EECS 336: Introduction to Algorithms Approximation Algorithms knapsack, pseudo-

ns Lecture 19 knapsack, pseudo-polynomial time, PTAS

Reading: 11.8

Announcements:

• hw due today, no extensions.

• exam thursday in class (same procedure as midterm).

• review session, Wednesday, 5-7pm, Tech LR3.

Last Time:

• approximation

• metric TSP

• knapsack

Today:

• pseudo polynomial time

• integer knapsack

• knapsack $(1 + \epsilon)$ approx.

Def: \mathcal{A} is an β -approximation the value of its solutions is at least OPT/β (maximization problems)

Recall: knapsack problem

input:

 \bullet *n* objects

• sizes s_i (non-negative real number)

• values v_i

• capacity C.

output: subset S that

• fits: $\sum_{i \in S} s_i \leq C$

• maximizes values: $\sum_{i \in S} v_i$.

Fact: optimal fractional knapsack (FOPT) ≥ optimal integral knapsack (OPT)

Algorithm: Max or Greedy by value/size

Lemma: alg is 2-approximation.

Proof: 2 ALG \geq MAX + GREEDY \geq FOPT \geq OPT.

Pseudo-polynomial Time

"polynomial if numbers in input are written in unary (not binary)"

Integer Knapsack

input:

- $n \text{ objects } S = \{1, ..., n\}$
- $s_i = \text{size of object } i \text{ (integer)}.$
- v_i = value of object i.
- \bullet capacity C of knapsack (integer)

output:

- subset $K \subseteq S$ of objects that
 - (a) fit in knapsack together (i.e., $\sum_{i \in K} s_i \leq C$)
 - (b) maximize total value (i.e., $\sum_{i \in K} v_i$)

Greedy fails, e.g.,

• largest value/size:

$$\mathbf{v} = (C/2 + 2, C/2, C/2).$$

$$\mathbf{s} = (C/2 + 1, C/2, C/2).$$

• smallest value/size:

$$\mathbf{v} = (1, C/2, C/2).$$

$$\mathbf{s} = (2, C/2, C/2).$$

Find a subproblem:

- consider object $i \in S$.
- if i in knapsack:

value of knapsack is v_i + optimal knapsack value on $S \setminus \{i\}$ with capacity $C - s_i$.

 \bullet if i not in knapsack:

value of knapsack is optimal knapsack on $S \setminus \{i\}$ with capacity C.

Succinct description:

- remaining objects $\{j, \ldots, n\}$ represented by "j"
- remaining capacity represented by $D \in \{0, \ldots, C\}$.

Step I: identify subproblem in English

OPT(j, D)

= "value of optimal size D knapsack on $\{j, \ldots, n\}$ "

Step II: write recurrence

OPT(j, D)

$$= \max(\underbrace{v_j + \text{OPT}(j+1, D-s_j)}_{\text{if } s_j \le D}, \text{OPT}(j+1, D))$$

Step III: base case

$$OPT(n+1, D) = 0$$
 (for all D)

Step IV: iterative DP

Algorithm: knapsack

- 1. $\forall D, \text{ memo}[n+1, D] = 0.$
- 2. for i = n down to 1,

for
$$D = C$$
 down to 0,

(a) if
$$i$$
 fits (i.e., $s_i \leq D$)
$$\operatorname{memo}[j, D] = \max[\operatorname{OPT}(j+1, D),$$

$$v_j + \text{OPT}(j+1, D-s_j)$$

(b) else,

$$memo[j, D] = OPT(j + 1, D)$$

3. return memo[1, C]

Correctness

induction

Runtime

$$T(n, C) = O(\# \text{ of subprobs} \times \text{cost per subprob})$$

= $O(nC)$.

Note: Knapsack DP is $\underline{\text{pseudo-polynomial}}$ time.

Polynomial Time Approximation Scheme (PTAS)

"for any constant ϵ , get $(1+\epsilon)$ -approximation algorithm in polynomial time."

Note: often pseudo-polynomial time alg can be converted into PTAS by rounding..

Knapsack PTAS

Goal: output $(1 + \epsilon)$ -approximation to optimal knapsack value.

Idea: round so that numbers are integers in range from 0 to poly(n).

Recall: for old knapsack dynamic program, need sizes to be integer, but approximation would allow for rounding values not sizes.

Approach:

- 1. write new dynamic program that is pseudo-polynomial in values not capacitiy. $O(n^2v_{\rm max})$
- 2. round values to multiples of $\epsilon v_{\text{max}}/n$ (range from 0 to n/ϵ .)
- 3. solve dynamic program on rounded values.

Value-based Knapsack DP

Idea: instead of maximizing value, let's minimize size.

Step 1: Subproblem

MinSize(i, V) = smallest total size of subset of $\{i, \ldots, n\}$ with total value at least V.

Step 2: Recurrence

 $\operatorname{MinSize}(i,V)$

=
$$\max\{s_i + \text{MinSize}(i+1, \max\{V-v_i, 0\}),$$

 $\text{MinSize}(i+1, V)\}$

Step 3: Base case

$$\operatorname{MinSize}(n+1, V) = \begin{cases} 0 & \text{if } V = 0 \\ \infty & \text{o.w.} \end{cases}$$

Step 4: Invocation

1.
$$V \leftarrow \sum_{i} v_i$$

2. while
$$MinSize(1, V) > C$$

$$V \leftarrow V - 1$$

3. output V.

Theorem: Alg has pseudo-polynomial runtime $O(n^2v_{\text{max}})$ if v_i s are integer.

Proof: table size $= n \times \sum_{i} v_i \le n \times nv_{\text{max}}$

Polynomial Time Approximation Scheme

Algorithm: Knapsack $(1 + \epsilon)$ -approx

- 1. round v_i up to multiple of $\epsilon v_{max}/n \to \tilde{v}_i$
- 2. divide \tilde{v}_i by $\epsilon v_{max}/n \to \hat{v}_i$ (integer)
- 3. solve integral knapsack on $\hat{v}_1, \dots, \hat{v}_n \rightarrow S$
- 4. output $\max(v_{\max}, \sum_{i \in S} v_i)$

Correctness

Lemma: Alg is optimal for \hat{v}_i s and \tilde{v}_i s.

Proof: via correctness of DP.

Lemma: Alg is polynomial in n (for const. ϵ)

Proof:

•
$$\hat{v}_{max} = v_{max} \times \frac{n}{\epsilon v_{max}} = n/\epsilon$$

• runtime is
$$O(n^2 \hat{v}_{max}) = O(n^3/epsilon) = O(n^3).$$

Lemma: Alg is $(1 + \epsilon)$ -approx for v_i s.

Proof:

1. lower bound on OPT

$$\begin{split} OPT &= \sum_{i \in S^*} v_i \quad \text{(OPT's actual values)} \\ &\leq \sum_{i \in S^*} \tilde{v}_i \quad \text{(OPT's rounded values)} \\ &\leq \sum_{i \in S} \tilde{v}_i \quad \text{(ALG's rounded values)} \end{split}$$

Last step by optimality of Alg on \tilde{v} s and \hat{v} s.

2. upper bound on algorithm

• bound 1:
$$Alg = \sum_{i \in S} v_i$$
(Algs's actual values)
$$= \sum_{i \in S} \tilde{v}_i - \sum_{i \in S} \underbrace{(\tilde{v}_i - v_i)}_{\leq \epsilon v_{max}/n}$$

$$\geq \sum_{i \in S} \tilde{v}_i - n \times \epsilon v_{max}/n$$

$$= \sum_{i \in S} \tilde{v}_i - \epsilon v_{max}$$

• bound 2: Alg $\geq v_{max}$.

3. combine:

$$Alg \ge \underbrace{\sum_{i \in S} \tilde{v}_i - \epsilon \underbrace{v_{max}}_{\le Alg}}_{\ge OPT}$$

$$\ge OPT - \epsilon Alg$$

So
$$(1 + \epsilon)Alg \ge OPT$$
.

QED

Complexity of Approximation

Def: APX = class of problems with constant approximations

Def: PTAS = class of problems with PTASs.

DRAW PICTURE of $P \leq PTAS \leq APX \leq NP$