EECS 336: Introduction to Algorithms
Dynamic Programming (cont)

Lecture 10

Integer Knapsack, Interval pricing

Reading: 6.4, 6.8,

“guide to dynamic programming” (Canvas)

L.

Last time:

e Dynamic Programming (a derivation)

e Weighted interval scheduling

II.
Today:
e Dynamic Programming (a framework)
e Integer Knapsack ML
e Interval Pricing.
IV.
Interval Pricing
v
input: e n customers S ={1,...,n}
e T days. VI
e s ok days: I; = {s;,..., fi}
e i’s value: v; € {1,...,V} VILI
output: e prices p[t] for day t.
e consumer ¢ buys on day t; =
argmin, ;. p[t] if p[t;] < v;.
e revenue = iy Pl
e goal: maximize revenue.

Suggested Approach

identify subproblem in english

OPT(i) “optimal schedule of

{i,...,n} (sorted by start time)”

specify subproblem recurrence

OPT(1)
OPT(next(i)))

max(OPT(i + 1),v; +

solve original problem (from subprob-
lems)

Optimal Interval Schedule = OPT(1)
identify base case

OPT(n+1)=0

. write iterative DP.

(see last thurs)

analyze runtime.

O(nlogn)

(for homework) implement iterative DP.

(any language most students can read.
e.g., Python)

Dynamic Programming: Succinct description:

Finding Subproblems

“find a first decision you can make which
breaks problem into pieces that

(a) do not interact (across subproblems)

(b) can be describe succinctly.”

Example: Integer Knapsack

input: e n objects S ={1,...,n}
e s; = size of object i (integer).
e v; = value of object i.
e capacity C of knapsack (integer)
output:
e subset K C S of objects that

(a) fit in knapsack together
(i.e., ZiEK s < C)

(b) maximize total value

(i.e., ZiEK UZ')

Question: What is “first decision we can
make” to separate into subproblems?

Answer: Is item 1 in the knapsack or not?

e if 1 in knapsack:

value of knapsack is v; + optimal
knapsack value on S\ {1} with ca-
pacity C' — s;.

e if 1 not in knapsack:

value of knapsack is optimal knap-
sack on S\ {1} with capacity C.

e remaining objects {j,...,n} represented
by ((j”

e remaining capacity represented by D €

(0,....C).

Step I: identify subproblem in
English
OPT(j, D)

= “value of optimal size D knapsack on

{j,...,n}”

Step II: write recurrence

OPT(j, D)
= max(v; + OPT(j +1,D — s;), OPT(j +

if s; <D

1,D))

Justification: either 4 is in or not (exhaus-
tive).

Step III: solve original problem

Value of Optimal Knapsack = OPT(1, C')

Step IV: base case

OPT(n+1,D) =0 (for all D)

Step V: iterative DP

Algorithm: knapsack
1. VD, memo[n + 1, D] = 0.
2. for i = n down to 1,
for D = C' down to 0,
(a) if 7 fits (i.e., s; < D)

memolj, D] = max[memo[j + 1, D],

v+ OPT(j + 1,D — s,)]
(b) else,
memo[j, D] = memol[j + 1, D]

3. return memoll, C]

VI: Runtime
T'(n,C) = O(# of subprobs x cost per subprob)
= 0(nC).

Note: not polynomial time.

VII: implementation

(see “guide”)

Alternative Approach

“isolate previously made decisions”
Suppose:
e already processed jobs {1,...,i}, and
e used capacity D.

Note: previous decisions succinctly summa-
rized by ¢ and D

Part I: subproblem in english

OPT(i, D) = “value from remaining knap-
sack if

e already processed jobs {1,...,i}

e used capacity D.”

Part II: recurrence

OPT(i,D) = max(v; + OPT(i + 1,D +
si), OPT(i+1,D))

(assuming D + s; < C)

Example: Interval Pricing

input: e n customers S ={1,...,n}
e T days.
e s ok days: I; = {s;,..., fi}
e 'svalue: v; € {1,...,V}

e prices plt] for day t.

e consumer ¢ buys on day ¢, =
argmin, ;. p[t] if p[t;] < v;.

e revenue =y ., . buysp[ti]-

e goal: maximize revenue.

Example:
—_
—
g : |
= —
A —_
—
—
Time

Question: What is “first decision we can
make” to separate into subproblems?

Answer: day and price of smallest price.

Example:
—
—
o |
=]
—~
A L —
| —
—
Time

Step I: identify subproblem in
English

OPT(s, f,p)

= “optimal revenue from intervals strictly
between s and f with minimum price at
least p”

Step II: write recurrence

OPT(s, f,p)

= MaX,<i<f,q>p ReV(E, p)
+ OPT(t, f,q).

Step III: base case

e OPT(s,s+1,p) =0.
o OPT(s,t,P+1) =0.

Step IV: iterative DP

(exercise)

Correctness

induction

Runtime

e precompute Rev(t,p) in O(T'Vn) time.
e size of table: O(T?V)

e cost of combine: O(TV).

e total: O(T?V?) (assuming n < T?V).

Note: without loss of generality T,V are
O(n) so runtime is O(n®)

Note: can be improved to O(n') with
slightly better program.

