{OPT}(i+1,D + s_i), OPT(i+1,D)) \\ & \text{(assuming } D + s_i \leq C) \end{aligned}$$

. . .

Example: Interval Pricing

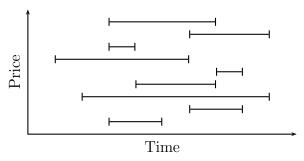
input: • n customers $S = \{1, \ldots, n\}$

- T days.
- i's ok days: $I_i = \{s_i, \ldots, f_i\}$
- i's value: $v_i \in \{1, \dots, V\}$

output: • prices p[t] for day t.

- consumer i buys on day t_i = $\underset{t \in I_i}{\operatorname{argmin}}_{t \in I_i} p[t]$ if $p[t_i] \leq v_i$.
- revenue = $\sum_{i \text{ that buys}} p[t_i]$.
- goal: maximize revenue.

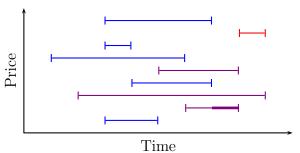
Example:



Question: What is "first decision we can make" to separate into subproblems?

Answer: day and price of smallest price.

Example:



Step I: identify subproblem in English

OPT(s, f, p)

= "optimal revenue from intervals strictly between s and f with minimum price at least p"

Step II: write recurrence

$$OPT(s, f, p)$$

$$= \max_{s < t < f, q \ge p} Rev(t, p)$$

$$+ OPT(s, t, q)$$

$$+ OPT(t, f, q).$$

Step III: base case

- OPT(s, s + 1, p) = 0.
- OPT(s, t, P + 1) = 0.

Step IV: iterative DP

(exercise)

Correctness

induction

Runtime

- precompute Rev(t, p) in O(TVn) time.
- size of table: $O(T^2V)$
- cost of combine: O(TV).
- total: $O(T^3V^2)$ (assuming $n < T^2V$).

Note: without loss of generality T, V are O(n) so runtime is $O(n^5)$

Note: can be improved to $O(n^4)$ with slightly better program.