EECS 336: Introduction to Algorithms P vs. NP (cont.)

Lecture 17 CIRCUIT-SAT, 3-SAT

Reading: 8.1-8.4

Last time:

• 3-SAT $\leq_{\mathcal{P}}$ INDEP-SET

Today:

• NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT $\leq_{\mathcal{P}}$ 3-SAT

Notorious Problem: NP

input:

- decision problem verifier program VP.
- polynomial $p(\cdot)$.
- \bullet decision problem instance: x

output:

- "Yes" if exists certificate c such that VP(x,c) has "verified = true" at computational step p(|x|).
- "No" otherwise.

Problem 4: 3-SAT

input: boolean formula $f(\mathbf{z})$

ullet in conjunctive normal form (CNF)

- three literals per or-clause
- or-clauses anded together.

output:

- "Yes" if assignment \mathbf{z} with $f(\mathbf{z}) = T$ exists
- "No" otherwise.

Note: 2 steps to NP-completeness

- 1. $X \in \mathcal{NP}$
- 2. X is \mathcal{NP} -hard (via reduction)

3 steps to reduction

- 1. construction
- 2. runtime of construction
- 3. correctness of construction (iff)

Note: algorithms in reductions:

3-SAT INDEP-SET input: f => G,D output: z <=> S

Circuit Satisfiability

Example:

Problem 4: CIRCUIT-SAT

input: boolean circuit $Q(\mathbf{z})$

- directed acyclic graph G = (V, E)
- internal nodes labeled by logical gates:

• leaves labeled by variables or constants

$$T, F, z_1, \ldots, z_n$$
.

 \bullet root r is output of circuit

output:

- "Yes" if exists \mathbf{z} with $Q(\mathbf{z}) = T$
- "No" otherwise.

Lemma: CIRCUIT-SAT is \mathcal{NP} -hard.

Proof: (reduce from NP)

- goal: convert NP instance (VP, p, x) to CIRCUIT-SAT instance Q
- $VP(\cdot, \cdot)$ polynomial time

- \Rightarrow computer can run it in poly steps.
- each step of computer is circuit.
- output of one step is input to next step
- unroll p(|x|) steps of computation
 - $\Rightarrow \exists$ poly-size circuit $Q'(\mathbf{x}, \mathbf{c}) = VP(x, c)$
- hardcode **x**: $Q(\mathbf{c}) = Q'(\mathbf{x}, \mathbf{c})$
- Conclusion: Q is sat iff exists c with VP(x,c) = "verified".

QED

LE3-SAT

"CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT"

Problem 5: LE3-SAT

"like 3-SAT but $\underline{\text{at most}}$ 3 literals per orclause"

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Recall: NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT

Plan: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

SAT

Lemma: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)

Step 1: convert CIRCUIT-SAT instance Q into 3-SAT instance f

- variables x_v for each vertex of Q.
- encode gates
 - **not**: if v not gate with input from u

need $x_v = \bar{x}_u$

$$\begin{array}{c|ccc}
x_v \setminus x_u & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

- \Rightarrow add clauses $(x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$
- or: if v is or gate from u to wneed $x_v = x_u \wedge x_w$

- \Rightarrow add clauses $(\bar{x}_v \lor x_u \lor x_w) \land (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w)$
- and: if v is and gate from u to w $\Rightarrow \text{ add clauses } (x_v \vee \bar{x}_u \bar{x}_w) \wedge (\bar{x}_v \vee x_u) \wedge (\bar{x}_v \vee x_w).$
- 0: if v is 0 leaf. need $x_v = 0$

$$\Rightarrow$$
 add clause (\bar{x}_v)
need $x_v = 1$

- 1: if *v* is 1 leaf.
 - \Rightarrow add clause (x_v)
- literal: if v is literal z_i
 - \Rightarrow do nothing
- root: if v is root

need $x_v = 1$

 \Rightarrow add clause (x_v) .

Step 2: construction is polynomial time.

• at most 3 clauses in f per node in Q.

Step 3: construction is correct (i.e., Q is sat iff f is sat.)

- f constrains variables v_i to "proper circuit outcomes".
- if exists \mathbf{z} s.t. $f(\mathbf{z})$ is T,

then can read \mathbf{x} from \mathbf{z} and \mathbf{z} encodes proper circuit outcome to make Q output T for this \mathbf{x} .

• if Q outputs T for some \mathbf{x}

then can map \mathbf{x} and values at nodes to variables \mathbf{z} such that $f(\mathbf{z})$ is true.

Lemma: LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

Step 1: convert LE3-SAT instance f' into 3-SAT instance f

- $f \leftarrow f'$
- add variables w_1, w_2
- add w_i to 1- and 2-clauses

$$(l_1) \Rightarrow (l_1 \vee w_1 \vee w_2).$$

$$(l_1 \vee l_2) \Rightarrow (l_1 \vee l_2 \vee w_1).$$

• ensure $w_i = 0$ add variables y_1, y_1 and clauses:

$$(\bar{w}_i \vee y_1 \vee y_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee y_2)$$

$$(\bar{w}_i \vee y_1 \vee \bar{y}_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee \bar{y}_2)$$

Step 2: construction is polynomial time.

Step 3: f is sat iff f' is sat.

• given satisfying assignment $(\bar{z}, w_1, w_2, y_1, y_2)$ to f,

$$\Rightarrow w_i = F$$
 by construction.

$$\Rightarrow f(\bar{z}, F, F, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow} f(\bar{z})$$

- $\Rightarrow f \text{ is sat.}$
- given satisfying assignment \bar{z} to f',
 - $f(\bar{z}, w_1, w_2, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow}$ "clauses with only w_i and y_i "
 - set $w_i = F$ and $y_i = F$ (or anything) to satisfy. **QED**

QED