EECS 336: Introduction to Algorithms
 Lecture X Final Review

Reading: All chapters except 9, 10, 12, and 13.

Problems and Algorithms

- Maximum Network Flow (FordFulkerson)
- Augmenting Paths in Residual Graphs
- $O(n C)\left(\right.$ or $O\left(m^{2} \log C\right)$ if clever)
- Bipartite Matching
- reduction to network flow
- $O\left(n^{2}\right)$
- NP
- input: verifier program V
- does certificate exist that program verifies.
- NP is NP-complete.
- CIRCUIT-SAT
- exists input to boolean circuit to make it output true?
- NP \leq_{P} CIRCUIT-SAT
- 3-SAT
- exists assignment to veriables to satisfy 3 -SAT formula.
- CIRCUIT-SAT $\leq_{P} 3$-SAT
- INDEP-SET
- subset of non-adjacent vertices with largest cardinality.
- 3 -SAT \leq_{P} INDEP-SET
- Vertex Cover
- subset of vertices that cover all edges.
- $\operatorname{INDEP-SET~}={ }_{P}$ Vertex Cover
- Hamiltonian Cycle
- exists tour in graph $=$ cycle that visits each vertex exactly once.
- 3-SAT \leq_{P} HAMILTONIANCYCLE.
- TSP
- find cheapest cost tour
- HAMILTONIAN-CYCLE \leq_{P} TSP.
- not approximable to any factor.
- METRIC-TSP
- costs obey triangle inequality.
- 2-approximation via MST.
- Knapsack with Integer Sizes (or Values)
- DP.
- $O(n C)$ or $O\left(n^{2} v_{\max }\right)$.
- pseudo-polynomial time.
- Knapsack (general)
- NP-complete
- 2-approximation via "Greedy or Max" (O(nlogn))
- PTAS via Integer-Size Knapsack DP $\left(O\left(n^{3} / \epsilon\right)\right)$

Techniques

- greedy
- divide and conquer
- dynamic programming
- always write subproblem in english.
- reduction (X to Y)
- turn instance of X into instance of Y
- iff.
- NP-completeness
- in NP.
- NP-hardness reduction:
- construction
- runtime of construction
- correctness of construction (iff)
- algorithms in reductions:

	3-SAT		INDEP-SET
input:	f	\Rightarrow	G, D
output:	z	\Leftrightarrow	S

- approximation (maximization)
- upper bound on OPT
- lower bound on Alg

Algorithm Design Flow Chart

