
EECS 336: Introduction to Algorithms Lecture 17
Approximation Algorithms approximation, metric TSP, knapsack

Reading: 11.0-11.3

Announcements:

• homework due Tuesday; no extension.

• extra credit due Tuesday.

• Algorithms Coffee 10-11am, Wednesday,
Ford 3rd floor lounge.

Last time:

• NP ≤P CIRCUIT-SAT ≤P 3-SAT

Today:

• approximation

• metric TSP

Approximation Algorithms

“instead of computing an optimal solution is
NP-complete, try to compute an approxi-
mately optimal solution instead”

Def: A is an β-approximation the value of
its solutions is at most βOPT (minimization
problems)

(at most OPT/β for maximization problems)

Question: how well can we approximate
NP-complete problems?

1 + ǫ const log linear inapprox
Knapsack METRIC-TSP TSP
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Metric TSP

Def: distances are a metric if

• symmetry: d(u, v) = d(v, u)

• triangle inequality: d(u, v) ≤ d(u, w) +
d(w, v)

Def: Metric TSP = TSP when edge costs are
a metric.

Lemma: MST is smaller than TSP tour.

Proof:

• take any tour

• remove one edge

⇒ get a tree (degerate = a line)

⇒ cost of tour > cost of MST.

Algorithm: METRIC-TSP via MST

1. find MST.

2. double it ⇒ cycle
(with repeated vertices)

3. remove repeated vertices (short-cut) ⇒
tour.

Example:

Cycle: ?

Challenge:

• NP-hardness ⇒ don’t understand opti-
mal soln’s.

• how can we approximate something we
don’t understand?

Approach

1. Bound OPT. E.g., OPT ≥ MST

2. Design alg to approximate bound. E.g.,
A ≤ 2MST.

Question: can we approximate (non-metric)
TSP?

Lemma: Cannot approximate TSP to any
factor unless P = NP.

Proof: reduce from Hamiltonian Cycle to α-
approximate-TSP

• convert HC problem G′ = (V ′, E ′) to
TSP problem G, c(·)

• G← complete graph on V ′.

• set c(e) =

{

1 if e ∈ E ′

αn otherwise

• HC in G′ ⇒ TSP of cost n.

• no HC in G′ ⇒ TSP of cost > αn.

• α-approxiate TSP distinguishes these
two cases.

QED
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Example:
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Knapsack

input:

• n objects

• sizes si (non-negative real number)

• values vi

• capacity C.

output: subset S that

• fits:
∑

i∈S si ≤ C

• maximizes values:
∑

i∈S vi.

Note: Knapsack is NP-complete

Goal: approximation algorithm for knapsack

Step 0: try things that don’t work.

Idea: Greedy by value/size

Example: v = (2, C), s = (1, C)

Greedy ⇒ 2; OPT ⇒ C.

Step 1: find upper bound.

Fact: optimal fractional knapsack (FOPT)
≥ optimal integral knapsack (OPT)

Step 2: find algorithm to approximate up-
per bound.

Note: the difference between FOPT and
GREEDY is that FOPT adds fraction of last
object.

Fact: FOPT ≤ GREEDY + vlast object
︸ ︷︷ ︸

≤maxi vi

.

So either:

• GREEDY ≥ FOPT/2, or

• maxi vi ≥ FOPT/2.

Algorithm: Max or Greedy by value/size

1. run GREEDY.

2. MAX = maxi vi.

3. if MAX ≥ GREEDY, take MAX

4. else, take GREEDY.

Lemma: alg is 2-approximation.

Proof: ALG ≥ FOPT/2 ≥ OPT/2.
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Pseudo-polynomial Time

“polynomial if numbers in input are written
in unary (not binary)”

Integer Knapsack

input: • n objects S = {1, . . . , n}

• si = size of object i (integer).

• vi = value of object i.

• capacity C of knapsack (integer)

output:

• subset K ⊆ S of objects that

(a) fit in knapsack together
(i.e.,

∑

i∈K si ≤ C)

(b) maximize total value
(i.e.,

∑

i∈K vi)

Greedy fails, e.g.,

• largest value/size:

v = (C/2 + 2, C/2, C/2).

s = (C/2 + 1, C/2, C/2).

• smallest value/size:

v = (1, C/2, C/2).

s = (2, C/2, C/2).

Find a subproblem:

• consider object i ∈ S.

• if i in knapsack:

value of knapsack is vi + optimal
knapsack value on S \ {i} with ca-
pacity C − si.

• if i not in knapsack:

value of knapsack is optimal knap-
sack on S \ {i} with capacity C.

Succinct description:

• remaining objects {j, . . . , n} represented
by “j”

• remaining capacity represented by D ∈
{0, . . . , C}.

Step I: identify subproblem in

English

OPT(j,D)

= “value of optimal size D knapsack on
{j, . . . , n}”

Step II: write recurrence

OPT(j,D)

= max(vj +OPT(j + 1, D − sj)
︸ ︷︷ ︸

if sj ≤ D

,OPT(j +

1, D))

Step III: base case

OPT(n + 1, D) = 0 (for all D)

Step IV: iterative DP

Algorithm: knapsack

1. ∀D, memo[n + 1, D] = 0.

2. for i = n down to 1,

for D = C down to 0,
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(a) if i fits (i.e., si ≤ D)

memo[j,D] = max[OPT(j + 1, D),

vj +OPT(j + 1, D − sj)]

(b) else,

memo[j,D] = OPT(j + 1, D)

3. return memo[1, C]

Correctness

induction

Runtime

T (n, C) = O(# of subprobs× cost per subprob)

= O(nC).

Note: Knapsack DP is pseudo-polynomial
time.
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