EECS 336: Introduction to Algorithms Lecture 17

P vs. NP (cont.) CIRCUIT-SAT, 3-SAT
Reading: 8.1-8.4 e three literals per or-clause
Last time: e or-clauses anded together.
e 3-SAT <p INDEP-SET output:
Today: e “Yes” if assignment z with f(z) =
T exists

e NP <p CIRCUIT-SAT <p 3-SAT
e “No” otherwise.

Note: 2 steps to NP-completeness

Notorious Problem: NP 1. X e NP

2. X is N'P-hard (via reduction)
input:
3 steps to reduction
e decision problem verifier program

VP. 1. construction
e polynomial p(-). 2. runtime of construction
e decision problem instance: x 3. correctness of construction (iff)
output: Note: algorithms in reductions:

e “Yes” if exists certificate ¢ such that

VP(z,c) has “verified = true” at 3-SAT INDEP-SET
computational step p(|z|). input: f => G,D
output: zZ <=> S

e “No” otherwise.

Problem 4: 3-SAT

input: boolean formula f(z)

e in conjunctive normal form (CNF)




Circuit Satisfiability = computer can run it in poly steps.
Example: e cach step of computer is circuit.
output e output of one step is input to next step

e unroll p(|z|) steps of computation

o = 3 poly-size circuit @'(x,¢) =
VP(z,c)

0 g ° e hardcode x: Q(c) = Q'(x,¢)
@ @ e @ @ e Conclusion: @ is sat iff exists ¢ with

VP(z,c) = “verified”.

Problem 4: CIRCUIT-SAT QED

input: boolean circuit Q(z)
e directed acyclic graph G = (V, E)

e internal nodes labeled by logical
gates:

((and”’ “OI‘”, or ((not”

e leaves labeled by variables or con-
stants

T F z1,...,2%,.
e root r is output of circuit
output:
e “Yes” if exists z with Q(z) =T
e “No” otherwise.
Lemma: CIRCUIT-SAT is N'P-hard.
Proof: (reduce from NP)

e goal: convert NP instance (V P, p,z) to
CIRCUIT-SAT instance Q)

e VP(-,-) polynomial time



LE3-SAT

“CIRCUIT-SAT <p LE3-SAT <p 3-SAT”

Problem 5: LE3-SAT

“like 3-SAT but at most 3 literals per or-
clause”

Note: <p is transitive: if ¥ <p X and
Xngtheanp Z.

Recall: NP <p CIRCUIT-SAT

Plan: CIRCUIT-SAT <p LE3-SAT <p 3-
SAT

Lemma: CIRCUIT-SAT <p LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)

Step 1: convert CIRCUIT-SAT instance @
into 3-SAT instance f

e variables z, for each vertex of ().
e encode gates

e not: if v not gate with input from
u

= add clauses (z,Vz,) A (T, VT,)
e or: if v is or gate from u to w

need x, = £, N Ty

Ty \ Tyy [ 00 | 01 | 11 | 10
0 1100710
1 O 1111

= add clauses (T, Vx,V,)A(z,V
Ty) N (T V Ty)

e and: if v is and gate from u to w

= add clauses (z, VZT,ZTy) A (T V
Ty) N (Ty V Typ).

e 0: if v is O leaf.

need x, =0



= add clause (z,)
need z, =1
o 1: if vis 1 leaf.
= add clause (z,)
e literal: if v is literal z;
= do nothing

e root: if v is root

output

Ly

need z, =1
= add clause ().
Step 2: construction is polynomial time.
e at most 3 clauses in f per node in Q.

Step 3: construction is correct (i.e., @ is
sat iff f is sat.)

e f constrains variables v; to “proper cir-
cuit outcomes”.

o if exists z s.t. f(z)is T,

then can read x from z and z encodes
proper circuit outcome to make () output
T for this x.

e if () outputs 7' for some x

then can map x and values at nodes to
variables z such that f(z) is true.

QED

Lemma: LE3-SAT <p 3-SAT

Step 1: convert LE3-SAT instance f’ into
3-SAT instance f

o < f

e add variables wq, wo

e add w,; to 1- and 2-clauses
(l1) = (L Vwy V w,).
(b Vi) = (I3 Vip V).

e ensure w; = 0 add variables y;,1y; and
clauses:

w; Vy1 Vyo
w; Vy1Vys

( )
( )
(Wi V y1 Vi)
( )

w; VY1 Vo

Step 2: construction is polynomial time.

Step 3: [ issat iff f’ is sat.

e given satisfying assignment
(27 w1, W2, Y1, y2) to f7

= w; = F by construction.

= [z F Foy,ye) 25" f(2)
= f is sat.
e given satisfying assignment z to f’,
o f(Z, w1, w2, y1,y2) SIEUY wclauses

with only w; and y;”

e set w; = F and y; = F (or any-
thing) to satisfy. QED



