EECS 336: Introduction to Algorithms
 Lecture 3 Dynamic Programming
 Weighted Interval Scheduling

Reading: 6.0-6.3
Last time:

- philosophy
- computational tractability
- runtime analysis \& big-oh

Today:

- Dynamic Programming (a derivation)
- Weighted interval scheduling

Dynamic Programming

"divide problem into small number of subproblems and memoize solution to avoid redundant computation"

Example: Weighted Interval Scheduling

input:

- n jobs $J=\{1, \ldots, n\}$
- $s_{i}=$ start time of job i
- $f_{i}=$ finish time of job i
- $v_{i}=$ value of job i
compatibility constraint: Only one job can run at once.
output: Schedule $S \subseteq J$ of compatible jobs with maximum total value.

Find a First Decision

"make progress towards a solution"
Idea: job i is either in $\operatorname{OPT}(J)$ or not.

1. let $J^{\prime}=$ jobs compatible with i in J.
2. let $V=$ value of OPT if " $i \in \operatorname{OPT}(j)$ ".

$$
=v_{i}+\mathrm{OPT}\left(J^{\prime}\right)
$$

3. let $V^{\prime}=$ vale of OPT if " $i \notin \operatorname{OPT}(j)$ "

$$
=\mathrm{OPT}(J \backslash\{i\})
$$

4. return $\operatorname{OPT}(J)=\max \left(V, V^{\prime}\right)$.

Note: subproblems: schedule J^{\prime} and $J \backslash\{i\}$.
Recurrence: $\quad T(n)=2 T(n-1)+1$

Challenge 1: redundant computation

Example:

|----------|
2

$T(n)=O\left(2^{n}\right)$

Note: OPT (\{3\}) ~ c a l l e d ~ t w i c e ! ~
Solution: memorize
"when computing the value of a subproblem save the answer to avoid computing it again"
Result: runtime $=\#$ of subproblem \times cost to combine.

Challenge 2: could have too many sub- Recursive Memoized Algorithm problems.
(could be exponential!) Algorithm: Weighted Interval Scheduling:
Solution: require "succinct description" of subproblems.

Idea: for interval scheduling, process jobs in order of start time so subproblems suffixes of order.

- sort jobs by increasing start time, $s_{1} \leq$ $s_{2} \leq \cdots \leq s_{n}$.
- let next $[i]$ denote job with earliest start time after i finishes. (if none, set $\operatorname{next}[i]=n+1)$
- subproblems when processing job 1:
- $J^{\prime}=\{\operatorname{next}[i], \operatorname{next}[i]+1, \cdots, n\}$
- $J \backslash\{i\}=\{2,3, \ldots, n\}$
- $\operatorname{suffix}\{\mathrm{j}, \ldots, \mathrm{n}\}$ is succinctly described by " j ".

1. sort jobs by increasing start time.
2. initialize array next $[i]$.
3. initialize $\operatorname{OPT}[i]=\emptyset$ for all i.
4. initialize $\operatorname{OPT}[n+1]=0$.
5. compute OPT(1).

Subroutine: $\mathrm{OPT}(i)$

1. if OPT $[i] \neq \emptyset$, return $\operatorname{OPT}[i]$.
2. $\mathrm{OPT}[i] \leftarrow$ $\max \left(v_{i}+\right.$ OPT[next[i]], OPT[i+1]).
3. return OPT $[i]$.

Correctness

" $\operatorname{OPT}(i)$ " is correct (by induction on i)

Runtime Analysis

- n subproblems
- constant time to combine
- initialization: sorting \& precomputing 'next' array

Runtime: $O(n)+$ initialization $=O(n \log n)$

Iterative DPs

"fill in memoization table from bottom to top"
Algorithm: iterative weighted interval scheduling

1. $\operatorname{OPT}[n+1]=0$.
2. for $i=n$ down to 1 .
$\operatorname{OPT}[i]$
OPT[next[i]],
$=$
OPT $[i+1])$.$\quad \max \left(v_{i} \quad+\right.$

Finding Optimal Schedule

"traverse memoization table to find schedule"
Algorithm: schedule
$i=1$
while $i<n$
if $\operatorname{OPT}[i+1]<v_{i}+\operatorname{OPT}[n e x t[i]]$ schedule $i ; i \leftarrow \operatorname{next}(i)$.
else

$$
i \leftarrow i+1 .
$$

endif
endwhile

Key Ideas of Dynamic Programming

Subproblems must be:

1. succinct
(only a polynomial number of them)
2. efficiently combinable.
3. depend on "smaller" subproblems (avoid infinite loops), e.g.,

- process elements "once and for all"
- "measure of progress/size".

Seven Part Approach

I. identify subproblem in english
$\mathrm{OPT}(i)=$ "optimal schedule of $\{i, \ldots, n\}$
(sorted by increasing start time)"
II. specify sumbroblem recurrence (argue correctness)
$\operatorname{OPT}(i)=\max \left(\operatorname{OPT}(i+1), v_{i}+\right.$ OPT(next(i)))
III. solve the original problem from subproblems

Optimal Interval Schedule $=$ OPT(1)
IV. identify base case
$\operatorname{OPT}(n+1)=0$
V. write iterative DP.
VI. runtime analysis.

$$
O(n)+\text { initialization }=O(n \log n)
$$

VII. implement in your favorite language (Python!)

